
1

Schedulability Analysis of Hierarchical
Real-Time Systems under Shared Resources
Alessandro Biondi, Giorgio C. Buttazzo, Fellow, IEEE, and Marko Bertogna, Senior Member, IEEE

Abstract—Sharing resources in hierarchical real-time systems implemented with reservation servers requires the adoption of

special budget management protocols that preserve the bandwidth allocated to a specific component. In addition, blocking times

must be accurately estimated to guarantee both the global feasibility of all the servers and the local schedulability of applications

running on each component. This paper presents two new local schedulability tests to verify the schedulability of real-time

applications running on reservation servers under fixed priority and EDF local schedulers. Reservation servers are implemented

with the BROE algorithm. A simple extension to the SRP protocol is also proposed to reduce the blocking time of the server when

accessing global resources shared among components. The performance of the new schedulability tests are compared with other

solutions proposed in the literature, showing the effectiveness of the proposed improvements. Finally, an implementation of the

main protocols on a lightweight RTOS is described, highlighting the main practical issues that have been encountered.

Index Terms—Real-time systems, Resource reservation, Resource sharing, Hierarchical scheduling

✦

1 INTRODUCTION

With the rapid performance enhancement of modern com-

puter architectures, a computer system is typically required

to execute several applications concurrently, often inde-

pendently developed by different teams, but sharing the

same resources (e.g., processor, memory, radio transceiver,

and other peripheral devices). For instance, in automotive

systems, the current trend is to confine the exponential

growth of the electronic control units (ECUs) by integrating

several software components into a reduced number of

more powerful hardware platforms [1].

When running multiple components in the same plat-

form, however, computational activities belonging to dif-

ferent components can affect each others. In particular, the

misbehavior occurring in a component could impact on

the performance of the entire system. Also, if not properly

handled, computational activities can experience reciprocal

interference and jerky behavior due to long blocking delays

on shared resources. Such delays could degrade the overall

control performance, or even jeopardize the system stability.

A possible solution to prevent these problems would be a

suitable kernel infrastructure capable of providing temporal

isolation among different components, thus allowing the

analysis of independently developed applications.

Resource reservation mechanisms [2], [3] can effectively

be used to isolate the temporal behavior of concurrent appli-

cations and limit their reciprocal interference [4]. The basic

idea behind this mechanism is to partition the processor

into a number of reservations, each behaving as a slower

• A. Biondi is with the TeCIP Institute of the Scuola Superiore Sant’Anna,

Pisa, Italy. E-mail: alessandro.biondi@sssup.it

• G. Buttazzo is with the TeCIP Institute of the Scuola Superiore

Sant’Anna, Pisa, Italy. E-mail: giorgio.buttazzo@sssup.it
• M. Bertogna is with the University of Modena and Reggio Emilia,

Modena, Italy. E-mail: m.bertogna@unimore.it

virtual processor using a fraction of the full processor

bandwidth. A reservation can be efficiently implemented

by a reservation server Sk, providing a budget Qk for the

application every period Pk. In this case, the bandwidth

reserved to an application results to be αk = Qk/Pk. The

advantage of this approach is that an overrun occurring in

an application does not interfere with the other applications,

but only affects the application experiencing the overrun.

Moreover, the application can be designed and analyzed

independently of the others, because its execution behavior

only depends on its own computational demand and the

allocated bandwidth.

A further step to support modularity and temporal iso-

lation on a single platform shared by multiple applications

is to provide a hierarchical scheduling framework, where

a system S consists of a number of subsystems (or

components), each implemented by reservation server, as

schematically illustrated in Figure 1.

Reservation

1

Task

1.1

Task

1.2

Task

1.3

Task

1.4

Task

2.1

Task

2.2

Task

m.1

Task

m.2

Task

m.3 Task

m.4

Task

m.5

Global

Scheduler

Local Scheduler Local Scheduler Local Scheduler

CPU

Reservation

2

Reservation

m

Figure 1: Two-level hierarchical scheduling framework.



2

In this approach, a global scheduler determines which

subsystem can access the CPU at any given time, whereas

a local scheduler selects the running task within the sub-

system. In a general hierarchical system, a component can

in turn consist of a number of subsystems, by partitioning

the component bandwidth through lower-level reservation

servers, and so on. In this paper, both EDF and FP are

considered as local scheduling policies for each subsystem.

For the sake of simplicity, this paper considers a two-level

hierarchical system, although the proposed methodology is

valid for a generic n-level hierarchical system considering

the compositional real-time scheduling framework proposed

by Shin and Lee [5].

Under Earliest Deadline First (EDF) scheduling [6], a

reservation can efficiently be implemented by a Constant

Bandwidth Server (CBS) [3], which has also been extended

by Lipari and Baruah [7] to support hierarchical schedulers.

One of the main problems that arises in reservation-based

systems comes from the blocking time experienced by tasks

when accessing shared resources. Unfortunately, the use of

classical synchronization mechanisms, such as semaphores

or monitors, may result in a well known phenomenon

called priority inversion [8]. To bound such a problem, a

number of protocols have been proposed, both under fixed

priority (FP) assignments [8] and EDF scheduling [9]. Since

in this work reservation servers are scheduled using the

EDF scheduling algorithm, resources access is controlled

by the Stack Resource Policy (SRP) [9], which has been

extended to be used in the presence of reservation servers.

For example, applying SRP under a two-level hierarchical

system requires the definition of two types of resources:

those shared among tasks within the same reservation (local

resources) and those shared among tasks belonging to

different reservations (global resources). Integrating SRP

with such a hierarchical scheme requires addressing the

following two problems due to global resources.

Problem 1. When global resources are used by tasks

handled within a reservation server, a problem occurs when

the server budget is exhausted inside a critical section. In

this case, the served task cannot continue the execution, in

order to prevent other tasks from missing their deadlines;

thus, an extra delay is added to the blocked tasks to wait

until the next budget replenishment. Figure 2 illustrates

a situation in which a high priority task τ1 shares a

resource with another task τ2 handled by a reservation

server with budget Qs = 4 and period Ps = 12. Tasks τ1

and τ2 execute upon different reservation servers, S1 and

S2, respectively. The figure reports in the bottom timeline

the budget consumption of S2. At time t = 3, τ1 preempts τ2

within its critical section, and at time t = 4 it blocks on the

locked resource. When τ2 resumes, however, the residual

budget is not sufficient to finish the critical section, and τ2

must be suspended until the budget will be replenished at

time t = 12, so introducing an extra delay of 7 units in the

execution of τ1. This example shows that suspending a task

holding a resource leads to unacceptably long delays for

tasks in other servers using the same resource.

To solve this problem various approaches have been pro-

critical sectionnormal code

extra blocking

260 2 4 6 8 10 12 14 16 20 22 2418

lock

server budget

τ1

τ2

S2

Figure 2: Problem caused when a server budget is exhausted

inside a critical section.

posed in the literature. One of the first solutions is based

on a budget overrun: when the budget is exhausted inside

a resource, the server is allowed to consume some extra

budget until the end of the critical section. This approach

was first proposed by Ghazalie and Baker [10], used by

Abeni and Buttazzo under the Constant Bandwidth Server

(CBS) [3], analyzed under fixed priorities by Davis and

Burns [11] and later extended under EDF by Behnam et

al. [12], [13]. Davis and Burns proposed two versions of

this mechanism:

• Overrun with payback, where the server pays back

in the next execution instant, in that the next budget

replenishment is decreased by the overrun value;

• Overrun without payback, where no further action is

taken after the overrun.

