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Abstract—Engine control applications include software tasks
that are triggered at predetermined angular values of the
crankshaft, thus generating a computational workload that varies
with the engine speed. To avoid overloads at high rotation
speeds, these tasks are implemented to self adapt and reduce
their computational demand by switching mode at given rotation
speeds. For this reason, they are referred to as adaptive variable
rate (AVR) tasks. Although a few works have been proposed in
the literature to model and analyze the schedulability of such
a peculiar type of tasks, an exact analysis of engine control
applications has been derived only for fixed priority systems,
under a set of simplifying assumptions. The major problem of
scheduling AVR tasks with fixed priorities, however, is that, due
to engine accelerations, the interarrival period of an AVR task is
subject to large variations, therefore there will be several speeds
at which any fixed priority assignment is far from being optimal,
significantly penalizing the schedulability of the system.

This paper proposes for the first time an exact feasibility test
under the Earliest Deadline First scheduling algorithm for tasks
sets including regular periodic tasks and AVR tasks triggered by
a common rotation source. In addition, a set of simulation results
are reported to evaluate the schedulability gain achieved in this
context by EDF over fixed priority scheduling.

I. INTRODUCTION

Engine control systems include two types of computational
activities: periodic tasks, activated in a time-driven fashion at
regular time intervals, and angular tasks, activated in an event-
driven fashion at specific angular values of the crankshaft [1].
As a consequence, the activation rate of angular tasks is
proportional to the engine rotation speed. To prevent overload
conditions at high engine speeds, such angular tasks are
often implemented to adapt their computational demand as
a function of the rotation speed [2]. In particular, they are
designed as a set of modes, each executed within a predefined
speed range. For this reason, they will also be referred to as
adaptive variable-rate (AVR) tasks.

The schedulability analysis of real-time task sets including
both periodic and AVR tasks has recently been addressed by
several authors, under a variety of models and simplifying
assumptions. Kim, Lakshmanan, and Rajkumar [3] presented
a first schedulability test for fixed priority (FP) systems, but
their result only applies to a single AVR task running at the
highest priority and having interarrival times smaller than the
other periods. Relative deadlines are assumed to be equal
to periods and priorities are assigned according to the Rate-
Monotonic algorithm. Pollex et al. [4] derived a sufficient
schedulability test for fixed priorities, under the assumption of
a constant engine speed. Davis et al. [5] analyzed the dynamic
behavior of AVR tasks under fixed priority assignments and
proposed a sufficient schedulability test using an Integer Linear

Programming (ILP) formulation. This approach, however, is
based on speed quantization, which adds more pessimism in
the analysis. A method for computing the exact interference
of an AVR task under fixed priorities has been presented for
the first time by Biondi et al. [6], who used a search based
approach in the speed domain. In this approach, the concept of
dominant speeds is used to contain the complexity and avoid
speed quantization. Then, the exact response time analysis of
AVR tasks and periodic tasks in the presence of AVR tasks
has been presented by Biondi et al. [7].

For this type of applications, however, fixed priorities
scheduling is not the best choice. In fact, given the range
of values in which the engine speed can vary, typically from
500 to 6500 rotations per minute (rpm), the interarrival time
of an AVR task varies from 9 to 120 ms (assuming a single
activation per cycle). Considering that there exists other tasks
with fixed period ranging from a few milliseconds up to 100
ms (see [1], page 152), there will be several engine speeds
at which any fixed priority assignment is far from being
optimal, significantly penalizing the system schedulability. In
this context, scheduling the task set by Earliest Deadline First
(EDF) [8] would allow achieving a much higher schedulability,
independently on the period values.

The analysis of engine control applications under EDF
scheduling has been addressed by Buttazzo, Bini, and But-
tle [9], but under the assumption that AVR tasks are triggered
by independent rotation sources. This assumption, however,
introduces some pessimism, because it considers situations that
can never occur when tasks are linked to the same rotation
source. The EDF schedulability of AVR tasks linked to a
common rotation source has been analyzed by Biondi and
Buttazzo [10], but their test is only sufficient, since derived
from a utilization upper bound. Recently, Guo and Baruah [11]
studied the EDF scheduling of AVR tasks proposing a speedup
factor analysis and sufficient schedulability tests.

Contributions. This work has three main contributions:

1) An exact schedulability analysis is presented under
EDF scheduling for mixed task sets consisting of
classic periodic tasks and AVR tasks triggered by a
common rotation source. The analysis is based on
demand bound functions derived as a search problem
exploiting pruning rules.

2) A set of experimental results is reported to evaluate
the schedulability gain achieved by the exact EDF test
proposed in this paper over the exact FP test [7].

3) A set of simulation experiments are carried out through
a scheduling simulator to evaluate the average perfor-
mance gain of EDF over FP scheduling.

Paper structure: The rest of the paper is organized as
follows. Section II presents the system model. Section III



introduces our approach for analyzing the schedulability of
a system composed of periodic and AVR tasks. Section IV
describes how to compute the worst-case workload for an AVR
task. Section V presents a set of experimental results aimed
at comparing EDF and FP scheduling. Finally, Section VI
summarizes the results and concludes the paper.

II. SYSTEM MODEL

For the purpose of the analysis, this paper considers a sin-
gle rotation source (the engine) characterized by the following
state variables:

θ the current rotation angle of the crankshaft;
ω the current angular speed of the crankshaft;
α the current angular acceleration of the crankshaft.

We assume that the speed ω is limited within a given range
[ωmin, ωmax] and the acceleration α is limited within a given
range [α−, α+] and its rate of change (jerk) is bounded.

