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Abstract—Commercial Off-The-Shelf (COTS) multi-core plat-
forms are often used to enable the execution of mixed-criticality
real-time applications. In these systems, the memory subsystem is
one of the most notable sources of interference and unpredictabil-
ity, with the Memory Controller (MC) being a key component
orchestrating the data flow between processing units and main
memory. The worst-case response times of real-time tasks is
indeed particularly affected by memory contention and, in turn,
by the MC behavior as well.

This paper presents FrATM2, a Framework to Automatically
learn the Timing Models of the Memory subsystem. The frame-
work automatically generates and executes micro-benchmarks
on bare-metal hardware to profile the platform behavior in a
large number of memory-contention scenarios. After aggregating
and filtering the collected measurements, FrATM2 trains MC
models to bound memory-related interference. The MC models
can be used to enable response-time analysis. The framework
was evaluated on an AMD/Xilinx Ultrascale+ SoC, collecting
gigabytes of raw experimental data by testing tents of thousands
of contention scenarios.

I. INTRODUCTION

Commercial Off-The-Shelf (COTS) embedded platforms are
widely adopted in multiple industrial domains, including auto-
motive, industrial automation, robotics, and medical devices.
These systems often require execution of mixed-criticality
real-time applications [1], whose performance is known to be
significantly affected by memory-contention delays [2], [3],
especially when exchanging large amounts of data [4].

In these platforms, a component that plays a pivotal role is
the Memory Controller (MC). It governs the access to the main
memory and orchestrates the data transfers between the pro-
cessing units and the memory devices. Being the main memory
a shared resource, real-time tasks running concurrently on
different cores may suffer from interference due to memory
contention, which depends on both the adopted memory de-
vices and the internal scheduling policies employed by the
MC. Despite interesting research on time-predictable MCs [5]–
[7], many high-performance, COTS platforms that use DRAM
technology still come with MCs employing scheduling policies
that aim at maximizing throughput and whose details are not
publicly available.

While some large industrial players can obtain this infor-
mation and build a detailed model of the MC internals, many
others simply cannot. As such, numerous designers that intend
ensuring real-time guarantees on such platforms struggle in
bounding memory-contention delays and are often forced to
resort to empirical approaches based on examinations of the
system behavior.

Nevertheless, two important observations can be made to
tackle this problem. First, although memory contention sce-
narios are certainly many, they are still limited in number.
As such, with principled stimuli and a reasonable amount
of time, contention scenarios could be explored to infer the
system behavior in detail. Second, although the MC internals
are not publicly documented, many fundamental principles
of MCs and DRAM behavior are instead known (e.g., per
bank queuing, precedence to row hits, fair access to memory
banks, technology-related timing constraints, etc.). Thus, this
knowledge can be leveraged to both drive the exploration of
contention scenarios and design MC models to be refined and
eventually trained with experimental data.
Contribution. Motivated by these observations, this paper
presents FrATM2: a Framework to Automatically learn the
Timing Models of the Memory subsystem. Starting from a
set of templates, the framework is capable of automatically
generating micro-benchmark applications to stimulate memory
contention scenarios on a target platform, and then filtering
and aggregating the resulting memory access latencies profiled
by the micro-benchmarks. The results can be used to both
refine the information retrieved by the framework, with the
purpose of generating and executing other micro-benchmarks,
as well as, eventually, train MC models. Two types of MC
models are considered: a coarse-grained model based on
either constrained linear regression or a convex hull, and a
fine-grained model based on mathematical optimization. Two
models were selected to provide alternatives in exploring the
trade offs between analytical pessimism and safety.

FrATM2 is finally evaluated on a state-of-the-art embedded
multi-core platform (AMD/Xilinx Ultrascale+) equipped with
a DDR4 memory, demonstrating its effectiveness in training
the MC models after collecting gigabytes of raw experimental
data by testing tents of thousands of contention scenarios
Paper structure. The paper is organized as follows. Sec-
tion II reports background information. Section III discusses
the system model. Section IV presents a high-level overview
of FrATM2, while Section V describes the framework in-
ternals and workflow. Section VI presents our experimental
evaluation. Section VII discusses the related work. Finally,
Section VIII concludes the paper.