Note that the budget overrun technique does not increase

the response time of the served task, but implies a greater

bandwidth requirement for the reservation. Such an extra

bandwidth requirement leads to a violation of the temporal

isolation property of resource reservation, unless the server

is assigned a smaller budget, subtracting the largest possible

overrun.

Another proposed solution consists of introducing a

budget check before granting the access to a resource: if

the budget is sufficient to complete the critical section, the

task can access the resource, otherwise the access to the

resource is postponed until the next budget replenishment.

This mechanism is used in the SIRAP protocol [14] to share

resources among reservations. This approach does not affect

the execution of tasks in other reservations, but penalizes

the response time of the served tasks.

Another approach, named BROE (Bounded-Delay Re-

source Open Environment), has been proposed by Bertogna

et al. [15]. According to this mechanism, when a task wants

to enter a critical section and the budget is not sufficient

for its completion, a full budget replenishment is planned

at the earliest possible time that preserves both the server

bandwidth and the maximum service delay. The server is

blocked until the budget replenishment.

As highlighted by Kuo and Li [16], since local resources

are used only by tasks within a server, no extra delay is

added to the blocked tasks that are waiting for a local

resource, hence the classical SRP can be adopted to access



3

local resources within each server. Note that the SRP

parameters used in a server for local resources are defined

independently of the parameters used in the others servers.

Problem 2. When SRP is used in a hierarchical frame-

work, preemption rules need to be carefully defined when

tasks lock global resources. In fact, since tasks within a

component may have preemption levels unrelated to those

assigned in another component, there is the problem of

assigning the ceilings of global resources in a context where

there is no global reference for preemption levels.

Davis and Burns [11] proposed the Hierarchical Stack

Resource Policy (HSRP) extending SRP for hierarchical

systems. Their solution consists in defining a preemption

level for each server and use it to compute a resource

ceiling for each global resource. Similarly to the classical

SRP, the ceiling of a global resource is equal to the highest

preemption level of any server including tasks that can be

blocked on the global resource. Then, ceilings of global

resources are used to vary a global system ceiling during

execution.

1.1 Contributions

This work provides the following novel contributions:

1) A new and more efficient method is proposed to

analyze the schedulability of real-time applications

running in a reservation, by incorporating resources

constraints directly into the supply bound function

describing the worst-case service time of a compo-

nent. The effectiveness of this approach is evaluated

through a set of experiments against existing tests for

different algorithms and configuration scenarios.

2) Two new local guarantee tests are proposed to verify

the schedulability of real-time applications running

on reservation servers implemented with the BROE

algorithm, under both fixed priority and EDF local

scheduling, in the presence of local and global shared

resources.

3) A comparative evaluation is presented to compare the

performance of BROE and SIRAP, under both FP

and EDF local scheduling, for different application

parameters.

It is also worth knowing that there exists an optimal

design algorithm [17] for computing the reservation param-

eters that minimizes the server bandwidth while guarantee-

ing the application schedulability. The design algorithm is

freely available on [18].

1.2 Paper structure

The remainder of the paper is organized as follows. Sec-

tion 2 presents the system model, the terminology, and the

assumptions used throughout the paper. Section 3 briefly

recalls the BROE algorithm for handling a reservation

in the presence of shared resources. Section 4 derives

a new supply bound function for a BROE server taking

into account resource holding times, and presents the local

schedulability test for real-time task sets scheduled with

EDF on a BROE reservation server. A similar test for task

sets locally scheduled with fixed priority is presented in

Section 5. Section 6 introduces an improvement of the

HSRP protocol that allows reducing the blocking time

due to global resources. Section 7 reports two sets of

experiments aimed at showing the performance of the new

schedulability tests for BROE with respect to SIRAP and

the original BROE test, under FP and EDF, for different ap-

plication parameters. Section 8 presents the implementation

work of BROE and SIRAP on an existing RTOS, discussing

practical implementation issues. Finally, Section 9 states

our conclusions and future work.

2 SYSTEM MODEL

This paper considers a uniprocessor hierarchical system

S consisting of a number of subsystems Sk ∈ S , each

implemented by a BROE [15] reservation server (also

denoted as Sk), characterized by a budget Qk and a period

Pk. For the sake of simplicity we consider a two-level hier-

archical system, although our contributions can be extended

to a generic n-level hierarchical system considering the

compositional real-time scheduling framework proposed by

Shin and Lee [5]. The global scheduler is implemented by a

hard Constant Bandwidth Server [19], [20], whereas a local

scheduler can use either EDF and FP as scheduling policies

for each subsystem. Table 1 summarizes the notation used

throughout the paper.

2.1 Task model

Each subsystem Sk runs an application Γk consisting of nk

periodic or sporadic tasks. Each task generates a potentially

infinite sequence of instances (jobs), executed on different

data. They may be activated periodically, at fixed intervals

of time, or sporadically, with a minimum interarrival time

between consecutive jobs. Each task τi is characterized

by a worst-case execution time (WCET) Ci, a period (or

minimum interarrival time) Ti, and a relative deadline Di.

Under local EDF scheduling, tasks are ordered by increas-

ing relative deadlines, whilst under local FP scheduling

tasks are ordered by decreasing priorities, so that τ1 is the

highest priority task.

The Level-i notation is used in this paper to generalize

the application parameters under both EDF and FP local

scheduling. A Level-i parameter provides an aggregate

information among all the tasks τk with k≤ i. This notation

comes useful for the FP schedulability analysis, which

requires computing a schedulability test for each task τi

(ith level). On other hand, the EDF schedulability analysis

is based on a single test covering all the tasks: this re-

quirement fits also well with the Level-i notation by simply

considering the application parameters for the nth level

(i = n).

2.2 Resource model

Two types of resources can be defined:

• Local resource: a resource shared among tasks within

the same subsystem;



4

• Global resource: a resource shared among tasks be-

longing to different subsystems.

In the following, δi, j denotes the WCET for the longest

critical section of τi related to resource R j.

Definition 1: The Resource Holding Time RHTk, j(i) of

a global resource R j accessed by a task τi ∈ Sk is the

maximum amount of budget consumed by Sk between the

lock and the corresponding release of R j performed by τi.

We also define the Level-i Resource Holding Time of a

global resource R j accessed by τh ∈ Γk as

Hk, j(i) = max
h≤i

{

RHTk, j(h)} (1)

Note that if global resources are accessed by disabling

local preemption, Hk, j(i) can be expressed as

Hk, j(i) = max
h≤i
{δh, j | τh ∈ Γk}. (2)

If local preemption is not disabled, Hk, j(i) must take into

account the worst-case local interference experienced by τi

during the lock of R j (details on how to compute Hk, j(i)
can be found in [15]).

In addition, the Level-i maximum Resource Holding

Time for an application Γk is defined as

Hk(i) = max
j
{Hk, j(i)}, (3)

and the maximum Resource Holding Time for Γk is defined

as

Hk = max
j
{Hk, j(nk)}. (4)

To access shared resources in such a hierarchical frame-

work, the SRP can be used as it is for local resources, while

it has to be extended for global resources. In the following,

the local and global version of SRP is denoted as SRP-L

and SRP-G, respectively, and it is summarized below. In the

following, the notation {x}0 is used to denote {0}∪{x}.