A. Task model

The application consists of a set of n real-time preemptive
tasks Γ = {τ1, τ2, . . . , τn}. Each task can be either periodic
(i.e., activated at fixed time intervals), or an angular task (i.e.,
activated at specific crankshaft rotation angles). Since angular
tasks have a variable interarrival time linked to the engine
speed and adapt their workload for different speeds, they are
also referred to as adaptive variable-rate (AVR) tasks. In the
following, the subset of regular periodic tasks is denoted as
ΓP and the subset of angular AVR tasks is denoted as ΓA, so
that Γ = ΓP ∪ΓA and ΓP ∩ΓA = ∅. The overall utilization of
ΓP is denoted as UP . For the sake of clarity, whenever needed,
an AVR task may also be denoted as τ∗i .

Both types of tasks are characterized by a worst-case
execution time (WCET) Ci, an interarrival time (or period) Ti,
and a relative deadline Di. However, while for regular periodic
tasks such parameters are fixed, for angular tasks they depend
on the engine rotation speed ω. In particular, an angular task
τ∗i is characterized by an angular period Θi and an angular
phase Φi, so that it is activated at the following angles:

θi = Φi + kΘi, for k = 0, 1, 2, . . .

This means that the period of an AVR task is inversely
proportional to the engine speed ω and can be expressed as

Ti(ω) =
Θi

ω
. (1)

The angular phase Φi is relative to a reference position called
Top Dead Center (TDC) corresponding to the crankshaft angle
for which at least one piston is at the highest position in
its cylinder. Without loss of generality, the TDC position
is assumed to be at θ = 0. An angular task τ∗i is also
characterized by a relative angular deadline ∆i expressed as a
fraction δi of the angular period (δi ∈ [0, 1]). In the following,
∆i = δiΘi represents the relative angular deadline.

An AVR task τ∗i is typically implemented as a set Mi

of Mi execution modes with decreasing functionality, each
operating in a predetermined range of rotation speeds. Mode
m of an AVR task τ∗i is characterized by a WCET Cm

i and

is valid in a speed range (ωm+1
i , ωm

i ], where ωMi+1
i = ωmin

and ω1
i = ωmax. Hence, the set of modes of task τ∗i can be

expressed as

Mi = {(C
m
i , ωm

i ),m = 1, 2, . . . ,Mi}.

The computation time of a generic AVR job Ji,k can be
expressed as a non-increasing step function Ci of the instanta-
neous speed ω at its release, that is,

Ci,k = C(ω) ∈ {C1
i , . . . , C

Mi

i }. (2)

An example of C function is illustrated in Figure 1.
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Figure 1. Computation time of an AVR task as a function of the speed at
the job activation.

The implementation of such a type of tasks is typically
performed as a sequence of conditional if statements, each
executing a specific subset of functions [2], [9]. Figure 2 illus-
trates a sample AVR task with four modes reported in Table I.
In this example, ωmin = 500 rpm, and ωmax = 8000 rpm.
Note that we assume that function read_rotation_speed()

returns the instantaneous speed ω at the task activation time
(not at the execution time of the function).

Mode rotation (rmp) functions to be executed

Mode 1 ( 6000, 8000] f1();

Mode 2 ( 4000, 6000] f1(); f2();

Mode 3 ( 2000, 4000] f1(); f2(); f3();

Mode 4 [ 500, 2000] f1(); f2(); f3(); f4();

Table I. SAMPLE AVR TASK WITH FOUR MODES.

#define W1 8000
#define W2 6000
#define W3 4000
#define W4 2000

task sample_AVR_task {

omega = read_rotation_speed();

if (omega ≤ W1) f1();
if (omega ≤ W2) f2();
if (omega ≤ W3) f3();
if (omega ≤ W4) f4();

}

Figure 2. Implementation of the AVR task reported in Table I.

Note that, when using EDF as a scheduler, an absolute
deadline must be assigned to each job at its activation time
in order to be scheduled. Although the angular deadline is
constant, the temporal deadline is a function of ω and (for
constant rotation speed) is equal to

Di(ω) =
∆i

ω
=

δiΘi

ω
= δiTi(ω). (3)

However, for an incoming job, the next arrival time is not
known, since ω may not be constant over time. To achieve



a safe schedule, we make the conservative assumption to
always assign each job the earliest possible deadline among
those compatible with the speed at its activation, that is, the
one derived assuming the maximum acceleration α+. A more
precise deadline assignment could be achieved by considering
the engine dynamics, but this is left to future work due to lack
of space. In general, it is worth observing that the optimal
deadline assignment for a job of an angular task requires
clairvoyance to determine the exact interarrival period (which
depends on the future engine evolution).

In the following, the schedulability analysis is presented
for a single AVR task. Note however that, as shown by Biondi
et al. [7], multiple AVR tasks with the same phase and angular
period triggered by a common rotation source are equivalent
to a singe AVR task having as modes the union of the various
modes. Thanks to this equivalence, all the results derived in
this paper apply to a set AVR tasks with zero phase and the
same angular period.

B. Rotation source model

For the purpose of analyzing the schedulability of engine
control applications consisting of AVR tasks, it is crucial to
characterize the relation between the task parameters and the
dynamics of the engine. Following the approach proposed by
Buttazzo et al. [9], if (ωk, αk) is the state of the engine at time
tk, the next job release time of an AVR task can be computed
(assuming a constant acceleration αk) as:

Ti(ωk, αk) =

√
ω2
k + 2Θiαk − ωk

αk

. (4)

The corresponding relative deadline in the time domain can
be computed by considering the earliest value given by the
maximum acceleration α+, that is

Di(ωk) =

√
ω2
k + 2∆iα+ − ωk

α+
. (5)

In a similar way, the instantaneous rotation speed Ω at the next
job release can be computed (assuming constant acceleration
during the angular period) as Ω(ωk, αk) = ωk+αkTi(ωk, αk),
which gives:

Ωi(ωk, αk) =
√
ω2
k + 2Θiαk. (6)

It also convenient to define the inverse function of Equa-
tion (6), representing the speed ωk needed to reach ωk+1 with
acceleration αk, that is,

Ω−

i (ωk+1, αk) =
√
ω2
k+1 − 2Θiαk. (7)

In the analysis, we also need to compute the engine
speed after n job releases (following the kth job), with
constant acceleration α; such a value is denoted as Ωn and
can be computed as Ωn(ωk, α) = Ω(Ωn−1(ωk, α), α), where
Ω0(ωk, α) = ωk. Similarly, we define Ω−n(ωk+1, α) =
Ω−(Ω−(n−1)(ωk+1, α), α), where Ω−0(ωk+1, α) = ωk+1.

