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Abstract—Engine control applications include computational
activities that adapt their behavior as a function of the engine
speed, referred to as adaptive variable-rate (AVR) tasks. Although
a substantial amount of work has been done to analyze the
timing behavior of real-time applications with AVR tasks, most of
the authors assumed the knowledge of the instantaneous engine
speed at any instant. In practice, however, the instantaneous
engine speed is not known and can only be estimated by various
techniques, which hence introduce an error with respect to
the ideal case of perfect knowledge. If not properly handled,
such an error can result in a potentially unsafe analysis. This
paper proposes a general approach to include speed estimators
in the analysis of engine control applications and shows two
particular examples using common speed estimators. Finally,
estimators are also characterized through a numerical evaluation
and experimental results are presented to evaluate their impact
in terms of system schedulability.

I. INTRODUCTION

Engine control systems typically include periodic tasks,
activated by a timer at a fixed rate, and angular tasks, ac-
tivated at specific rotation angles of the crankshaft [1]. As a
consequence, the activation rate of angular tasks, as well as
their computational load, is proportional to the engine speed.
This means that, at high engine speeds, angular tasks could
possibly cause an overload condition on the engine control
unit (ECU) executing the application. If not properly handled,
overloads may introduce long delays on task executions that
can significantly degrade the system performance or even
cause a loss of certain functions [2]. To avoid such problems,
angular tasks are often implemented to adapt their behavior
as a function of the speed, by switching to execution modes
with lower computational demand at predetermined rotation
speeds [3]. For this reason, angular tasks are also referred to
as adaptive variable-rate (AVR) tasks.

The schedulability analysis of engine control applications
with AVR tasks has been addressed by several authors under
different models and assumptions. Kim, Lakshmanan, and
Rajkumar [4] derived a preliminary schedulability test under
a simplified model including a single AVR task running at
the highest priority and having a period always smaller than
those of other periodic tasks. In addition, the analysis was
derived assuming implicit deadlines and priorities assigned by
the Rate-Monotonic algorithm.

A sufficient analysis under fixed priorities has been pro-
posed by Pollex et al. [5], but only in steady-state conditions
(constant angular velocity). A sufficient schedulability test
under fixed-priority scheduling and dynamic behavior has been
proposed by Davis et al. [6] considering a formulation based
on Integer Linear Programming (ILP).

The exact characterization of an AVR task under fixed
priorities was first derived by Biondi et al. [7] using a search
approach in the speed domain, where the concept of dominant
speeds are used to contain the complexity and avoid speed
quantization. Then, the exact response time analysis for both
AVR and periodic tasks has been presented by Biondi et al. [8].
Feld and Slomka [9] extended the analysis for AVR tasks
having arbitrary angular phases, but only for homogeneous
tasks sets with no periodic tasks.

The analysis of engine control applications under Earli-
est Deadline First (EDF) scheduling has been addressed by
Buttazzo, Bini, and Buttle [10], but assuming that AVR tasks
are linked to independent rotation sources. A sufficient EDF
analysis of AVR tasks triggered by a common rotation source
has been derived by Biondi and Buttazzo [11]. Then, Guo and
Baruah [12] proposed a speedup factor analysis and sufficient
schedulability tests under EDF. An exact test of engine control
applications under EDF for AVR tasks triggered by a common
rotation source was first derived by Biondi et al. [13].

In most of the works considered above, the analysis is
performed assuming a precise knowledge of the instantaneous
engine speed at any instant. In practice, however, the instan-
taneous engine speed is not known and can only be estimated
by various techniques, which hence introduce an error with
respect to the ideal case of perfect knowledge. According to
our records, the only work in which the analysis is based on
a speed estimator is the one by Davis et al. [6]. In this work,
the engine speed at the task activation time is estimated as
the ratio of the angular period of the AVR task and its last
interarrival time. However, the proposed analysis is tailored to
that specific estimator. Considering the importance of such an
aspect, the goal of this work is to present a general approach
for including a speed estimator in the schedulability analysis of
engine control applications and characterize the corresponding
error introduced by the estimation.

Contributions: This paper has the following contributions:

• A generic approach is proposed to integrate the speed
estimation in the real-time analysis of engine control
applications.

• Two examples of common speed estimators are stud-
ied and analyzed: the first one computes the average
engine speed over a fixed crankshaft angular interval,
whereas the second one computes the average speed
over a fixed time interval.