Local SRP (SRP-L). Within a server Sk, each task τi is

assigned a local preemption level πi and preemption levels

are ordered inversely with respect to relative deadlines; that

is, πi > πh⇔Di < Dh. Each local or global resource R j is

assigned a local (static) ceiling C L
j equal to

C
L
j = max

i
{πi | R j is used by τi}0.

A subsystem ceiling is defined for each server Sk as

ΠL
k = max

j
{C L

j | R j is locked and used by Sk}.

Then, a task τi running in a server Sk can preempt another

task in Sk only if πi > ΠL
k .

Global SRP (SRP-G). To handle global resources, like in

HSRP, each server Sk is assigned a preemption level πS
k and

server preemption levels are ordered inversely with respect

to server periods; that is, πS
h > πS

k ⇔ Ph < Pk. Each global

resource is assigned a global (static) ceiling equal to

C
G
j = max

k
{πS

k | ∃τi ∈ Γk ∧R j is used by τi}0.

A global system ceiling is defined as

ΠG = max
j
{C G

j | R jis locked}.

Then, a server Sk can preempt the currently scheduled

server only if πS
k > ΠG.

Note that, when a global resource is locked, the system

ceiling ΠG is incremented and a number of servers is

prevented to execute, hence the blocking is extended to

all the tasks executing upon the blocked servers.

Symbol Description

Sk kth subsystem (reservation server)
Γk Application (task set) handled by Sk

nk Number of tasks in Γk

Qk Budget of server Sk

Pk Period of server Sk

αk Bandwidth of server Sk

∆k Maximum of service delay of server Sk

sbf(Sk ,t) Generic supply bound function of server Sk

sbf
B(Sk,t) New proposed supply bound function of server Sk

sbf
P(Sk,t) Periodic supply bound function of server Sk

sbf
L(Sk ,t) Linear α-∆ supply bound function of server Sk

τi ith task
Ci Worst-case execution time (WCET) of τi

Ti Period (or minimum interarrival time) of τi

Di Relative deadline of τi

R j jth shared resource
δi, j WCET of the longest critical section of τi on R j

Hk, j(i) Level-i RHT of R j accessed by tasks in Γk

Hk Maximum RHT for Γk

Hk(i) Level-i maximum RHT for Γk

πi Preemption level for τi

C L
j Local resource ceiling for R j

ΠL
k Subsystem ceiling for Sk

πS
k Preemption level for Sk

C
G
j Global resource ceiling for R j

ΠG Global system ceiling

Table 1: Notation used throughout this paper.

3 THE BROE SERVER

As stated in Section 1, suspending a task that holds a

global resource for a budget exhaustion would lead to unac-

ceptably long delays in tasks in other subsystems wishing

to access the same resource. More generally, consider a

task τi belonging to a server S and let q be the residual

budget of S at time t. For the sake of simplicity, in this

and in the following section we refer to a single server

and thus remove the index k, therefore H will denote the

maximum Resource Holding Time of server S, as defined

in Equation (4).

If τi wants to enter a critical section at time t and q <
H, then a budget depletion may occur inside the critical

section. Since τi cannot continue the execution to prevent

other tasks from missing their deadlines, an extra delay is

added to the blocked tasks to wait until the next budget

replenishment.

To address the problem above, Bertogna et al. [15]

proposed the BROE server, which is based on a hard

Constant Bandwidth Server [19], [20] with period P and

maximum budget Q (the bandwidth is α = Q/P). At any

time t, the server is characterized by an absolute deadline



5

d and a remaining budget q. When a job executes, q is

decreased accordingly. The rules of a BROE server are

summarized below:

1) Initially, q = 0 and d = 0.

2) When BROE is idle and a job arrives at time t, a

replenishment time is computed as tr = d− q/α:

a) if t < tr, the server is suspended until time tr.

At time tr, the budget is replenished to Q and

d← tr +P.

b) otherwise the budget is immediately replenished

to Q and d← t +P;

3) When q = 0, the server is suspended until time d. At

time d, the server budget is replenished to Q and the

deadline is postponed to d← d+P.

4) When a pending task wishes to access a global

resource at a time t, a budget check is performed: if

q≥H, there is enough budget to complete the critical

section, hence the access is granted. Otherwise a

replenishment time is computed as tr = d− q/α:

a) if t < tr, the server is suspended until time tr.

At time tr, the budget is replenished to Q and

d← tr +P.

b) otherwise the budget is immediately replenished

to Q and d← tr +P.

According to the above rules, a server running ahead

with respect to its guaranteed processor utilization will self-

suspend in two cases: when reactivating after an idle time

(Rule 2), and when trying to enter a global critical section

with insufficient budget (Rule 4). In both cases, it will

self-suspend until the guaranteed processor utilization is

matched (time tr = d−q/α). At time tr, the server budget is

replenished to Q and the deadline is set to d← tr+P. When

instead the server consumed less processor resources than

its allowed share, it will immediately replenish its budget in

the two mentioned cases. However, the deadline set when

reactivating after an idle (d← t +P, according to Rule 2)

differs from the one set when trying to enter a global critical

section with insufficient budget (d ← tr +P, according to

Rule 4).

4 LOCAL SCHEDULABILITY TEST FOR

BROE UNDER EDF

The local schedulability analysis of a reservation server

can be performed using the test proposed by Shin and

Lee [5], later extended by Baruah [21] to account for shared

resources. According to this test, a task set Γ is schedulable

by EDF on a reservation server S if

∀t > 0 BL(t)+dbf(Γ, t)≤ sbf(S, t) (5)

where dbf(Γ, t) is the demand bound function of the task

set Γ (i.e., the maximum computational demand of Γ in

any interval of length t > 0), sbf(S, t) is the supply bound

function of the server S, (i.e., the minimum amount of

service time provided by the server in any interval of length

t > 0), and BL(t) is the blocking time in interval (0, t],
computed as the maximum critical section of tasks having

deadline > t, accessing resources common to at least one

task with deadline ≤ t, that is,

BL(t) = max
i, j
{δi, j | Di > t ∧

∃τℓ accessing R j with Dℓ ≤ t}.
(6)

As shown in [21], it is possible to limit the number of test

points for Equation (5) to a discrete set for an efficient

implementation.

In the original paper presented by Bertogna et al. [15],

the supply bound function used in the test was actually a

linear lower bound sbf
L(S, t) of a bounded-delay partition

(α , ∆), where α is the server bandwidth and ∆ is the

maximum service delay:

sbf
L(S, t) = α(t−∆), (7)

where α = Q/P and ∆ = 2(P−Q).

In the following theorem, we improve the effectiveness of

the local schedulability test by deriving the actual supply

bound function sbf
B(S, t) of BROE as a function of the

maximum resource holding time H of the global resources

accessed by Γ. Note that the use of H for the local analysis

is compliant with BROE, since resource holding times are

also required for the global schedulability analysis, as well

as used by the resource access policy to avoid budget de-

pletion within critical sections. The improved supply bound

function is illustrated in Figure 3 (continuous line) together

with the linear bound (dotted line) proposed in the original

work. As clear from the figure, the new supply bound func-

tion introduces some additional areas over the linear bound

sbf
L(t), for time intervals in [∆,∆+(⌈Q/H⌉− 1)P]. Such

areas may be efficiently exploited by the schedulability test

in Equation (5) to improve the schedulability analysis. For

time intervals outside this domain, the original sbfL(t) can

be used instead.