If a job Ji,k is released when the engine has an instan-

taneous speed ωk, the interarrival time T̃i(ωk, ωk+1) to the
next job Ji,k+1 released with instantaneous speed ωk+1 (if
reachable with the acceleration bounds), can be obtained by

Equation (4), substituting αk from Equation (6), which gives:

T̃i(ωk, ωk+1) =
2Θi

ωk + ωk+1
. (8)

III. WORST-CASE WORKLOAD AS A SEARCH PROBLEM

The schedulability analysis of a generic real-time workload
under EDF scheduling can be performed by the processor
demand criterion [12], according to which a task set is
schedulable by EDF if and only if its computational demand
in any time interval [t1, t2] does not exceed the available
processor supply. The computational demand of a real-time
task in an interval of time [t1, t2] can be quantified by the
demand bound function (dbf), which expresses the maximum
execution requirement of a task having both release time and
deadline in [t1, t2]. The cumulative workload on the processor
can then be obtained by summing the dbf of each task in
the system. When no initial phases are provided for tasks (i.e.,
when it is possible to have simultaneous releases for all tasks),
an exact schedulability test can be achieved by considering all
tasks released simultaneously at time t = 0 and then apply the
processor demand criterion for all intervals [0, t], ∀t > 0. The
release pattern at time t = 0 is denoted as the critical instant.

In the following, the concept of critical instant is general-
ized for task sets including an AVR task, and the workload of
an AVR task is computed in a given time window [0, t].

Since the rotation source triggering the release of AVR
tasks is independent of the mechanism activating the other
periodic (sporadic) tasks, it is always possible to have an
instant of time at which the release of the AVR task occurs
simultaneously with the activation of all the other tasks.
Unfortunately, in the presence of an AVR task, there can
be potentially infinite critical instants, one for each possible
instantaneous speed ω0 at which the AVR task is triggered
when all the other tasks are simultaneously released at t = 0.
This occurs because, depending on the speed ω0, the AVR
task generates a different worst-case workload related to all
possible speed evolution patterns starting from ω0.

To characterize the workload of an AVR task we introduce
the following definitions.

Definition 1 (AVR job sequence): An AVR job sequence s

is an ordered list of jobs J
(s)
0 , . . . , J

(s)
ns

and a corresponding

list of speeds ω
(s)
0 , . . . , ω

(s)
ns

, where each speed ω
(s)
i represents

the instantaneous engine speed at the activation of job J
(s)
i .

For each AVR job sequence s, the sequence of speeds

ω
(s)
0 , . . . , ω

(s)
ns

must be compatible with the acceleration range
allowed for the rotation source.

Let S(t) be the set of all possible job sequences in [0, t],
which are those having the release of the first job at time t = 0
and the deadline of the last job no later than time t. Please
note that, being the speed domain a continuum, the set S(t)
is generally infinite.

Definition 2 (Single-Job Demand): Given a job J of an
AVR task, released at relative time instant λ = 0 with instan-
taneous speed ω, the demand of J (its workload contribution
to the system) in a generic interval [0, λ] is

sjdω(λ) = C(ω) step (λ−D(ω)) , (9)



where

step(x) =

{
1 if x ≥ 0

0 if x < 0
.

Note that the single-job demand is the smallest unit con-
tributing to the workload of a job sequence s, which can
be expressed as the sum of the time-shifted computational
demands of the jobs in the sequence. We now introduce the

concept of demand bound function dbf(s)(t) of an AVR job
sequence s ∈ S(t):

dbf
(s)(t)=

ns∑

k=0

C(ω
(s)
k ) step


t−

k∑

j=1

T̃ (ω
(s)
j−1, ω

(s)
j )−D(ω

(s)
k )




(10)

An example of dbf(s)(t) function is reported in Figure 3 for
a simple job sequence s composed of three jobs, released at
speeds ω0, ω1 and ω2, respectively. Dashed arrows indicate
the instantaneous speed at the time instant corresponding to
the job release.
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Figure 3. Example of dbf(s)(t) function for an AVR job sequence composed
of three jobs.

Being all job sequences possible scenarios for the system,
all of them must be taken into account to analyze the feasibility
of the system. For this purpose, the demand bound function
dbf∗(t) of an AVR task is defined as the maximum demand
of all possible job sequences, that is:

dbf∗(t) = max
s∈S(t)

{
dbf(s)(t)

}
. (11)

Intuitively, function dbf∗(t) represents the envelope of the
demand of all possible job sequences allowed for the AVR
task. Hence, the feasibility test for a system including an AVR
task can be expressed as follows:

∀t > 0,
∑

τi∈ΓP

dbfi(t) + dbf
∗(t) ≤ t (12)

where dbfi(t) is the demand bound function of a classical
periodic (sporadic) task, defined as

dbfi(t) =

(⌊
t−Di

Ti

⌋
+ 1

)
Ci. (13)

Unfortunately, computing dbf∗(t) through Equation (11)
would require a maximum among an infinite number of job
sequences. The characterization of all possible job sequences
can be seen as a search problem in the speed domain; that is,
given an initial speed ω0, we can collect all possible speeds ω1

following ω0 that are compatible with the acceleration range
allowed for the rotation source. Then, the same reasoning can
be applied to speed ω1, leading to the definition of a search
tree, schematically illustrated in Figure 4.
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Figure 4. Search tree representing all possible job sequences.