• Finally, the presented estimators are characterized
through a numerical evaluation and a set of experi-
ments aimed at evaluating their impact on the system
schedulability.



Paper structure: The rest of the paper is organized as
follows. Section II introduces the adopted terminology and
the model used for the rotation source, the tasks, and the
speed estimator. Section III describes how to integrate the
speed estimation in the real-time analysis of engine control
applications. Section IV presents two specific examples of
speed estimators and illustrates how to account for them in the
schedulability analysis of AVR tasks. Section V reports a set
of experimental results aimed at comparing the two estimators
and quantifying their impact in the schedulability analysis.
Finally, Section VI states our conclusions and future directions.

II. SYSTEM MODEL

This section introduces the models used for the rotation
source, the tasks, and the speed estimator.

A. Rotation source

It is assumed that all AVR tasks are triggered by a
single rotation source (the engine), which is described by the
following variables:

θ angle of the crankshaft;
ω speed of the crankshaft;
α acceleration of the crankshaft.

To limit the pessimism of the analysis and reflect the charac-
teristics of a real engine, we assume that both ω and α are
constrained in given intervals, that is, ω ∈ [ωmin, ωmax] and
α ∈ [α−, α+].

To simplify the description of the analysis, the following
functions will be used in the paper, as derived by Buttazzo et
al. [10]:

T (Θ, ω, α) =

√
ω2 + 2Θα− ω

α
(1)

Ω(Θ, ω, α) =
√
ω2 + 2Θα. (2)

Function (1) gives the time needed by the engine to cover
an angular interval Θ under constant acceleration α when
the current instantaneous speed is ω. Function (2) gives the
instantaneous rotation speed Ω after an angular interval Θ
under constant acceleration α when the current instantaneous
speed is ω.

B. Task model

A typical engine control application is modeled as a set of
n real-time preemptive tasks Γ = {τ1, τ2, . . . , τn}, where each
task can be activated at fixed time intervals (periodic) or at
specific crankshaft rotation angles (AVR task). For the sake of
clarity, a generic AVR task will be denoted as τ∗

i
. Both types of

tasks are characterized by a worst-case execution time (WCET)
Ci, an interarrival time (or period) Ti, and a relative deadline
Di. However, while for periodic tasks such parameters are
fixed, for angular tasks they depend on the engine rotation
speed ω.

In particular, an AVR task τ∗
i

can be described by an
angular period Θi and an angular phase Φi, so that it is
activated at the following angles:

θi = Φi + kΘi, for k = 0, 1, 2, . . .

Hence, the period of an AVR task is inversely proportional to
the engine speed ω and can be expressed as

Ti(ω) =
Θi

ω
. (3)

The angular phase Φi is relative to a reference position
called Top Dead Center (TDC) corresponding to the crankshaft
angle for which the piston reaches the highest position in the
cylinder. In this paper, the TDC position is assumed to be at
θ = 0.

An angular task τ∗
i

is also characterized by a relative
angular deadline ∆i expressed as a fraction δi of the angular
period (δi ∈ [0, 1]), that is, ∆i = δiΘi.

To obtain a self-adaptive behavior, an AVR task τ∗
i

is
typically implemented as a set Mi of Mi execution modes
with decreasing computational demand, each operating in a
specific range of rotation speeds. In general, mode m is
characterized by a WCET Cm

i
and is valid in a speed range

(ωm+1
i

, ωm

i
], where ωMi+1

i
= ωmin and ω1

i
= ωmax. Hence,

the set of modes of task τ∗
i

can be expressed as

Mi = {(Cm

i
, ωm

i
),m = 1, 2, . . . ,Mi}.

As a result, the computation time of a generic AVR task τ∗
i

can be described by a non-increasing step function Ci(ω) of
the instantaneous speed ω at its release, that is,

Ci(ω) ∈ {C1
i , . . . , C

Mi

i
}. (4)

An example of Ci(ω) function is illustrated in Figure 1.
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Figure 1. WCET of an AVR task as a function of the instantaneous engine
speed.

Such tasks can be implemented as a sequence of if

statements, each executing a specific subset of functions [3],
[10]. As an example, Figure 2 illustrates the pseudo code of an
AVR task implementing the modes reported in Figure 1, where
function read_rotation_speed() returns the speed es-
timate of the rotation source available at the time at which
the task is activated (not at the time at which the function is
executed).