0 t

Q

2Q-2H

3Q-3H

sbf(t)

∆

H
α

2H
α

Q-H

2Q

∆+P ∆+ 2P

Figure 3: Supply bound functions: periodic (dashed line),

linear α-∆ (dotted line), and new sbf proposed for BROE

(continuous line).

Theorem 1: In any interval of length t ∈ [∆,∆ +
(⌈Q/H⌉−1)P], the supply provided by a BROE server with

a maximum resource holding time of H cannot be lower



6

than the following function:

sbf
B(t) =











t−∆− (k− 1)(P−Q) tA < t ≤ tB

kQ− kH tB < t ≤ tC

α(t−∆) tC < t ≤ tD

(8)

where

k =

⌈

t−∆

P

⌉

, (9)

and


















tA = ∆+(k− 1)P

tB = ∆+(k− 1)P+(Q− kH)

tC = ∆+ kP− kH/α

tD = ∆+ kP.

Proof: When no global resource is shared, BROE

behaves as a classical hard CBS server (see [20]), whose

supply bound function is described as [22], [23]:

sbf
P(t) = max







0,
(h(t)− 1)Q,

t− (h(t)+ 1)(P−Q)







(10)

where h(t) =
⌈

t−P+Q
P

⌉

. Function sbf
P(t) is shown in Fig-

ure 3 as a dashed line.

When considering resource sharing, the worst-case sup-

ply can be found by considering Rule 4 of BROE in

Section 3, which reduces sbf
P(t) in some time intervals.

Note that Rule 2 does not affect the sbf
B(t), since it is

applied only when the server is resumed from an idle state,

and therefore will never be invoked in the busy period

considered in the worst-case scenario by the schedulability

test of Equation (5).

After its worst-case delay t =∆, the server will be able to

execute for at least Q−H units of time. After time t = ∆+
Q−H, a pending task wishing to access a global resource

R j can experience the condition q < H j. According to Rule

4 of BROE, such a condition causes a deadline shift to

tr +P, suspending the server H units earlier than in the

more favorable sbf
P(t). Then, the latest time the server can

resume execution is at time tr +P−Q. Since tr = ∆+Q−
H/α , then the server can restart executing at tr +P−Q,

which, rephrasing the terms, is equal to ∆+P−H/α . Such

a point lies at the intersection of the original sbfL(t) (dotted

line in Figure 3).

Since the same condition imposed by Rule 4 can occur

at any time in (∆+Q−H, ∆+Q], then sbf
B(t) = sbf

L(t)
in the interval (∆+P−H/α, ∆+P].

Note that, in the next interval [∆ + P, ∆ + 2P], the

reduction of the sbf
B(t) with respect to sbf

P(t) is more

significant. The reason is that the server, when resuming

the execution at time ∆ + P− H/α , can be suspended

again after executing for Q−H time units, thus the sbf
P(t)

is “cropped” earlier than in the previous period (i.e., at

t = ∆+P+(Q−2H)). By computing tr +P−Q using Rule

4, the server is resumed at time ∆+2P−2H/α . This point

lies again at the intersection of the original sbfL(t).
In general, the reduction of the sbf

B(t) with respect

to sbf
P(t) increases period by period, until it reduces to

sbf
L(t). Considering the kth period after ∆, the intervals in

which sbf
B(t) = sbf

L(t) are

[∆+ kP−
kH

α
, ∆+ kP]. (11)

The larger k, the larger such intervals. The first period in

which, for all t, sbfB(t) = sbf
L(t) can be derived by finding

the smallest k that satisfies the following inequality:

∆+ kP−
kH

α
≤ ∆+(k− 1)P,

which gives k≥Q/H. Therefore, from the ⌈Q/H⌉-th period

on, the supply bound function cannot be larger than sbf
L(t).

Figure 4 shows the sbf
B(t) in the kth period after ∆, i.e.,

for t ∈ [∆+kP, ∆+(k+1)P], when k < ⌈Q/H⌉. The values

of the timing parameters used in the figure are reported in

Table 2.

tA tB tC tD

QA

QB

QD

t

sbf
B(t)

Figure 4: sbfB(t) in the kth period after the service delay.

tA ∆+(k−1)P
tB ∆+(k−1)P+(Q−kH)
tC ∆+kP−kH/α
tD ∆+kP

QA (k−1)Q
QB kQ−kH

QD kQ

Table 2: Values for Figure 4.

The supply provided between tA and tB can be computed

as t − tA +QA, giving t −∆− (k− 1)(P−Q). The supply

between tB and tC is equal to QB = kQ− kH. Finally, the

supply between tC and tD coincides with the linear supply

bound function sbf
L(t) = α(t−∆).

The theorem follows noting that for any t ≤ ∆ +
(⌈Q/H⌉− 1)P, k is smaller than ⌈Q/H⌉.

Considering that the sbf
B has been derived as the min-

imum supply provided by BROE for all actual worst-case

scheduling scenarios, the resulting schedulability test is

tight by construction.

Moreover, it is worth observing that H is just an upper

bound of the resource holding time, while the effective

locking time can be significantly smaller, depending on the

interference caused by higher priority jobs preempting the

critical section. Note that the presented analysis is robust

and sustainable, according to the criteria outlined in [24].



7

In fact, the analysis does not make any assumption on the

actual duration of the resource holding time. One may be

tempted to improve the supply bound function by assuming

that a budget replenishment due to a global lock request

(Rule 4) will then cause the corresponding server to execute

for H time units. In this case, the supply provided would be

higher than in our sbf
B. However, an analysis using such

an improved supply function would be not sustainable, i.e.,

it would not provide sufficient guarantees to tasks that may

execute for less than their worst-case execution times. Our

supply bound function correctly considers also the case in

which a global lock is released an infinitesimal time after

the budget replenishment, and another lock request is made

QH time units after that, as correctly considered in the

proof above.

Analyzing the improved supply bound function, it be-

comes apparent that the improvement with respect to the

original sbf
L(t) is magnified when H is much smaller

than Q. In the extreme case in which no global resource

is shared, we have H = 0 and sbf
B(t) coincides with

the supply bound function sbf
P(t) of a periodic server.

Conversely, when H =Q, sbfB(t) is always equal to sbf
L(t).

Different methods have been proposed in the literature to

reduce resource holding times by limiting (or disabling)

local preemption when accessing global resources [25].

In particular, all critical sections having a length smaller

than ∆/2 can be executed non-preemptively by BROE

(Theorem 7 in [15]), leading to a minimal resource holding

time equal to the critical section length, so magnifying

the improvement allowed by the supply bound function

presented in this paper.

Note that the improved supply bound function can be

simply plugged in the schedulability test of Equation (5).

The obtained improvement does not affect the computa-

tional complexity of the schedulability test, which remains

pseudo-polynomial as the original test based on the linear

sbf
L(t). In fact, computing the value of the novel supply

bound function for a given time t just requires identifying

the kth period by Equation (9) and then computing the

sbf
B(t) value by Equation (8). Hence, the total computation

requires a modulo operation and a constant number of

additions and multiplications.