Such a search problem can be solved by brute-force ap-
plying quantization on the speed domain. However, besides
making the problem intractable for most practical cases, this
approach will always provide an approximated solution, result-
ing in an unsafe analysis.

The next section presents a technique to compute dbf∗(t)
avoiding quantization on the speed domain, thus significantly
reducing the complexity of the search problem by enforcing
dominance conditions.

IV. WORST-CASE WORKLOAD OF AN AVR TASK

The goal of this section is to derive dominance conditions
among job sequences, thus identifying pruning rules for the
search problem introduced in the previous section. Then, the
algorithms for computing function dbf

∗(t) will be presented.
The following theorem gives a dominance condition for a
single-job demand.

Theorem 1 (Single-job dominance condition): Let Ja and
Jb be two jobs of an AVR task released at relative time instant
λ = 0 with speed ωa and ωb, respectively. If ωa ≥ ωb and
C(ωa) = C(ωb), then ∀λ > 0, sjdωa

(λ) ≥ sjdωb
(λ).

Proof: The deadline of an AVR task is assigned as
D(ω) = δT (ω, α+). Being T (ω, α+) a non-increasing func-
tion of ω, we have that D(ωa) ≤ D(ωb). Hence, we can
conclude that ∀λ ∈ [0, D(ωb)), sjdωa

(λ) ≥ sjdωb
(λ), being

function sjdωb
(λ) = 0 for λ < D(ωb). For λ ≥ D(ωb),

sjdωb
(λ) = C(ωb), while sjdωa

(λ) is holding value C(ωa).
Then, under the hypothesis C(ωa) = C(ωb), we have that
∀λ ≥ D(ωb), sjdωa

(λ) = sjdωb
(λ). Hence the theorem

follows.

To better clarify the result expressed by Theorem 1,
Figure 5-a illustrates an example in which the single-job
dominance condition is satisfied, while Figure 5-b illustrates
an example in which it is not.

Unfortunately, a dominance condition on a single-job de-
mand is not enough to identify a pruning rule for the addressed
search problem. In fact, it could be that, besides having a
dominance of Ja on Jb, a set of jobs following Jb are not
dominated by any job following Ja. In the search tree, this
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Figure 5. a) Example at which Theorem 1 applies, b) Example at which
Theorem 1 does not apply.

means that the sub-tree of job sequences following Jb is not
dominated by the one following Ja. To address this issue in a
more formal way, we identify a set of critical job sequences
that allows computing dbf

∗(t) without involving the (infinite)
set S(t).

Definition 3 (Set of Critical Job-Sequences): The set
CS(t) ⊆ S(t) of critical job sequences in [0, t] is a set
composed of job sequences such that, for each non-critical
job sequence s′ /∈ CS(t) there exists a critical job sequence
s ∈ CS(t) whose demand bound function dominates the one
of s′. That is,

∀s′ /∈ CS(t) ∃s ∈ CS(t) | ∀ℓ ∈ [0, t] dbf(s)(ℓ) ≥ dbf(s
′)(ℓ).

Once CS(t) is identified, the demand bound function

dbf∗(t) can be computed as dbf∗(t) = maxs∈CS(t){dbf
(s)(t)}.

In the following we present a theorem expressing a dominance
condition that allows computing the set CS(t).

To simplify the presentation of the following results, we
introduce the demand bound function for a speed ω0, that is
the envelope of the demand bound functions for all possible job
sequences starting at speed ω0 at relative time instant λ = 0.
Formally,

dbfω0
(λ) = max

s∈S(λ)

{
dbf(s)(λ) | ω

(s)
0 = ω0

}
. (14)

Function dbfω0
(λ) can be also recursively expressed by

considering all possible speeds following ω0, that are the ones
in the range A(ω0) = [Ω(ω0, α

−),Ω(ω0, α
+)]. This can be

achieved by splitting the outer sum in Equation (10) in two
terms, one considering the first job in the sequence (k = 0),
and another considering the remaining jobs (1 ≤ k ≤ ns).
Assuming a sequence started at speed ω0, the first term can
be replaced by sjdω0

(λ), while the second can be treated as
a family of sub-sequences starting at speeds following ω0

defined by the set A(ω0). This reasoning leads to

dbfω0
(λ) = sjdω0

(λ) + max
ω′∈A(ω0)

{
dbfω′(λ − T̃ (ω0, ω

′))
}
.

(15)

Theorem 2 (Dominance Condition): Let Ja and Jb be two
jobs of an AVR task released at the relative time instant λ = 0
with speed ωa and ωb, respectively. If ωa ≥ ωb and ∀n ≥
0, n ∈ Z, such that C(Ωn(ωa, α

−)) = C(Ωn(ωb, α
−)), then

∀λ > 0, dbfωa
(λ) ≥ dbfωb

(λ).

Proof: First notice that, being C(ωa) = C(ωb) (n =
0) and ωa ≥ ωb, by Theorem 1 we can conclude that
sjdωa

(λ) ≥ sjdωb
(λ). Hence, the dominance of the first term

in Equation (15) is satisfied. It remains to show that the
dominance condition is satisfied for each speed ω′ ∈ A(ωb) =
[Ω(ωb, α

−),Ω(ωb, α
+)]. We split the proof in two parts.

Part 1. Consider speeds ω′ ∈ [Ω(ωa, α
−),Ω(ωb, α

+)],
reachable by both ωa and ωb. Exploring the search tree
from ωa, each speed ω′ originates a workload contribution

described by function dbfω′(λ − T̃ (ωa, ω
′)). Similarly, when

each speed ω′ is reached from ωb, we have a workload

contribution equal to dbfω′(λ − T̃ (ωb, ω
′)). Being ωa ≥ ωb

we have T̃ (ωb, ω
′) ≥ T̃ (ωa, ω

′), hence we can conclude that

dbfω′(λ − T̃ (ωa, ω
′)) ≥ dbfω′(λ − T̃ (ωb, ω

′), satisfying the
dominance.