II. ESSENTIAL BACKGROUND

To make the paper self-consistent, this section briefly recalls
background concepts on Dynamic Random-Access Memory
(DRAM) memories and ARMv8-A barrier instructions.
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Fig. 1: DRAM and MC interconnection and structure

DRAMs. Figure 1 shows a high-level block diagram of a
DRAM and a corresponding Memory Controller (MC). The
DRAM subsystem is a collection of memory chips organized
in ranks, which are in turn organized into multiple banks. Each
bank is a matrix of a number of rows and columns, in which
each memory cell holds several bytes.

The access to the memory locations is orchestrated by
the MC, which receives memory requests from processing
elements and issues commands to the DRAM. The MC is
connected to the DRAM through two distinct buses: the
command and data buses. It is capable of handling memory
requests targeting different banks in parallel. Memory ad-
dresses, defined in the next section, uniquely identify memory
locations. The MC carries out the mapping between them.

Each bank is provided with a temporary buffer called row
buffer, which acts like a cache by holding the content of the
last-accessed row. Memory requests that access the same bank
can result in two different scenarios: row hit or row conflict. A
row hit occurs when subsequent memory requests directed to
the same bank target the same row loaded in the row buffer.
This results in a lower latency due to the caching in the row
buffer. Conversely, a row conflict occurs when subsequent
accesses to the same bank target different rows. This implies
that the content of the row buffer must be copied back to
memory before being replaced with the one of a different
row. In row hits, columns are accessed by issuing the CAS
(Column Access Strobe) command. In the other case (row
conflict), the access to a column follows the in-order issue of
PRE (PREcharge), RAS (Row Active Strobe), and CAS DRAM
commands. In more detail, the PRE command copies back to
the memory what is currently stored in the row buffer; the
RAS command loads a row from the memory into the row
buffer; while eventually the CAS command accesses a column
by means of read or write request within the row buffer.

To issue these commands, the MC must respect the timing
constraints imposed by the JEDEC [8] standard for DRAM
memories. These values are also stored in an EEPROM
memory chip, available within the DRAM memory, alongside
other information about the chip itself, such as the serial
number, the manufacturer code, or the revision code. The
Serial Presence Detect (SPD) is a standardized way to access
this information through the I2C protocol. This also serves for
DRAM automatic configuration.

ARMv8-A barriers. The instruction set of the ARMv8-A

processor architecture includes different barrier instructions
that enforce memory operation or instruction ordering before
the barrier completes. While a detailed description of the
ARMv8-A barriers cannot fit in this work, we briefly recall two
barrier instructions of our interests: the Data Synchronization
Barrier (dsb) and the Instruction Synchronization Barrier
(isb). The dsb ensures the completion of all the memory
operations before the barrier instruction completes. The isb
guarantees that all the instructions that follow the barrier are
fetched only once the barrier instruction has completed.

III. SYSTEM MODEL

The main symbols used in this work are summarized in
Table I. Throughout the rest of the paper, we consider a system
that comprises a set of NP processing cores (also referred to
as CPUs in the following) defined as C = {c0, c2, ..., cNP−1}.
All the cores share a DRAM memory managed by an MC.
A single-rank DRAM is considered for simplicity. The cores
can directly issue memory requests, through either loads or
stores instructions, directed to specific memory addresses. A
memory address A is composed of four different groups of
bits that respectively identify the bank, row, column, and
offset of a unique memory location. Please note that, due to
manufacturer-dependent memory hardware design, the physi-
cal address could include some bits that must always be set
to a specific value, i.e., 0 or 1. This happens in the context
of a memory chip with a non-contiguous address space. Thus,
these bits can be safely ignored and, consequently, they are not
considered in our definition of the address A. We assume that
the bits of each group are contiguous, i.e., the bits belonging
to the same group cannot be interleaved with bits of any other
group. This assumption is later validated in our experiments.

We denote by bg, rg, cg, and og the groups of bits that
identify the banks, rows, columns, and offsets, respectively.
The number of bits of each group is respectively defined as
Nbg, Nrg, Ncg, and Nog.

The DRAM memory comprises NB = 2Nbg banks defined
as B = {B0, . . . , BNB−1}. Each bank is a matrix of NR =
2Nrg rows defined as R = {R0, . . . , RNR−1} and NC = 2Ncg

columns. Each cell of the matrix contains NO = 2Nog bytes.