Also, the new proposed method preserves the modularity

of BROE’s original approach, where the local schedulability

of each application can be validated in isolation, without

requiring the knowledge of the parameters of the other

applications. The global schedulability of the various appli-

cations on open environments can then be verified based on

simple application interfaces [15]. Such a modular approach

scales well with the number of tasks and servers, allowing

an efficient integration of multiple applications in an open

environment.

5 LOCAL SCHEDULABILITY TEST FOR

BROE UNDER FP

This section presents the local schedulability analysis of a

real-time application scheduled under FP within a BROE

server. The guarantee test can be derived from the FP-

test proposed by Lehoczky et al. [26] considering that, in

any test interval [0, t], only a fraction of time given by

sbf(S, t) is available for the application. Hence, a task set

Γ = {τi, ...,τn} is schedulable under FP on a reservation

server S if

∀i = 1, ...,n ∃t ∈ tSeti rbf i(t)+BL
i ≤ sbf(S, t)

where tSeti is the set of test points [26], [27], relative to

task τi, where the schedulability check has to be performed,

that is

tSeti =

{

rTj | j = 1 . . . i,r = 1 . . .

⌊

Ti

Tj

⌋}

,

and

rbf i(t) =Ci +
i−1

∑
j=1

⌈

t

Ti

⌉

C j,

BL
i = max

ℓ, j
{δℓ, j|πℓ < πi ∧

∃R j used by τh : πh ≥ πi}
(12)

As explained in Section 4, the sbf
B(S, t) for a BROE

server depends on resource holding times in Γ: in particular,

for EDF local schedulability, it depends on their maximum

value H. Since, under FP, the schedulability test has to

be computed for each task τi, the BROE supply bound

function only depends on the maximum among resource

holding times of the i highest priority tasks, that is, the

Level-i maximum resource holding time H(i) defined in

Equation (3).

Hence, to have a more precise schedulability test, the

BROE supply bound function presented in Equation (8)

can be redefined by introducing the Level-i supply bound

function sbf
B
i (S, t), obtained by replacing H with H(i).

Using such a refinement, a task set Γ is schedulable by

FP on a BROE server if

∀i = 1, ...,n ∃t ∈ tSeti rbf i(t)+BL
i ≤ sbf

B
i (S, t). (13)

6 IMPROVING SRP-G

The next example shows a particular situation in which

the global SRP-G rule causes an unnecessary blocking.

Consider four servers S1, S2, S3, and S4, with periods

P1 > P2 > P3 = P4. Each server Si runs a single task τi.

A global resource R1 is shared between τ1 and τ3, and

another global resource R2 is shared between τ2 and τ4.

Server preemption levels are defined according to SRP-

G, thus πS
1 < πS

2 < πS
3 = πS

4 , and when any resource is

locked, its ceiling will be C
G
j = πS

3 = πS
4 . Suppose that

τ1 starts executing and locks R1. After the lock operation,

the global system ceiling will be ΠG = πS
3 . Hence, if τ4

arrives when τ1 is locking R1, it cannot preempt, because

its server (S4) is blocked by SRP-G (ΠG ≥ πS
4 ). However,

such a blocking is not necessary for τ4, because no task in

S4 uses R1. A similar situation can occur if S4 does not use

global resources. In the described example, only a single

task experiences the unnecessary blocking, but in a general

system configuration several served tasks could be affected.



8

To avoid the blocking situation described above, a new

preemption test is proposed in this section to manage

preemptions among servers. The proposed improvement

allows global preemption when a server Sk has πS
k = ΠG

and its task set Γk does not use resources that are currently

locked. Note that the improvement is effective only when

two or more servers have the same preemption level, like

in the example presented above, hence it can be disabled

(to save runtime overhead) whenever it is not needed.

Considering such a new rule, the new SRP-G preemption

test can then be formally expressed as follows.

A server Sk can preempt another server only if

one of the following conditions is verified:
∥

∥

∥

∥

πS
k > ΠG

(πS
k = ΠG) ∧ (6 ∃R j used by Sk | R j is locked ).

6.1 Global schedulability analysis

The SRP-G extension introduced above affects the calcula-

tion of the blocking time due to global resources, hence it

affects the global schedulability analysis.

A set of reservation servers S1, . . . ,Sm can be scheduled

under an EDF-based global scheduler (such as IRIS [19])

if1

∀k = 1, . . . ,m ∑
hep(i)

αi +
BG

k

Pk

≤ 1 (14)

where hep(i) denotes the set of servers with period higher

than or equal to Pk and BG
k is the blocking factor of server

Sk. Note that the improvement proposed in this paper for

SRP-G can reduce the blocking factor with respect to the

classical formulation.

In particular, the maximum blocking time that server Sk

can experience is equal to the maximum resource-holding-

time among all the servers Sℓ with period Pℓ > Pk that share

a global resource with some server Sh with period Ph < Pk,

or with period Ph = Pk when Sℓ shares a resource with Sk.

Formally, BG
k can be expressed as follows:

BG
k = max

Pℓ>Pk

{Hℓ, j | R j used by Sh ∈Ω(k, j)}0 (15)

with

Ω(k, j) = {Sh | (Ph < Pk) ∨

((Ph = Pk)∧R j used by Sk)}.

7 EXPERIMENTAL RESULTS

This section presents a set of experiments carried out to

evaluate the performance of the new local schedulability

test proposed for BROE, under local EDF and FP, for differ-

ent configuration parameters. Performance results are also

compared with the original schedulability test for BROE

proposed by Bertogna et al. [15] and the schedulability

1. Note that the global feasibility test can also be performed using
the processor demand criterion extended under resource sharing by
Baruah [21].

test for SIRAP proposed by Behnam et. al. [28] in 2010,

reformulated by van den Heuvel et al. [23] in 2011.

A comparison with overrun-based approaches [11] is

not carried out here, considering that extensive experi-

ments [23] have shown that SIRAP clearly outperforms

such methods.

Since we assume global EDF-based scheduling of reser-

vation servers, we use as global schedulability test the same

test proposed by Bertogna et al. in [15].

Note that, in the performance study reported by van den

Heuvel et al. [23], the BROE schedulability is tested by

using the original analysis based on the linear bound α-∆.

In all the experiments, the performance of each resource

sharing algorithm is evaluated by measuring the ratio of

the number of feasible task sets and the total number N

of randomly generated task sets, for a given configuration

parameter. In each graph, for each value of the configuration

parameter the ratio is computed over N = 2500 task sets.

7.1 Task set generation

Given m servers with a total system utilization U , server

parameters are generated as follows:

• server utilization Uk is randomly generated by the

UUniFast algorithm [29], which guarantees a uniform

distribution, limiting the minimum server utilization to

Umin
S .

• server budget Qk is randomly generated with uniform

distribution in a given range [Qmin,Qmax];

• server period Pk is computed as Pk = Qk/Uk.

Within each subsystem Sk, the task set Γk, consisting of

n tasks, is generated with a total utilization ΨkUk, where

Ψk represents the application load normalized with respect

to the server bandwidth. Note that such a normalized load

represents a crucial parameter affecting the performance of

the schedulability test.