C. Speed estimator model

As already mentioned in Section I, the exact instantaneous
speed at a task activation is not known and can only be
estimated by various techniques. In this paper, a generic speed
estimator is characterized by two functions E+

i
(ω̃) and E−

i
(ω̃),

providing the maximum and minimum instantaneous speed
of the rotation source for a given speed estimate ω̃ at the
activation of task τ∗

i
.



#define omega1 7000
#define omega2 4000
#define omega3 3000
#define omega4 2000

TASK (sample_task) {

omega = read_rotation_speed();

f0();
if (omega ≤ omega4) f1();
if (omega ≤ omega3) f2();
if (omega ≤ omega2) f3();
if (omega ≤ omega1) f4();

}

Figure 2. Typical implementation of an AVR task.

III. INTEGRATING SPEED ESTIMATION IN

SCHEDULABILITY ANALYSIS

Note that function Ci(ω) describes the WCET of the AVR
task τ∗

i
as a function of the instantaneous speed ω at its release.

Since such a speed is not known for any time instant, an
estimate must be produced by a proper estimation algorithm.
More specifically, suppose that an AVR task τ∗

i
is released at

time t and let ω̃ be the speed estimate available in the system
at time t. Then, the upcoming job of τ∗

i
is released in a mode

that could be different than the mode that would have been
activated at speed ω. If not properly handled, this phenomenon
could result in an unsafe system analysis.

To cope with the error introduced by speed estimators,
this paper proposes a task set transformation such that the
existing analysis methods can be applied as they are to obtain
a safe schedulability test. The underlying idea is to replace
each AVR task τ∗

i
with another AVR task τi

′∗ whose WCET
C′

i
(ω) accounts for the maximum WCET of the jobs that can

be released considering all possible speed estimates that are
allowed at speed ω. Note that the task set transformation is only
applied for the analysis, not in the real system implementation.

Task set transformation. The proposed transformation re-
places each AVR task τ∗

i
with a new AVR task τi

′∗, such
that

C′

i(ω) = max
{
Ci(ω̃) | ω ∈ [E−

i
(ω̃), E+

i
(ω̃)]

}
. (5)

Being Ci(ω) a piece-wise constant non increasing function,
the transformation can easily be implemented by increasing the
maximum switching speed ωm

i
of each mode m. This can be

obtained by computing

ωi
′m = E+

i
(ωm

i ),

for each mode m = 2, 3, . . . ,M . Note that mode m = 1 is
excluded from this computation because it is not possible to
overestimate the maximum speed ωmax of the rotation source.

By construction, given an arbitrary instantaneous speed ω,
each AVR task τi

′∗ (obtained with the proposed transforma-
tion) releases a job having a WCET that is greater than or
equal to every possible job released by the original AVR task
τ∗
i

. Due to the sustainability of uniprocessor fixed-priority and
EDF scheduling [14], this property determines that applying
existing analyses on τi

′∗ will result in a safe schedulability
test.

IV. TWO SPEED ESTIMATORS

This section analyzes two simple and common speed
estimators based on the computation of the average speed of

the rotation source, defined as the ratio of a space interval over
a time interval:

• angular estimator - it computes the average speed by
measuring the time needed by the rotation source to
cover a fixed angular distance ΘE;

• periodic estimator - it computes the average speed by
sampling the rotation source angle every fixed periodic
interval TE .

A. Angular estimator

This estimator measures the time T needed by the rotation
source to cover a fixed angular distance ΘE and then computes

the average speed as ω̃ = Θ
E

T
.

A possible implementation of the angular estimator is
reported in Figure 3. In this example ΘE = π and it is assumed
that an interrupt service routine (ISR) is executed everytime
the crankshaft angle becomes 0 or 180 degrees. The last time
instant at which the ISR is activated is stored in a global
variable lastTime. The ISR computes the time T needed to
cover the angular distance ΘE as the difference between the
current time and the one stored in lastTime. Then, it updates

the speed estimation as ω̃ = Θ
E

T
and the value of lastTime.

typeTime lastTime, currTime;

typeSpeed speed;

ISR (crankAngle_0_180) {

currTime = getCurrentTime();

speed = ANGLE_180/(currTime-lastTime);

lastTime = currTime;

}

Figure 3. Example of implementation of the angular estimator.