Memory controller model. In this paper, we rely on the
modeling assumptions for MC adopted in previous work [9],
[10], which are also briefly recalled here. They derive from
both academic research on MC and the experimental analysis
of industrial-grade designs. Given that the internal details
of commercial MC are not publicly available, relying on
modeling assumptions from sound previous work represents,
in our considered opinion, the most pragmatic choice to
formally reason about the MC behavior. The MC handles
read requests using a queue for each bank. An inter-bank
scheduler decides which request to forward to the DRAM
memory from the ones available in the per-bank queues. Each
request comprises a series of commands, i.e., PRE, RAS, and
CAS, described in Section II. A new request is scheduled
only once the previous one is completed, if any. The request
completes when all its commands have been issued and the
corresponding JEDEC timing constraints are met. Conversely,
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Fig. 2: Block diagram of the proposed framework.

write requests are separately enqueued and served in batches, a
technique known as write batching. This prioritizes reads over
writes to improve throughput while still avoiding starvation.

The MC behavior is defined by a set of rules classified
into three categories: (i) intra-queue arbitration, (ii) inter-queue
arbitration, and (iii) write handling. Intra-queue arbitration
rules order requests based on the hierarchical policy First-
Ready First-Come-First-Served (FR-FCFS). The requests in
each queue are arranged in FCFS fashion, but requests re-
sulting in row hits are prioritized over those resulting in row
conflicts. The latter is the FR rule, which applies ahead of
the FCFS rule for at most Nthr requests consecutively. Inter-
queue arbitration rules follow the Round-Robin scheduling
algorithm, serving only one request per bank at each turn.

Finally, write requests are queued in a dedicated write
buffer. Write handling rules dictate that, once the number
of enqueued requests reaches a threshold Wthr (Watermark
Threshold), the MC serves at least Nwb of them in a single
batch (more writes can be included in the batch if no read
request is waiting to be served).

For the sole purpose of modeling the MC, like in previous
work [9], [10], we assume that (i) Qwrite denotes the known
write buffer size, (ii) when the watermark threshold (Wthr)
is exceeded, there are always enough write requests (Nwb) to
form a batch (i.e., Wthr ≥ Nwb), (iii) the total number of writes
drop below the watermark threshold after issuing a batch (i.e.,
Qwrite−Nwb < Wthr), and (iv) the write buffer is large enough
that it can never be full.

IV. OVERVIEW OF FRATM2

This section presents a Framework to Automatically learn
the Timing Models of the Memory subsystems (FrATM2),
which works by means of automated profiling of a target
hardware platform. The resulting models can eventually be
used to enable response-time analysis to evaluate the timing
properties of, for instance, real-time tasks.

A top-down presentation approach is used, first introducing
the framework at a high level in this section and later detail
the framework internals in the next section. Figure 2 depicts a
block diagram of the framework, also illustrating the various

steps it employs (labeled with circled numbers). To train the
MC models, it is necessary to properly investigate the DRAM
subsystem, gather its settings, and discover its timing behavior
by exploring contention scenarios.

The first step 1 consists in executing the DRAM Info
Extractor module, which reads the DRAM’s SPD EEPROM
to gather its internal configuration parameters (e.g., NB , NR,
etc., introduced in Sec. III).

This information is required for step 2 , in which a Code
Generator is employed to produce a collection of micro-
benchmark applications to be executed on the target hardware
platform. The Code Generator leverages a set of templates
to generate the C code of the micro-benchmarks, which are
written using the Jinja2 [11] template engine, as well as other
static information that can be extracted from the datasheet
of the target DRAM chip(s). The templates encode a series
of configurable memory contention scenarios that, based on
previous work and experience, are known to exhibit worst-
case timing performance. As such, the templates are meant
to be written by experts that are confident with the adopted
MC models. To avoid unwanted interference and secure effec-
tive time measurements, the micro-benchmarks are executed
on bare-metal hardware. The framework provides a minimal
execution environment to run micro-benchmarks that includes
the power on and setup of (i) all processing cores, (ii) a serial
device, (iii) the Generic Interrupt Controller (GIC), and (iv) the
Memory Management Unit (MMU). The address translation
carried out by the MMU goes through a series of translation
tables. These tables are initialized to map every virtual address
to an identical physical address, i.e., a flat mapping. The
micro-benchmark are executed with the data caches disabled
to directly stimulate the memory controller.