The other task set parameters are generated as follows:

• the task utilization Ui is randomly generated by UU-

niFast;

• the task period Ti (or minimum interarrival time) is

randomly generated with uniform distribution in a

given range [T min
k ,T max

k ], set for the considered server

Sk;

• the task WCET Ci is computed as Ci = TiUi;

• the relative deadline Di is randomly generated with

uniform distribution in [Ci+β (Ti−Ci),Ti], where β is

a parameter of the algorithm, such that 0≤ β ≤ 1.

Considering that the extra delay problem highlighted in

Section 1 is not caused by local resources, and that the

protocols compared in this study are explicitly designed to

solve such a problem, only global resources are taken into

account. Global resources are randomly assigned to tasks

following an exponential distribution, in order to simulate a

more realistic resource sharing among tasks. In this way we



9

obtain a high probability that a resource is shared among

a small number of tasks and, viceversa, a low probability

that is shared by a high number of tasks.

To simplify the computation of Hk, j(i) and the local

blocking time BL
k (t), global resources are accessed using

a non-preemptive scheme. For each global resource R j, the

corresponding resource holding time Hk, j is randomly gen-

erated with uniform distribution in the range [Hmin,Hmax].
Since both BROE and SIRAP require Hk < Qk, Hmin and

Hmax are computed as a fraction of the actual minimum

budget Q∗ deriving from the random generation of the

server parameter:

Q∗ = min
k
{Qk}.

During our experiments we noticed that some parameters

do not significantly affect the schedulability ratio, so we

decided not to present the corresponding experiments. In

all the experiments reported below, all fixed parameters are

reported in Table 4 and the following notation is used to

refer to the compared algorithms:

BROE-α∆ Original schedulability test for

BROE based on the linear supply

bound function sbf
L(t), proposed

by Bertogna et al. [15].

BROE New test for BROE presented in

Section 4 (for EDF) and Section 5

(for FP).

SIRAP Schedulability test for SIRAP [23],

[28] proposed by Behnam et. al. in

2010.

For each scheduling policy (EDF and FP) we performed

three experiments: Table 3 reports a short description for

each experiment.

Experiment 1 Schedulability ratio as a function

of the application load, for three

different ranges of resource holding

time

Experiment 2 Schedulability ratio as a function

of the average maximum resource

holding time

Experiment 3 Schedulability ratio as a function of

the application load for two differ-

ent numbers of global resources

Table 3: Descriptions of the performed experiments.

7.2 Experiments under local EDF

7.2.1 Experiment 1

In the first experiment we tested the schedulability ratio of

feasible task sets as a function of the normalized application

load Ψ, varied in the range [0.25, 1], with step 0.05, for

all the servers. In addition, the number of global resources

is set to 5 and task periods are varied between T min
k = 2Pk

Number of servers m = 5

Total utilization U = 0.8
Minimum budget Qmin = 300

Maximum budget Qmax = 1000

Minimum server utilization Umin
S = 0.08

Number of tasks per server 8

Deadline constraint β = 1

Table 4: Fixed parameters used in all experiments.

and T max = 12Pk. Note, in fact, that applications including

tasks with a period smaller than ∆k = 2(Pk−Qk) cannot be

guaranteed on the reservation server Sk.

In order to show the influence of the resource holding

time Hk, j on the performance of the algorithms, three

different graphs are reported in Figure 5 for different ranges

[Hmin,Hmax].
As it is clear from the graphs, the new schedulability

test for BROE proposed in this paper always outperforms

the other two tests for all configuration parameters. For

very small critical sections (see Figure 5a), SIRAP performs

better than BROE-α∆, whereas for medium critical sections

(see Figure 5b) BROE shows a significant improvement

with respect to SIRAP. For instance, for Ψ = 0.6, BROE

schedules three times more task sets than SIRAP.

It is worth observing that, as critical sections get larger,

all the algorithms tend to degrade (see Figure 5c), but

SIRAP degrades more quickly, and for application loads

higher than 60% it is not able to guarantee a significant

load, while BROE shows a more graceful degradation.

7.2.2 Experiment 2

To better illustrate the dependency of the tests on the re-

source holding time Hk, j, we carried out another experiment

by monitoring the schedulability ratio as a function of the

average maximum resource holding time normalized with

respect to Q∗, that is H/Q∗, setting Hmax−Hmin = 0.2Q∗,

Ψ = 0.6, and 5 global resources. Note that, as H/Q∗

increases, the average number of critical sections that can

be inserted in the task code decreases. To limit the effect

of such a phenomenon, in this experiment we varied the

task periods in a larger interval by setting T min
k = 2Pk and

T max = 16Pk, so obtaining tasks with higher worst-case

execution times.

The results shown in Figure 6 confirm the observed

degradation. Again, SIRAP degrades more quickly, and for

H/Q∗ = 0.4 it guarantees only 20% of the load, while

BROE reaches almost 80%.

It is worth observing that, although the sbf
P(t) used by

SIRAP does not reduce while increasing H, the observed

degradation is due to the self-blocking phenomenon which

significantly increases the blocking term [14]. On the other

hand, BROE degradation is due to the cropping of its

sbf
B(t), as explained in Section 4. As a consequence, it

appears that self-blocking has a higher negative impact

on local schedulability than the cropping effect present

in BROE. Note that this behavior becomes even more



10

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Ψ

S
ch

ed
u

la
b

il
it

y
ra

ti
o

(a) Hmin = 0.01Q∗ and Hmax = 0.1Q∗

BROE

SIRAP

BROE-α∆

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Ψ

S
ch

ed
u

la
b

il
it

y
ra

ti
o

(b) Hmin = 0.1Q∗ and Hmax = 0.4Q∗

BROE

SIRAP

BROE-α∆

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Ψ

S
ch

ed
u

la
b

il
it

y
ra

ti
o

(c) Hmin = 0.4Q∗ and Hmax = 0.8Q∗

BROE

SIRAP

BROE-α∆

Figure 5: Schedulability under local EDF as a function of

Ψ, for different values of Hmin and Hmax.

apparent when global resources are accessed without using

a non-preemptive scheme, causing larger blocking times

that significantly penalize SIRAP.

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

H/Q∗

S
ch

ed
u

la
b

il
it

y
ra

ti
o

Ψ = 0.6

BROE

SIRAP

BROE-α∆

Figure 6: Schedulability under local EDF as a function of

the average value H/Q∗, for Ψ = 0.6.

7.2.3 Experiment 3

A final experiment has been carried out to show the depen-

dency of the schedulability tests on the number of global

resources used by the task set. Here, resource holding

times have been generated using the medium case, with

Hmin = 0.1Q∗ and Hmax = 0.4Q∗, and task periods have

been varied between T min
k = 2Pk and T max = 12Pk. The

number of global resources has been set to 1, 5, and 10.

The case with 5 global resources has already been shown

in Figure 5b, while the other two cases are reported in

Figure 7. Although all the tests exhibit a degradation as

the number of global resources increases, the SIRAP test

degrades more significantly, while the new test proposed

for BROE is much less sensitive to such a variation.

7.3 Experiments under local FP

This section compares the performance of BROE, BROE-

α∆ and SIRAP schedulability tests under local FP schedul-

ing. Since in the original BROE paper [15] the local

schedulability analysis was derived only under EDF, we

extended the BROE-α∆ test by replacing sbf
B
i (S, t) with

sbf
L(S, t) in Equation (13) in order to make a comparison

under local FP.