This estimator is now analyzed by using the generalized
model presented in Section II-C. Fot the sake of clarity, the
estimator error is split in two components:

• intrinsic error, that is, the error introduced by esti-
mating the instantaneous speed through an average
measurement over a fixed angular distance;

• freshness error, that is, the error related to the lag in
the use of the speed estimate with respect to the time
instant at which it has been produced.

First, the intrinsic error is derived by the functions E+(ω̃)
and E−(ω̃), which represents the maximum and minimum
instantaneous speed for an estimate ω̃, respectively. Then, such
functions are refined by introducing the freshness error, so
obtaining functions E+

i
(ω̃) and E−

i
(ω̃) that characterize the

estimator according to the model presented in Section II-C.

Intrinsic error. Suppose that at time t the estimator has
computed a time interval T to cover the angular distance ΘE ,
thus leading to the speed estimate ω̃ = ΘE/T . Without loss
of generality, we set θ(t) = ΘE and t = T , as reported
in Figure 4. The maximum instantaneous speed E+(ω̃) at
time t is obtained in the case where the rotation source
has been subjected to a maximum constant acceleration α+

in the angular interval [0,ΘE]. In this case there exists an
instantaneous speed ω0 at θ = 0 such that the time needed



to move from θ = 0 to θ = ΘE is exactly T . Following
Equation (1), the time T can be computed as

T = T (ΘE, ω0, α
+) =

√
ω2
0 + 2ΘEα+ − ω0

α+
. (6)

Rewriting 1 Equation (6) to extract speed w0 we obtain

w0 =
2ΘEα+ − (α+T )

2

2α+T
=

ΘE

T
− α+T

2
. (7)

Hence, the maximum speed E+(ω̃) can be computed as
the instantaneous speed obtained by imposing a maximum
acceleration α+ in the angular interval [0,ΘE], that is given
by applying Equation (2) so obtaining

E+(ω̃) = Ω(ΘE , ω0, α+) =
√
ω2
0 + 2ΘEα+. (8)

Replacing Equation (7) in Equation (8), we obtain

E+(ω̃) =

√(
ΘE

T

)2

+

(
α+T

2

)2

+ΘEα+ =

=

√(
ΘE

T
+

α+T

2

)2

=
ΘE

T
+

α+T

2
.

(9)

Finally, knowing that T = ΘE/ω̃, we have

E+(ω̃) = ω̃ + α+ΘE

2ω̃
. (10)

Following a similar reasoning it is possible to compute the
minimum speed E−(ω̃), that is

E−(ω̃) = ω̃ + α−
ΘE

2ω̃
. (11)

Note that both functions E+(ω̃) and E−(ω̃) are directly
proportional to the angular distance ΘE , and for ΘE tending
to zero the estimator tends to be exact (i.e., producing the
value of the exact instantaneous speed), as it can be intuitively
guessed.

Freshness error. This error is introduced because an AVR
task can be activated at angular positions for which the
speed estimate in not updated. To derive a safe value for
functions E+

i
(ω̃) and E−

i
(ω̃) we have to consider the worst-

case in which a task is activated just before the update of the
speed estimate. In this case, the rotation source has covered
an angular distance ΘE − ǫ (with ǫ arbitrarily small) from
the previous speed estimate. This reasoning determines that
we have to consider an additional angular space of ΘE in
which the rotation source can have accelerated (increasing
the maximum speed E+(ω̃)) or decelerated (decreasing the
minimum speed E−(ω̃)). Hence for an AVR task τi we have

E+
i
(ω̃) =

√
(E+(ω̃))2 + 2ΘEα+ (12)

and

E−

i
(ω̃) =

√
(E−(ω̃))

2
+ 2ΘEα−. (13)

These functions account for the worst-case freshness error,
independently of the relation between the angular period ΘE

1This step can be performed by rewriting Equation (6) as
(
α+T + ω0

)
=√

ω2
0
+ 2ΘEα+ and then square both left and right hand terms.
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Figure 4. Worst-case scenarios for the angular estimator. The dashed line
represents the average speed (estimate); the speed and angular evolution
leading to the maximum and minimum speed are represented by continuous
and dotted lines, respectively.

and the AVR task angular parameters; this generic situation
is denoted as unrelated estimation. In the particular case
in which the AVR task τ∗

i
has activation synchronous with

the update of the estimate (e.g., τ∗
i

has an angular period
Θi = kΘE, k = 1, 2, . . . and no angular phases are present)
the freshness error is zero2, thus E+

i
(ω̃) = E+(ω̃) and

E−

i
(ω̃) = E−(ω̃). This particular situation is denoted as in-

phase estimation.