In step 3 , a selection of the micro-benchmarks are executed
on the target platform producing a large amount of experimen-
tal raw measurements including memory access latencies and
the number and type of memory operations. Details on these
measurements are provided in the next section.

In step 4 , the experimental data is processed by the Filter
& Aggregator module to produce aggregated statistics. Steps
2 , 3 , and 4 may be executed multiple times. In fact, a first
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execution is often required to infer some configuration options
that cannot be retrieved from datasheets and the DRAM Info
Extractor module. Typically, they include the number of bits in
the memory address that resolve the banks, rows, and columns
(bg, rg, etc., introduced in Sec. III).

For this reason, step 5 is used to leverage the aggregated
statistics produced in the previous step to configure other
micro-benchmarks, which can then be activated after a first
execution of the preceding steps. This step is also in charge
of refining the configuration of the micro-benchmarks, e.g.,
whenever some expected contention scenario does not mani-
fest during their execution.

In step 6 , the aggregated statistics can eventually be used
to train MC models. In this work, two different MC models are
considered: a fine-grained model based on the findings of [9],
and a coarse-grained model based on constrained regression
and a convex hull (detailed in the next section). The former
is based on mathematical optimization and, although being
more accurate than the other model, it requires considerable
time for both being trained and used. The latter can instead be
trained in a matter of seconds and allows computing memory
interference bounds very quickly, hence being more suitable
for large-scale design exploration campaigns.

Finally, in step 7 , the MC models can be used to enable
response-time analysis, as they can be queried to provide
memory-contention-related interference bounds within a time
interval of interest.

V. WORKFLOW AND FRAMEWORK INTERNALS

This section presents the internals of FrATM2 by consid-
ering a reference workflow in which the addressing mapping
of the target MC is unknown. The considered workflow is
composed of three phases:

• Phase A: Identification of the address mapping of the
target MC (execution of steps 1 , 2 , 3 , and 4 ).

• Phase B: Extraction of memory-contention delays (exe-
cution of steps 5 , 2 , 3 , and 4 ).

• Phase C: Training of MC models and analysis (execution
of steps 6 and 7 ).

The three phases are individually detailed in the next
subsections.

A. Phase A

In step 1 the DRAM Info Extractor reads through the I2C
protocol the SPD DRAM EEPROM (see Section II), which
behaves as a subordinate device in the protocol. The memory
is accessed using an address that comprises a fixed part, which
includes the Device Type Identifier Code (DTIC) [12], and a
variable part, which includes the serial address selections. The
precise address is usually reported in the technical reference
manual of the target platform. For instance, this is the case for
the AMD/Xilinx Ultrascale+ SoC. The EEPROM contains the
values of parameters Nbg, Nrg, Ncg, and Nog in a standard
format, which serve as inputs for the Code Generator to
instantiate a first set of micro-benchmarks.
Identification of the address mapping. In this phase, a set
of micro-benchmarks is executed to identify the structure of

Memory address

Fig. 3: Example address mapping for a sequence of bit groups.

memory addresses in terms of groups of bits. We denote by π
an ordered sequence of the groups of bits bg, rg, cg, and og
(see Section III), e.g., the sequence ⟨bg, rg, cg, og⟩ specifies
that, starting from the most significant bit of the address, the
first Nbg bits address banks while the last Nog ones address
the offset. An example configuration of the address mapping
from a sequence of bit groups is illustrated in Figure 3. The
set Π contains all the possible permutations of such sequences.
Only one permutation π̂ ∈ Π has the groups in the position
that reflects the actual mapping implemented by the MC.

Since each group can have a different number of bits,
given a sequence π the actual position of a bit group in the
memory address changes depending on the preceding groups
in π. For example, whenever Nrg ̸= Ncg holds, the sequences
π1 = ⟨rg, bg, cg, og⟩ and π2 = ⟨cg, bg, rg, og⟩ correspond to
different positions of the bits of bg in the memory address,
although bg occupies the second position in both π1 and π2.
For this reason, in principle we are required to test all possible
permutations to discover the actual position of a bit group in
the memory address.