7.3.1 Experiment 1

The Experiment 1 made under EDF has been repeated

under FP with the same configuration parameters: results

are reported in Figure 8. The graphs show that, under

FP, SIRAP performs better than BROE-α∆ with respect

to the EDF case, while the new BROE schedulability test

proposed in this paper again outperforms the other two

tests, confirming the relevance of our contribution.

7.3.2 Experiment 2

Experiment 2 has been repeated under FP with different

configuration parameters. In fact, as Ψ increases, the per-

formance under local FP degrades more quickly than under



11

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Ψ

S
ch

ed
u

la
b

il
it

y
ra

ti
o

(a) 1 global resource

BROE

SIRAP

BROE-α∆

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Ψ

S
ch

ed
u

la
b

il
it

y
ra

ti
o

(b) 10 global resources

BROE

SIRAP

BROE-α∆

Figure 7: Schedulability under local EDF as a function of

Ψ, for different numbers of global resources.

EDF. We therefore ran the experiment setting Ψ = 0.5
(instead of Ψ = 0.6). To allow inserting a sufficient number

of critical sections in the tasks, periods have been generated

using T min
k = 2Pk and T max = 18Pk, while resource holding

times have been generated using the same constraints as

in the EDF case. The number of global resources has been

also kept to 5. Results are reported in Figure 9. In this case,

SIRAP outperforms BROE-α∆ for all values of H/Q∗, but

it is always dominated by the improved BROE.

7.3.3 Experiment 3

A last experiment has been carried out under FP to show

the dependency of the schedulability tests on the number

of global resources, using the same parameter ranges used

in the third experiment for EDF. The number of global

resources has been set to 1, 5, and 10. The case with

5 global resources has already been shown in Figure 8b,

while the other two cases are reported in Figure 10. The

results of this experiment show that, under local FP, both

BROE and SIRAP are less sensitive to the number of global

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Ψ

S
ch

ed
u

la
b

il
it

y
ra

ti
o

(a) Hmin = 0.01Q∗ and Hmax = 0.1Q∗

BROE

SIRAP

BROE-α∆

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Ψ

S
ch

ed
u

la
b

il
it

y
ra

ti
o

(b) Hmin = 0.1Q∗ and Hmax = 0.4Q∗

BROE

SIRAP

BROE-α∆

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Ψ

S
ch

ed
u

la
b

il
it

y
ra

ti
o

(c) Hmin = 0.4Q∗ and Hmax = 0.8Q∗

BROE

SIRAP

BROE-α∆

Figure 8: Schedulability under local FP as a function of Ψ,

for different values of Hmin and Hmax.

resources with respect to the EDF case, although BROE still

dominates the other two tests for all ranges of parameters.



12

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

H/Q∗

S
ch

ed
u

la
b

il
it

y
ra

ti
o

Ψ = 0.5

BROE

SIRAP

BROE-α∆

Figure 9: Schedulability under local FP as a function of the

average value H/Q∗, for Ψ = 0.5.

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Ψ

S
ch

ed
u

la
b

il
it

y
ra

ti
o

(a) 1 global resource

BROE

SIRAP

BROE-α∆

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Ψ

S
ch

ed
u

la
b

il
it

y
ra

ti
o

(b) 10 global resources

BROE

SIRAP

BROE-α∆

Figure 10: Schedulability under local FP as a function of

Ψ, for different numbers of global resources.

8 IMPLEMENTATION ISSUES

This section discusses some guidelines related to the im-

plementation of the two resource sharing protocols SIRAP

and BROE. These protocols have been implemented on the

ERIKA Enterprise real-time kernel [30], using the Hard-

CBS [19], [20] as a global scheduler. The Hard-CBS is

a bandwidth preserving server algorithm that has been

extended in this work to support resource sharing.

It is worth noting that both SIRAP and BROE have

also been implemented on the µC/OS-II operating system

by van den Heuvel et al. [31]. However, their SIRAP

implementation relies on a periodic-idling server algorithm

as global scheduler, which discharges the budget every time

the server becomes idle. Viceversa, bandwidth preserving

servers preserve the server budget as long as possible

without violating the guaranteed reservation bandwidth.

Due to such a difference, the considerations in [31] on the

implementation complexity do not apply to bandwidth pre-

serving server algorithms like the Hard-CBS. In summary,

the implementation comparison presented in [31] considers

different global schedulers for BROE and SIRAP, hence

the reported results do not represent a consistent evaluation

between these two resource sharing protocols.

The implementation carried out for this work has shown

that BROE can be easily implemented on a bandwidth pre-

serving server, because it does not require additional data

structures in the kernel and its behavior is realized just by

acting on two state variables: the current budget qk and the

absolute deadline dk. In particular, the BROE suspension

required by Rule 4-a can be implemented in a transparent

fashion without modifying the Hard-CBS implementation:

when a server experiences such a suspension, its remaining

budget qk can be discarded and the Recharging Time

defined by the Hard-CBS can be set to tr = dk − qk/αk.

The same considerations are valid for IRIS [19], which

is a Hard-CBS algorithm that also includes a reclaiming

mechanism for exploiting available idle times.

On the other hand, SIRAP requires specific data struc-

tures, one for each server, to manage self-blocked tasks. In

terms of implementation, handling such data structures in-

creases both the kernel footprint and the runtime overhead.

As a side note, implementing SIRAP over the Hard-CBS

implies an additional complication, needed for handling a

situation in which all served tasks τi that are active and

eligible for execution (πi > ΠL) experience a self-blocking.

This situation is not compliant with the Hard-CBS rules,

because the Hard-CBS does not handle a server with active

tasks that is waiting for a budget replenishment. Solving

such an inconsistency requires additional coding and timer

operations that introduce extra overhead.

9 CONCLUSIONS

In this paper we presented two local schedulability tests

(one under local FP and one under local EDF schedulers)

to verify the schedulability of real-time applications in a

two-level hierarchical system under an EDF-based global

scheduler, where resource sharing among reservations is

performed by the BROE service algorithm. A simple ex-

tension of the global SRP protocol has been also proposed

to possibly reduce the blocking time of the servers while

accessing global resources in certain conditions.



13

The performance of the new BROE schedulability tests

has been compared with the ones of SIRAP and the original

test proposed for BROE based on the linear bound α-

∆. Since both algorithms have been implemented on the

Erika Enterprise real-time kernel, practical issues related to

implementation complexity and runtime overhead have also

been discussed for bandwidth preserving servers.

Experimental results showed that the new BROE tests

outperform the others for all configuration parameters. For

several configuration parameters, the new BROE test is able

to accept 2-3 times more task sets than the older BROE test

and up to 8 times more than SIRAP.

Although the schedulability of all tests degrades as

critical sections get larger, BROE exhibits a more graceful

degradation with respect to the other tests, making it the

best choice for implementing reservations in hierarchi-

cal systems under global resource sharing. This choice

is also justified by the existence of an optimal design

algorithm [17] that exploits the novel analysis methodology

proposed in this paper. The design method allows com-

puting the reservation parameters that minimize the server

bandwidth for guaranteeing the schedulability of the real-

time application. A proof-of-concept implementation of the

server design algorithm is freely available on [18].