B. Periodic estimator

This estimator periodically samples the angular position
θ(t) of the crankshaft with a fixed period TE , computes the
angular distance Θ from the last activation of the estimator
and then computes the average speed as ω̃ = Θ

TE .

In engine control systems, the angular position of the
crankshaft is identified trough a crankshaft position sensor
which is generally affected by a resolution error [15]. To
account for such an additional error, we introduce Θres as the
resolution in reading the angular position θ(t). As done for the
angular estimator, the estimation error is split between intrinsic
error and freshness error.

Intrinsic error. To study this estimator through the generalized
model presented in Section II-C we can follow the same
approach used for the angular estimator in Section IV-A.
The maximum speed E+(ω̃) can be determined by modifying
Equation (9) replacing the parameters of the periodic estimator,
so obtaining:

E+(ω̃) =
Θ + Θ

res

2

TE
+

α+TE

2
. (14)

Note that, to cope with the resolution error, the maximum
speed for an estimate ω̃ is obtained by including the maximum

2This is true assuming that the ISR in charge of updating the speed estimate
has precedence over the AVR task where the speed estimate is used.



resolution error Θres/2. Since ω̃ = Θ/TE, we obtain

E+(ω̃) = ω̃ +
Θres

2TE
+ α+TE

2
. (15)

Following a similar reasoning it is possible to compute the
minimum speed E−

i
(ω̃) as

E−(ω̃) = ω̃ − Θres

2TE
+ α−

TE

2
. (16)

Freshness error. Since the rotation source triggering the AVR
tasks is independent of the temporal source (e.g., a timer)
activating the periodic computational activities, an AVR task
can be activated at any time instant, independently of the
execution of the periodic estimator. Specifically, assume that
the speed estimate is updated at time t. In the worst-case an
AVR task τi can be activated at time t + TE − ǫ (with ǫ
arbitrarily small), hence its mode-change is based on a speed
estimate that is not “fresh”, being updated TE − ǫ time units
before. To cope with this kind of error, we have to account for
all possible speed evolutions in the time interval [t, t+ TE ].

Let ω̃ be the speed estimate at time t, then the current
maximum instantaneous speed is given by ω = E+(ω̃).
We now compute the angular distance Θ+ covered in any
time interval of length TE starting from an instantaneous
speed ω, under constant acceleration α+. Similarly, as done
in Section IV-A for Equation (7), it is possible to rewrite
Equation (1) extracting the angular distance Θ, so obtaining

Θ+ = E+(ω̃)TE + α+TE

2
. (17)

Hence, given a current speed estimate ω̃, the maximum speed
E+

i
(ω̃) at the activation of an AVR task τi can be obtained by

applying Equation (2) from speed E+(ω̃) with angular distance
Θ+, that is

E+
i
(ω̃) =

√
E+(ω̃)2 + 2Θ+α+. (18)

The minimum speed E−

i
(ω̃) can be computed in a similar

way and results

E−

i
(ω̃) =

√
E−(ω̃)2 + 2Θ−α−, (19)

with Θ− = E−(ω̃)TE + α− T
E

2
.

Note that the error introduced by the periodic estimator is
not directly proportional to the period TE , that is, a very fast
update of the estimate can lead to a large error! This is due to
the resolution error in the determination of the angular position
θ(t). The derivation of the optimal period TE can be found by
computing the minimum in the error functions. Due to the high
number of involved parameters, it is not easily presentable in
an analytical form, but given the system parameters, it can be
computed numerically.

V. EXPERIMENTAL RESULTS

A. Numerical evaluation

To evaluate the errors introduced by speed estimators, we
carried out a numerical evaluation of the error for both the
angular and periodic estimator under different configuration
parameters. As done by Davis et al. [6], the acceleration
range has been set so that the rotation source is able to

reach ωmax starting from ωmin in 35 revolutions, so obtaining
α+ = −α− = 1.62·10−4 rev/msec2. The rotation speed ranges
from ωmin = 500 RPM to ωmax = 6500 RPM, which are
typical values for a production car engine.