The micro-benchmarks presented next work by selecting a
core c0 ∈ C to suffer interference, while using the other cores
cz ∈ C \{c0} to generate interference. Note that this choice is
without loss of generality. In fact, since we consider systems
with homogeneous cores provided with fair access to the
memory subsystem, the results presented in the reminder of the
paper also apply whenever the interfered core is different from
c0. For each sequence in Π, c0 measures the memory access
latency while the interfering cores are either idle or generate
intensive memory interference. The results allow concluding
whether the tested sequence matches the address mapping
implemented by the MC based on hypothesis of the expected
timing behavior.

Before proceeding, it is important to note that the position
of cg and og is not particularly relevant to our purpose, as the
memory access latency does not change if two subsequent
memory requests target the same row (row-hit) but vary
the values of cg, og, or both. Therefore, their position is
not required for training the MC models. For this reason,
in the following we present two sets of micro-benchmarks
for determining the positions of bg and rg only, which are
instead required for configuring other micro-benchmarks to
be executed in Phase B.

To help the presentation of the algorithms presented next,
we define the function addr(π, Bi, Rj) that, given a permu-
tation π ∈ Π, a bank Bi ∈ B, and a row Rj ∈ R, returns a
memory address Aπ

i,j in which the bits in groups bg and rg are
set to the bank and row number of Bi and Rj , respectively,
while the other bits are set to zero. Furthermore, we define the
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function stride(π) that, given a permutation π ∈ Π, returns
a memory address sπ where all bits are set to zero except for
the least significant bit in rg.

1) Identifying bank and row group bits (bg and rg): A first
set of micro-benchmarks is presented to jointly determining
the positions of bg and rg bit groups in the memory address.
The set of permutations in Π identified by these micro-
benchmarks is later handled by other micro-benchmarks, pre-
sented in the next subsection, to either refine the selection or
double-check the position of the rg bit group.

Two fundamental principles are explored by the micro-
benchmarks presented here. First, as memory transactions
directed to the same bank are forced to be served sequentially,
while those directed to different banks can be served in paral-
lel, memory-contention delays are expected to be maximized
for transactions directed to the same bank issued by different
cores. Second, by changing row at each memory access, we
can aim at minimizing the number of row hits, which in turn
aims at both maximizing the delay introduced by contenting
requests (due to the issuing of the three commands PRE, RAS,
and CAS, see Sec. II) and canceling the effect of the First-
Ready rule in intra-bank scheduling employed by the MC.

Building on these principles, the Code Generator (step 2 )
produces two micro-benchmarks based on the pseudo-code
listed in Algorithms 1 and 2. The latter is meant to measure
the memory access latency from core c0 when accessing each
bank Bi ∈ B (line 12), both in isolation (term ∆alone

i at line 14)
and when the other cores access bank Bj ∈ B (term ∆interf

i,j

at line 19). All combinations of banks Bi and Bj are tested
(note the nested for loop at line 16). Being the banks small in
number, due to physical constraints of DRAM chips, and the
number of permutations of bit groups limited, the algorithm
does not incur scalability issues.

To explore the possible address mapping, the latency mea-
surements are collected for each candidate permutation π ∈ Π
(line 10), issuing a sufficiently-large number NQ of read
requests to secure the statistical validity of the results.

The LATENCY function (line 2) measures the time elapsed
for issuing NQ memory requests (line 9). Algorithm 1 reports
the pseudo-code of the micro-benchmark that generates contin-
uous memory interference (function MAKE INTERFERENCE)
by repeatedly issuing memory reads to addresses that, based on
the tested permutation π, are supposed to belong to different
rows. This is accomplished by summing the stride sπ value
multiple times modulo the maximum number of rows NR (ef-
ficiently implemented with a bit-wise AND operator at line 6).
Note that also the LATENCY function repeatedly accesses
different rows. This is done to minimize row hits, as introduced
at the beginning of the subsection. The rem start command
in Alg. 2 (line 18) denotes the activation of a function on the
other cores, keeping it running until a rem stop command
is executed. The latency results for each permutation π are
eventually stored (store keyword in the pseudo-code).