REFERENCES

[1] M. D. Natale and A. S. Vincentelli, “Moving from federated to in-
tegrated architectures in automotive: The role of standards, methods
and tools,” Proc. of the IEEE, vol. 98, no. 4, pp. 603–620, April
2010.

[2] C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity
reserves for multimedia operating systems,” in Proc. of IEEE in-

ternational conf. on Multimedia Computing and System, May 1994.

[3] L. Abeni and G. Buttazzo, “Resource reservations in dynamic real-
time systems,” Real-Time Systems, vol. 27, no. 2, pp. 123–165, 2004.

[4] E. Bini, G. Buttazzo, J. Eker, S. Schorr, R. Guerra, G. Fohler, K.-E.
Arzen, V. R. Segovia, and C. Scordino, “Resource management on
multicore systems: The ACTORS approach,” IEEE Micro, vol. 31,
no. 3, pp. 72–81, May-June 2011.

[5] I. Shin and I. Lee, “Compositional real-time scheduling framework,”
in Proceedings of the 25th IEEE Real-Time Systems Symposium,
Lisbon, Portugal, December 5-8, 2004, pp. 57–67.

[6] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming
in a hard-real-time environment,” Journal of the Association for

Computing Machinery, vol. 20, no. 1, pp. 46–61, January 1973.

[7] G. Lipari and S. Baruah, “A hierarchical extension to the constant
bandwidth server framework,” in Proceedings of the 7th Real-Time
Technology and Application Symposium, Taipei, Taiwan, June 2,
2001, pp. 26–35.

[8] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance proto-
cols: An approach to real-time synchronization,” IEEE Transactions

on Computers, vol. 39, no. 9, pp. 1175–1185, September 1990.

[9] T. P. Baker, “Stack-based scheduling for realtime processes,” Real-
Time Systems, vol. 3, no. 1, pp. 67–99, April 1991.

[10] T. Ghazalie and T. Baker, “Aperiodic servers in a deadline scheduling
environment,” Real-Time Systems, vol. 9, 1995.

[11] R. I. Davis and A. Burns, “Resource sharing in hierarchical fixed
priority pre-emptive systems,” in Proceedings of the IEEE Real-time

Systems Symposium (RTSS 2006), Rio de Janeiro, Brazil, December
5-8, 2006, pp. 257–268.

[12] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “Scheduling of semi-
independent real-time components: Overrun methods and resource
holding times,” in Proceedings of 13th IEEE Int. Conference on
Emerging Technologies and Factory Automation (ETFA’08), Ham-
burg, Germany, September 15-18, 2008.

[13] M. Behnam, T. Nolte, , M. Sjödin, and I. Shin, “Overrun methods
and resource holding times for hierarchical scheduling of semi-
independent real-time systems,” IEEE Transactions on Industrial

Informatics, vol. 6, no. 1, pp. 93–104, February 2010.
[14] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “SIRAP: a synchro-

nization protocol for hierarchical resource sharing in real-time open
systems,” in Proceedings of the 7th ACM & IEEE International Con-
ference on Embedded Software (EMSOFT 2007), Salzburg, Austria,
October 1Ű3, 2007.

[15] M. Bertogna, N. Fisher, and S. Baruah, “Resource-sharing servers for
open environments,” IEEE Transactions on Industrial Informatics,
vol. 5, no. 3, pp. 202–219, August 2009.

[16] T.-W. Kuo and C.-H. Li, “A fixed prioriy driven open environment
for real-time applications,” in Proc. of the IEEE Real-Time Systems

Symposium, Phoenix, AZ, USA, December 1-3, 1999, pp. 256–267.
[17] A. Biondi, A. Melani, M. Bertogna, and G. Buttazzo, “Optimal de-

sign for reservation servers under shared resources,” in Proceedings

of the 26th Euromicro Conference on Real-Time Systems (ECRTS
14), Madrid, Spain, 9-11 July, 2014.

[18] A MATLAB R© optBROE algorithm implementation,
http://retis.sssup.it/∼a.biondi/optBROE.

[19] L. Marzario, G. Lipari, P. Balbastre, and A. Crespo, “IRIS: A new
reclaiming algorithm for server-based real-time systems,” in Proc.

of the IEEE Real-Time and Embedded Technology and Applications

Symposium, Toronto, Canada, May 2004.
[20] A. Biondi, A. Melani, and M. Bertogna, “Hard constant bandwidth

server: Comprehensive formulation and critical scenarios,” in Pro-

ceedings of the 9th IEEE International Symposium on Industrial

Embedded Systems (SIES 2014), Pisa, Italy, 18-20 June, 2014.
[21] S. Baruah, “Resource sharing in EDF-scheduled systems: a closer

look,” in Proceedings of the 27th IEEE Real-Time Systems Sympo-

sium (RTSS’06), Rio de Janeiro, Brazil, December 5-8, 2006.
[22] A. Easwaran, M. Anand, and I. Lee, “Compositional analysis

framework using EDP resource models,” in Proc. of the 28th IEEE

Real-Time Systems Symposium (RTSS 2007), Tucson, Arizona, USA,
December 3-6, 2007.

[23] M. van den Heuvel, M. Behnam, R. J. Bril, J. Lukkien, and T. Nolte,
“Opaque analysis for resource sharing in compositional real-time
systems,” in 4th Workshop on Compositional Theory and Technology

for Real-Time Embedded Systems (CRTS’11), November 2011.
[24] S. Baruah and A. Burns, “Sustainable scheduling analysis,” in

Proceedings of the IEEE Real-time Systems Symposium (RTSS 2006),
Rio de Janeiro, Brasil, December 5-8, 2006.

[25] M. Bertogna, N. Fisher, and S. Baruah, “Resource holding times:
Computation and optimization,” Real-Time Systems, vol. 41, no. 2,
pp. 87–117, February 2009.

[26] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling
algorithm: Exact characterization and average case behavior,” in Pro-

ceedings of the 10th IEEE Real-Time Systems Symposium (RTSS’89),
Santa Monica, CA, USA, December 5-7, 1989, pp. 166–171.

[27] E. Bini and G. C. Buttazzo, “Schedulability analysis of periodic fixed
priority systems,” IEEE Transactions on Computers, vol. 53, no. 11,
pp. 1462–1473, 2004.

[28] M. Behnam, T. Nolte, and R. J. Bril, “Bounding the number of self-
blocking occurrences of SIRAP,” in Proceedings of the 31st IEEE

Real-Time Systems Symposium (RTSS 2010), San Diego, California,
USA, November 30 - December 3, 2010.

[29] E. Bini and G. C. Buttazzo, “Measuring the performance of schedu-
lability tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129–154,
2005.

[30] P. Gai, G. Lipari, L. Abeni, M. di Natale, and E. Bini, “Architecture
for a portable open source real-time kernel environment,” in Pro-

ceedings of the Second Real-Time Linux Workshop and Hand’s on

Real-Time Linux Tutorial, November 2000.
[31] M. van den Heuvel, R. Bril, and J. Lukkien, “Transparent syn-

chronization protocols for compositional real-time systems,” IEEE

Transactions on Industrial Informatics, vol. 8, no. 2, pp. 322–336,
2012.