Part 2. Now consider the remaining speeds ω′ ∈
[Ω(ωb, α

−),Ω(ωa, α
−)), that are non reachable from ωa. We

start by looking at the first job following Ja and Jb, i.e., n = 1.
Assume to look at the instance of the Ja’s follower released
at speed Ω(ωa, α

−): in this case, since we have the hypothesis
C(Ω(ωa, α

−)) = C(Ω(ωb, α
−)), Theorem 1 can be applied for

each possible instance of the Jb’s follower released at speeds
ω′ ∈ [Ω(ωb, α

−),Ω(ωa, α
−)). Again, the dominance of the

first term in Equation (15) is satisfied, but it remains to show
the dominance for the following jobs (n > 1), considering
the range A(ω′), ∀ω′ ∈ [Ω(ωb, α

−),Ω(ωa, α
−)). Such a range

can be split in two sub-ranges: [Ω2(ωb, α
−),Ω2(ωa, α

−)] and
(Ω2(ωa, α

−),Ω(Ω(ωa, α
−), α+)]. In the latter range there are

speeds reachable from both Ja and Jb and we can apply the
same considerations expressed in the first part of the proof.
For the former range, the same argument of Part 2 can be
repeated for each n > 1, n ∈ Z, thus obtaining the dominance
condition. Hence, the theorem follows.

Theorem 2 allows identifying a limited set of speeds in
the range [ωmin, ωmax] for which the dominance condition
holds. Such speeds are denoted as dominant speeds. As a
consequence, set CS(t) can be computed by identifying the
critical job sequences such that each job in the sequence is
released at a dominant speed. Then, the approach proposed
for computing the dbf∗(t) function of an AVR task consists in
visiting a search-tree (in the speed domain) with pruning. Such
a pruning is performed by exploiting the dominance condition
stated in Theorem 2, which allows exploring the speed domain
considering only the critical job sequences.

Conceptually, given a job J0 released at speed ω0, the next
job J1 can be activated in a range of infinite possible times,
released at speed ω1 ∈ [Ω(ω0, α

−),Ω(ω0, α
+)]. Each possible

activation of J1 gives rise to a different job sequence started
from speed ω0. As expressed by Equation (15), the worst-case
workload produced by all possible job sequences following
J0 results as the maximum of an infinite number of functions
dbfω1

(t).



However, by applying Theorem 2 in the range
[Ω(ω0, α

−),Ω(ω0, α
+)], it is possible to compute such

a maximum restricting to the dominant speeds in that range,
thus also limiting the possible activations of the subsequent
job J2 following J1. This reasoning can be recursively applied
for J2 and all possible followers, so reducing the search
domain to a discrete (finite) domain.

The next section provides the algorithms for computing the
dominant speeds and the dbf∗(t) function.

A. Algorithms

Dominant speeds in a given range [ωb, ωa] can be found by
leveraging the result of Theorem 2 as follows: let ω∗ be highest
speed less than ωa for which the condition of Theorem 2 does
not hold. This means that all the speeds ω ∈ (ω∗, ωa] are
dominated by ωa.

The minimum speed ω∗ can be immediately found by
inverting the conditions of Theorem 2. That is, for each value
of n (number of look ahead steps in the search tree), we
compute the speed ωn

a = Ωn(ωa, α
−), and then the maximum

speed ω∗,n < ωn
a such that C(ωn

a ) 6= C(ω
∗,n). Since function

C(ω) is non-increasing, such a speed ω∗,n can always be
found1. Also note that speed ω∗,n has to be a switching speed
for the AVR task, being the first speed for an adjacent mode
in deceleration.

Given a value for n, it is possible to compute a candidate
for speed ω∗, denoted as ω∗

n. Speed ω∗
n can then be easily com-

puted by using the inverted physical equation of Ωn(ω, α−),
that is ω∗

n = Ω−n(ω∗,n, α−). Finally, since conditions of
Theorem 2 has to be true ∀n, speed ω∗ is computed as the
maximum of all the candidates, that is, ω∗ = maxn{ω∗

n}. Such
a speed is then stored as a dominant speed. The same reasoning
is applied starting from speed ω∗, until reaching the minimum
speed ωb of the considered interval. Being the speeds domain
limited in the range [ωmin, ωmax], the maximum value for n
is bounded to max{n ∈ Z | Ωn(ωa, α

−) ≥ ωmin}.

The technique for computing dominant speeds is summa-
rized in the algorithm reported in Figure 6.

1: procedure GETDOMINANTS(ωb, ωa)
2: ω∗ ← ωa;
3: while ω∗ > ωb do
4: DOMINANTS.ADD(ω∗);
5: maxN ← max{n ∈ Z | Ωn(ω∗, α−) ≥ ωmin};
6: for i = 0 to maxN do
7: ωi = Ωi(ω∗, α−);
8: ω∗,i = maxm=1,...,M{ωm < ωi};
9: ω∗

i = Ω−i(ω∗,i, α−);
10: end for
11: ω∗ = maxi=0,...,maxN{ω∗

i };
12: end while
13: return DOMINANTS;
14: end procedure

Figure 6. Algorithm for computing the dominant speeds in a generic speed
range [ωb, ωa].

1The only exception is related to speeds ωn
a < ω1, i.e., lower than the first

switching speed of the AVR task. In this case, the dominance is automatically
satisfied since it is not possible to violate the hypothesis C(ωn

a ) = C(ω∗,n)
of Theorem 2. In other words, it is not possible to have a mode change
decelerating from speed ωn

a .