To find out which permutations π ∈ Π have the bg and rg
bits in the position that reflects the actual address mapping of
the target MC, after the execution of the micro-benchmarks
(step 3 ), the Filter and Aggregator (step 4 ) prunes out the
permutations that do not satisfy the following invariants.

Algorithm 1 Interference generator

1: ▷ Interfering cores, i.e., cz ∈ C \ {c0}, generate contin-
uous memory interference. ◁

2: function MAKE INTERFERENCE(A∗, sπ)
3: Aend ← A∗ + sπ × (NR − 1)
4: loop
5: issue a read request to address A∗

6: A∗ ← (A∗ + sπ) & Aend

Algorithm 2 Latency profiler (executed by c0)

1: inputs NQ

2: function LATENCY(A∗, NQ, s
π)

3: Aend ← A∗ + sπ ∗ (NR − 1)
4: start← get_time()
5: for counter = {1, . . . , NQ} do
6: issue a read request to address A∗

7: A∗ ← (A∗ + sπ) & Aend

8: dsb() ▷ See Section II
9: return get_time() − start

10: for all π ∈ Π do
11: sπ = stride(π)
12: for all Bi ∈ B do
13: Aπ

i,0 = addr(π, Bi, R0)
14: ∆alone

i ←LATENCY(Aπ
i,0, NQ, s

π)
15: store (π, ∆alone

i )
16: for all Bj ∈ B do
17: Aπ

j,0 = addr(π, Bj , R0)
18: rem start MAKE INTERFERENCE(Aπ

j,0, s
π)

19: ∆interf
i,j ← LATENCY(Aπ

i,0, NQ, s
π)

20: rem stop
21: store (π, ∆interf

i,j )

Invariant 1.

∀Bx ∈ B, ∆interf
x,x > max

Bi∈B,Bj∈B
Bi ̸=Bj

{
∆interf

i,j

}
. (1)

The invariant specifies that the latency when the interfered
core and the interfering cores access the same bank is larger
than the latency when the interfered and interfering cores
access different banks, for any pair of different banks. If a
permutation has the bg and rg bits in the right position, the
invariant needs to hold because interference is maximized
when transactions are directed to the same bank due to
serialization, and the difference with respect to the case in
which different banks are accessed is amplified because the
number of row hits is minimized.
Invariant 2.

∀Bi ∈ B,∀Bj ∈ B | Bi ̸= Bj , ∆interf
i,i ≃ ∆interf

j,j . (2)

The invariant specifies that the latency when the interfered
core and the interfering cores access the same bank is always
almost the same, irrespective of the targeted bank. It needs
to hold because the amount of intra-bank interference must
be almost the same for all banks, as they are expected to
be fairly managed by the MC (due to round-robin inter-bank
scheduling).
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Invariant 3.

∀Bi ∈ B,∀Bj ∈ B | Bi ̸= Bj ,

∀Bx ∈ B,∀Bk ∈ B | Bx ̸= Bk, (3)

∆interf
i,j ≃ ∆interf

x,k .

The invariant is analogous to Inviariant 2 but for the case
in which the interfered core and the interfering cores access
different banks. Again, as banks are expected to be fairly
managed by the MC, the amount of inter-bank interference
must be almost the same, irrespective of the targeted banks.
Invariant 4.

∀Bi ∈ B,∀Bj ∈ B,∀Bk ∈ B, ∆alone
i < ∆interf

k,j . (4)

The invariant specifies that the latency in accessing any bank
in isolation (i.e., without interference) is lower than all cases in
which both intra-bank (Bj = Bk) and inter-bank (Bj ̸= Bk)
interference is stimulated for any pair of banks.
Outcome. This process returns a subset of permutations
Π ⊂ Π that are filtered by the four invariants above. It allows
complementing the information retrieved by the DRAM Info
Extractor (step 5 ) to enable other micro-benchmarks. If any
two sequences in Π do not have all the bits of the bg and
rg groups in the same position of the memory address, then
it is not possible to conclude the identification of the address
mapping. In these cases, the micro-benchmark presented in
the next subsection serves the purpose of resolving the address
mapping by focusing on the rg bit group. Otherwise, the next
micro-benchmark can be executed to double-check the address
mapping retrieved with the above process.