Figure 5 reports the errors related to the angular estimator.
In particular, the continuous lines report the in-phase estima-
tion error E(ω̃) = E+(ω̃) − ω̃ (i.e., the one considering the
case where the AVR tasks are synchronously activated with the
update of the estimate), whereas the dashed lines refer to the
unrelated estimation error given by Ei(ω̃) = E+

i
(ω̃)− ω̃. Both

errors have been evaluated for two different angular periods,
ΘE = 2π and ΘE = π. As clear for the graph, the error
introduced by both estimators decreases for increasing speeds.
The angular estimator with in-phase estimation shows a small
error for speed greater than 3000 RPM. Note that the linear
decrease of the error observed at high speeds is due to a
saturation effect introduced by the maximum speed ωmax.
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Figure 5. Errors for the angular estimator as a function of the estimate ω̃.

Figure 6 reports the error E(ω̃) = E+
i
(ω̃) − ω̃ related

to the periodic estimator for different values of the period
TE . The optimal period TE

opt has been numerically computed

by differentiating the error function E(ω̃), and resulted to
be TE

opt ≈ 5.9 ms. The angular resolution has been set to

Θres = π/30, which is a typical value in most of real
engines relying only on the tooth wheel connected to the
crankshaft [15]. The graph shows that the error has a little
dependency on the speed (originated by the freshness error)
and highlights that a fast estimation rate leads to a large
error (see the curve TE = 1 ms), as already explained in
Section IV-B. Also in this case, the linear decrease of the
error observed at high speeds is due to the saturation effect
introduced by the maximum speed ωmax.

In general, the errors reported in the graphs show that
no estimation technique dominates the other for all possible
configuration parameters. However, under in-phase estimation
(whenever allowed by the application), the angular estimator
shows the smallest error. The next experiment evaluates the
impact of the errors in terms of schedulability.

B. Schedulability experiments

The impact of the speed estimators on the schedulability
of a task set has been evaluated by running other experiments
based on the schedulability test presented in [8], which is re-
lated to fixed-priority scheduling. Due to lack of space, the task
set generation strategy used for this experiment is not reported
here but is the same as the one adopted in [8] (Section 5.1).
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Figure 6. Errors for the periodic estimator as a function of the estimate ω̃.

Figure 7 reports the results for task sets including 5 periodic
tasks and one AVR task with angular period Θi = 2π and a
random number of modes M uniformly distributed between 5
and 8. Schedulability ratio has been measured as a function of
the total system utilization U , varied with step 0.025 between
0.7 and 1.0; we decided to limit the graph to these utilization
values because we observed that the curves have no differences
for utilization values U ≤ 0.7. The upper curve refers to the
ideal case of no estimator, that is, the case in which the actual
instantaneous speed is assumed to be available at any time
instant; the dashed curve refers to the angular estimator with
in-phase estimation; the dotted curve refers to the periodic
estimator running with the optimal period TE

opt ≈ 5.9; and,
finally, the lower curve refers to the angular estimator in the
case of unrelated estimation. To better evaluate the impact of
the estimators on schedulability performance, task sets have
been generated so that the maximum utilization of the AVR
task is a significant percentage (60%) of the total task set
utilization. Note that the overhead introduced by the estimators
is not considered in this experiment, because it is assumed that
the speed estimate is performed by a dedicated processing
unit, like the Time Processing Unit (TPU) introduced by
Freescale [15]. The results were obtained over 1000 randomly
generated task sets for each tested utilization value. As can be
observed from the graph, the angular estimator with in-phase
estimation shows the best performance, accepting always more
than 90 percent of the task sets with respect to the case without
estimator.

Overall, this experiment shows that even a simple speed
estimation technique, like the angular estimator with in-phase
estimation, does not significantly jeopardize the schedulability
performance with respect to the ideal case of perfect knowl-
edge of the instantaneous speed.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a general approach to account
for speed estimators in the real-time analysis of engine control
applications and we studied the error introduced by two
simple speed estimators, both based on the computation of the
average speed. The considered estimators have been evaluated
through a numerical evaluation of their error, under different
configurations. Additionally, experimental results have been
carried out to measure the impact of the estimators in terms

of schedulability ratio. Experimental results show that simple
speed estimation techniques do not significantly penalize the
system schedulability. As a future work we aim to investigate
the impact of speed estimators under EDF scheduling and
extend the experimental evaluation to build a broader view
on the impact of speed estimators on system schedulabilty.
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