By using Algorithm GETDOMINANTS it is possible to
explore the search space through a finite number of (dominant)
speeds, still achieving a correct characterization of the worst-
case workload. To explore the search space, we start by
computing the set of dominant initial speeds at the critical
instant by executing GETDOMINANTS(ωmin, ωmax). Then, for
each dominant initial speed ω0, we explore the job sequences
started at ω0 limiting the search to the ones having all jobs
released at a dominant speed. This reasoning leads to the
definition of a recursive procedure. Note that, given a generic
speed range [ωb, ωa], the derivation of dominant speeds results
from: (i) a computation that is a function of a switching speed
of the AVR task (lines 8-9 in Figure 6); and (ii) the maximum
speed ωa in the considered interval (line 2 in Figure 6). Due to
point (i), the same dominant speed will be present in several
speed ranges considered in the search problem. This enables
taking advantage of dynamic programming by storing functions
dbfω∗(t) for each dominant speed ω∗.

1: procedure DEMAND(ω, t)
2:

3: if t > MAXTIME then
4: return NULLDEMAND;
5: end if
6:

7: dbfω = sjdω;
8:

9: dominants← GETDOMINANTS(Ω(ω, α−),Ω(ω, α+));

10: for ωnext in dominants do
11: if NOTSTORED(ωnext, t) then

12: T next ← T̃ (ω, ωnext);
13: dbfωnext ← DEMAND(ωnext, t+ T next);
14: STOREDEMAND(ωnext, dbfωnext , t);
15: else
16: dbfωnext ← GETSTOREDDEMAND(ωnext, t);
17: end if
18: UPDATEDEMAND(dbfω, dbfωnext , T next);
19: end for
20: return dbfω;
21: end procedure

Figure 7. Procedure for computing function dbfω(t) performing a visit of
the search tree considering only critical job sequences.

Figure 7 reports the recursive algorithm we used to explore
the search-tree starting from a generic speed ω.

Each time DEMAND is called, t is the absolute release
time of a job (released at speed ω) in a critical job sequence.
In the pseudocode reported for such an algorithm, dbfω refers
to a data structure able to represent and store a demand bound
function. In addition, we assume the existence of a dynamic
programming table used to store the demand bound functions
dbfω∗ for dominant speeds ω∗; such a table is accessed by pro-
cedure STOREDEMAND to store a new demand bound function
at time t and by GETSTOREDDEMAND to retrieve a previously
stored demand bound function. Function NOTSTORED allows
checking whether the demand bound function has been stored
for a given speed and can be used at time t.

At the beginning of the algorithm, dbfω is initialized with
the single-job demand for a job released at speed ω (line 7).
Then, dominant speeds are computed in the range allowed for
speeds following ω (line 9). For each dominant speed ωnext, if



the demand for such a speed has not been already computed,
the algorithm prepares for the next recursive call (lines 12-
5), and then the demand for speed ωnext is stored to exploit
dynamic programming. Otherwise, if the demand for the
dominant speed has been already computed, then it is simply
retrieved from the dynamic programming table. Finally, the
resulting demand bound function dbfω is updated including the
contribution of function dbfωnext shifted by T next time units (line
18). This is done by invoking procedure UPDATEDEMAND,
which computes max{dbfω(t), dbfωnext(t− T next)}.

1: procedure COMPUTEDBF*()
2: dbf∗ = NULLDEMAND;
3: initDominants ← GETDOMINANTS(ωmin, ωmax);
4: for ω0 in initDominants do
5: dbfω0

← DEMAND(ω0, 0);
6: UPDATEDEMAND(dbf∗, dbfω0

, 0);
7: end for
8: return dbf∗;
9: end procedure

Figure 8. Main procedure for computing function dbf
∗.

In conclusion, Algorithm DEMAND allows us to compute
the overall demand bound function dbf∗(t) for an AVR task.
Figure 8 reports the procedure to compute dbf∗(t). Such a
procedure computes all the initial dominant speeds at the
critical instant (t = 0) and then calls procedure DEMAND

for each of such speeds. Similar considerations made for algo-
rithm DEMAND applies to explain the behavior of Algorithm
COMPUTEDBF*. Also in this case, we assume the existence
of a data structure dbf∗ able to store a demand bound function.

B. Upper-bound for the processor demand criterion

Equation (12) expresses an exact schedulability test for
EDF scheduling, verifying that the processor is not overloaded
in every time window [0, t] following the critical instant.
However, a bound L∗ on the maximum time window length
is needed to practically implement such a schedulability test.

In the context of EDF scheduling of periodic (sporadic)
tasks, a linear upper-bound of the demand bound function has
been exploited to compute L∗. Following the results reported
in [12], the overall demand periodic (sporadic) task can be
upper-bounded by:

∑

τi∈ΓP

dbfi(t) ≤
∑

τi∈ΓP

(Ti −Di)Ui + UP t.

Unfortunately, the demand bound function dbf∗(t) of an AVR
task has not a closed form expression, thus it is not easy to
compute a linear upper-bound for it. To address this issue,
we converted an AVR task into a Digraph Real-Time (DRT)
task [13] and then applied the existing techniques for such task
model to compute the upper-bound for dbf∗(t). A DRT task τ
is characterized by a directed graph G(τ) = (V , E), where V
is the set of vertices of the digraph and E is the set of edges
connecting the vertices. Each vertex vi ∈ G(τ) represents a
possible type of job for τ and is characterized by an ordered
pair < C(vi), D(vi) > representing the WCET and deadline of
the vertex, respectively. Each directed edge ei,j ∈ E connecting
vertices vi to vj represents a possible order of job releases and
it is labeled with the minimum inter-arrival time for a job of
vj after a job of vi.

The underlying idea is that, following the results presented
in the previous section, the worst-case behavior of an AVR task
can be expressed by considering only the dominant speeds.
Given an AVR task τ∗, the corresponding DRT task Dτ∗ is
constructed as follows:

1) All the dominant speeds in the range [ωmin, ωmax]
are computed by using the algorithm in Figure 6;

2) For each dominant speed ω∗ we construct a vertex
in Dτ∗ having computation time C(ω∗) and deadline
D(ω∗);

3) For each vertex in Dτ∗ associated to dominant
speed ω∗ we compute all dominant speeds ω′ in
the range [Ω(ω∗, α−),Ω(ω∗, α+)] (i.e., the range
of speeds reachable with the acceleration allowed
for the rotation source). Then we provide an edge
connecting the vertex associated to each dominant
speed ω′ reachable from ω∗ having inter-arrival time

T̃ (ω∗, ω′).

Please note that the resulting digraph expressing Dτ∗ will
be a strongly connected graph, where each vertex can be
reached from another (arbitrary) vertex. Moreover, each vertex
includes a self-loop, because the case of zero acceleration is
always possible for the rotation source.

Zeng and Di Natale [14] proposed a method for computing
a tight upper-bound for the demand bound function of a DRT
task: let X and U∞ the parameters describing such a linear
upper-bound, such that:

dbf∗(t) ≤ X + U∞t.

Finally, the maximum time window length L∗ in which Equa-
tion (12) has to be checked can be computed by summing the
linear upper-bounds of both periodic tasks and the AVR task
and equating them to t, so obtaining

L∗ =
X +

∑
τi∈ΓP (Ti −Di)Ui

1− (UP + U∞)
.

Considering that an AVR task can be expressed as a DRT task,
we can exploit the result derived by Stigge et al. [13] to claim
that the feasibility of a task set consisting of periodic/sporadic
tasks and an AVR task can be decided in pseudo-polynomial
time, if the total utilization U = UP +U∞ is not greater than
c, for some constant c < 1.

V. EXPERIMENTAL RESULTS

This section presents two sets of experiments aimed at
comparing FP and EDF scheduling for a system consisting
of periodic (sporadic) tasks and an AVR task. The first set
of experiments compares the two algorithms in terms of
schedulability analysis, using for FP the exact test presented
in [7] and for EDF the test proposed in this paper. The second
set of experiments aims at comparing the schedulability of
FP and EDF in the average case, making use of the RTSIM
scheduling simulator [15], which has been extended to deal
with AVR tasks.

We assume a rotation source ranging from ωmin = 500
RPM to ωmax = 6500 RPM as typical values for a production
car engine. Similarly, unless differently specified, we selected
the acceleration range [5] such that the engine is able to reach
the maximum speed starting from the minimum one in 35
revolutions, obtaining α+ = −α− = 1.62 10−4 rev/msec2.



A. Task sets generation

Given an overall target utilization UP for the set of periodic
tasks, each periodic tasks is generated as follows:

• The utilization Ui of each task τi is randomly gener-
ated using the UUniFast algorithm [16] imposing that∑n

i=1 Ui = UP . The minimum utilization of each
periodic task is set at Umin = 0.005.

• Task periods Ti are randomly generated with a uni-
form distribution in the range [3, 100] ms; relative
deadlines are set equal to periods (i.e., Di = Ti).

• Computation times are computed as Ci = UiTi.

The parameters of the AVR task are generated as follows.

• The maximum task utilization is fixed at a UA, whose
value depends on the specific experiment.

• The angular period is set at Θ = 2π; the angular
deadline is set at ∆ = Θ.

• The number M of modes is randomly generated in a
desired range [Mmin,Mmax], defined in the specific
experiment.

• A random mode m′ is selected to have the maximum
utilization Um′

= UA. The utilization Um of the other
modes m 6= m′ is randomly generated in the range
[0.85UA, UA].

• The maximum speed ωm of each mode m < M is
randomly generated in the range [1000, 6000] RPM.
The maximum speed for mode 1 is always set at
the maximum speed ωmax. Once the mode-transition
speeds are generated, they are checked to ensure a
minimum separation between any two values. If the
actual separation is below 3000/M RPM, then all
speeds are discarded and the set is generated again.

• The computation time Cm of each mode m is set as
Cm = UmΘ/wm. If the generated computation times
are not monotonically increasing with respect to the
modes, they are discarded and the set is generated
again.

The variable U = UP + UA denotes the total utilization
of the overall task set. We also define the parameter ρu =
UA/U , expressing the ratio of utilization resulting from the
AVR task. When tasks are scheduled by FP, task priorities
are assigned according to the Rate Monotonic order (i.e., the
lower the period, the higher the priority), where the priority
of the AVR task is assigned according to its lowest possible
inter-arrival time (Θ/ωmax).

B. Experiments on schedulability analysis

Both the schedulability tests (for FP and EDF) have been
implemented in MATLAB and are able to discriminate 1 RPM
in the computation of the dominant speeds. Tests have been
executed on a desktop PC with processor Intel i7 running at 3.5
GHz. In all the reported experiments, both the schedulability
tests have been executed on 500 randomly generated task sets
for each value of the varied parameter.

A first experiment has been carried out to compare the
schedulability ratio of EDF and FP when varying the overall
utilization U from 0.3 to 0.95 with step 0.05. The results

reported in Figure 9 were derived with ρu = 0.4, Mmin = 3
and Mmax = 5, whereas those in Figure 10 were derived
with ρu = 0.6, Mmin = 3 and Mmax = 5. A further run was
performed by increasing the number of modes, using ρu = 0.6,
Mmin = 4 and Mmax = 8, and the results are shown in
Figure 11. As evident from the graphs, while EDF is able to
schedule all the generated task sets, FP starts degrading for
utilizations values that are much lower than those observed in
classical periodic task sets. Moreover, such a degradation is
more significant for higher values of ρu (compare Figure 9
with Figure 10) and for higher numbers of modes of the AVR
task (compare Figure 10 with Figure 11).
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Figure 9. Schedulability ratio as a function of U (by analysis).
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Figure 10. Schedulability ratio as a function of U (by analysis).
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Figure 11. Schedulability ratio as a function of U (by analysis).

A second experiment was carried out to better evaluate
the dependency of the schedulability ratio on the fraction of
utilization ρu imposed by the AVR task. The results of this
experiment are reported in Figure 12 for U = 0.8, Mmin = 3



and Mmax = 5. Again, while EDF is able to schedule all the
tested task sets, the performance of FP scheduling significantly
degrades for increasing values of ρu.
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Figure 12. Schedulability ratio as a function of ρu (by analysis).

As discussed in the introduction, the sub-optimality of EDF
when scheduling AVR tasks derives from the fact that an
optimal deadline assignment requires clairvoyance, predicting
the future speed evolution pattern of the rotation source.
To be conservative, we assumed that each job of an AVR
task is assigned the earliest possible deadline, that is the
one considering the maximum acceleration. The consequence
of this choice is that the analysis is safe, but the deadline
assignment error increases with the acceleration range. To
show the dependency of this effect on the schedulability, we
carried out an experiment where we varied the acceleration
range [α−, α+] by using the parameter α = α+ = −α−,
holding U = 0.9, ρu = 0.4, Mmin = 3 and Mmax = 5. The
results of this experiment are reported in Figure 13.

As predicted, a marginal degradation of the EDF perfor-
mance starts appearing for accelerations higher than 10−3

rev/msec2. It is worth observing, however, that the results of
this experiment have a pure theoretical validity (at least for
today’s cars), because the values of α at which EDF starts
degrading are far beyond the maximum acceleration of real car
engines (about 2 · 10−3 rev/msec2). In this setting, FP shows
a even greater degradation in terms of schedulability ratio as
α increases.
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Figure 13. Schedulability ratio as a function of α = α+ = −α− (by
analysis).

C. Experiments with the scheduling simulator

This section reports some additional experiments that have
been carried out on the RTSIM scheduling simulator [15]

to evaluate the average-case performance of FP and EDF
scheduling in the presence of AVR tasks.

For each initial speed in the range [500, 6500] RPM, with
step 500 RPM, the scheduling simulator has been programmed
to enforce a critical instant at time t = 0 and look at the
resulting schedule up to t = 5 seconds. We also imposed that
all the generated jobs execute for their WCET. Each value
plotted in the graphs was obtained as the average over 1000
repetitions.

Figure 14 reports the results of a simulation executed
with ρu = 0.4, Mmin = 3, Mmax = 5, to monitor the
schedulability ratio as a function of the overall utilization
U . As it can be seen by comparing with the corresponding
Figure 9 (obtained under the same parameters), the simulation
confirms the same trends observed in the analysis.
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Figure 14. Schedulability ratio as a function of U (by RTSIM).

Figure 15 is the analogous of Figure 12 and reports the
schedulability ratio of EDF and FP as a function of ρu, for
U = 0.8, Mmin = 3, Mmax = 5. Again, the same trend is
observed, although with a less pronounced degradation of FP,
due to the less critical conditions appearing in the simulation.
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Figure 15. Schedulability ratio as a function of ρu (by RTSIM).

A final simulation experiment has been carried out to
monitor the tardiness achieved by the two algorithms during
overload conditions (up to U = 1.5), while the other pa-
rameters were fixed at ρu = 0.4, Mmin = 3, Mmax = 5.
Note that the tardiness cannot be derived by the current
EDF schedulability test. In this experiment the periods of the
periodic tasks were randomly generated in the range [10, 100],
thus resulting always greater than the minimum interarrival
time of the AVR task, which is then scheduled at the highest
priority by FP. The results reported in Figure 16 show the



tardiness achieved by the two schedulers for the AVR task
and the lowest priority periodic task.

The results show that, under FP, the AVR tardiness is
kept equal to zero even for U = 1.5, because the overload
does not affect the AVR task (always scheduled at the highest
priority), but only the lower priority tasks (the tardiness of the
lowest priority task is indicated by the FP-LP curve). On the
other hand, under EDF, the AVR tardiness increases with the
overload, reaching a value higher than 60 times the deadline
for utilizations greater than 1.4. This happens because EDF
tends to automatically distribute the exceeding workload to all
the tasks [17], hence the lowest priority task (EDF-LP curve)
is not so penalized as in the case of FP scheduling.
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Figure 16. Tardiness as a function of the system load U (by RTSIM).

VI. CONCLUSIONS

This paper presented an exact feasibility analysis under
EDF scheduling for engine control applications including
classic periodic tasks and an AVR task. Extensive experiments
have been carried out to compare the schedulability of these
types of applications under both EDF and FP scheduling.

The experiments confirmed (providing quantitative mea-
sures) that for this type of applications, fixed priorities schedul-
ing is not the best choice, due to the large range in which
the interarrival time of an AVR task can vary. Under FP
scheduling, this means that there are several engine speeds at
which any fixed priority assignment is far from being optimal,
significantly penalizing the system schedulability.

In particular, the experiments showed that while EDF is
able to guarantee the schedulability of the system up to high
utilization values close to 95%, FP scheduling exhibits a
significant degradation for utilization values that are much
lower than those observed in classical periodic scheduling.

Given the presented schedulability results, and considering
that today EDF is actually available in a few operating systems
(e.g., Erika Enterprise [18], which is also OSEK-certified for
automotive systems, Linux, using the SCHED DEADLINE
scheduling class [19], or the EDF plugin for OSEK/VDX pro-
posed in [20]), we believe that the use of dynamic scheduling
in engine control applications would allow a better exploitation
of the computing platform, turning into a higher control
performance.
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