2) Identifying row group bits (rg): The principle leveraged
here is that row hits lead to shorter memory access latency
than row conflicts. Therefore, to identify the position of rg
bits, for all the remaining permutations in Π and all pairs of
rows, the memory access latency is measured from core c0,
both in isolation and under contention generated by the other
cores.

To this end, the Code Generator (step 2 ) produces a micro-
benchmark based on the pseudo-code listed in Algorithm 3.
The MAKE INTERFERENCE and LATENCY functions are the
same defined in Algorithms 1 and 2, respectively. Note that the
stride parameter sπ is kept to zero (line 3) to avoid changing
row in the memory accesses performed by these two functions.
To improve the scalability of the algorithm, we introduce the
set R̂ to optionally enable the exploration of a subset of all
possible rows (defined later in Sec. VI) only. All pairs of
rows are explored with nested loops (lines 4 and 8), collecting
both the results in isolation (term δalone

i at line 6) and under
contention (term δinterf

i,j at line 11) accessing memory addresses
that are supposed to belong to different Ri and Rj of the same
bank B0 (any bank could have been chosen).

To find out which permutations π ∈ Π have the rg bits in
the right position, after the execution of the micro-benchmark
(step 3 ), the Filter and Aggregator (step 4 ) verifies the
following invariants.
Invariant 5.

∀Rx ∈ R, δinterf
x,x < min

Ri∈R,Rj∈R
Ri ̸=Rj

{
δinterf
i,j

}
. (5)

Algorithm 3 Latency profiler (executed by c0)

1: inputs NQ

2: for all π ∈ Π do
3: sπ = 0
4: for all Ri ∈ R ∩ R̂ do
5: Aπ

0,i = addr(π, B0, Ri)
6: δalone

i ← LATENCY(Aπ
0,i, NQ, s

π)
7: store (π, δalone

i )
8: for all Rj ∈ R ∩ R̂ do
9: Aπ

0,j = addr(π, B0, Rj)
10: rem start MAKE INTERFERENCE(Aπ

0,j , s
π)

11: δinterf
i,j ← LATENCY(Aπ

0,i, NQ, s
π)

12: rem stop
13: store (π, δinterf

i,j )

The invariant specifies that the latency when the interfered
core and the interfering cores access the same row of the
same bank is smaller than the latency when the interfered and
interfering cores access different rows. The invariant needs
to hold because accesses to a row already loaded in the row
buffer (row hit) is done by means of CAS commands only,
while accesses to a different row (row conflict) requires the
in-order execution of PRE, RAS, and CAS commands, hence
leading to a larger latency.
Invariant 6.

∀Ri ∈ R,∀Rj ∈ R | Ri ̸= Rj , δinterf
i,i ≃ δinterf

j,j . (6)

The invariant specifies that the latency when the interfered core
and the interfering cores access the same row of the same bank
is always almost the same, irrespective of the targeted row. It
needs to hold because the time to access to the row buffer
does not depend on the row loaded into it.
Invariant 7.

∀Ri ∈ R,∀Rj ∈ R | Ri ̸= Rj ,

∀Rx ∈ R,∀Rk ∈ R | Rx ̸= Rk, (7)

δinterf
i,j ≃ δinterf

x,k .

The invariant is analogous to Invariant 6, but considering
accesses to different rows. It needs to hold because row
conflicts require the in-order execution of PRE, RAS, and
CAS commands, which have the same timing constraints
independently of the targeted row.
Invariant 8.

∀Ri ∈ R,∀Rj ∈ R, δalone
i ≃ δinterf

j,j . (8)

The invariant specifies that the latency either when the inter-
fered core runs in isolation or when the interfered core and
the interfering cores access the same row is always almost
the same, irrespective of the targeted row. It needs to hold
because in both cases the memory access is performed by
means of a CAS command only (row hits) and the JEDEC
standard mandates a very low timing constraint between CAS
commands, in the order of a few nanoseconds. For instance,
on a typical DDR4, the constraint is about one ninth of the
cumulative constraint for row misses (Invariant 5). As such,
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interfering row hits are expected to introduce delays that are
not observable with the micro-benchmarks.
Outcome. Inviariants 5-8 allow identifying a refined subset of
permutations Π̂ ⊂ Π that is expected to include only sequences
with bits bg and rg in the same position. This information
can hence be used to refine the configuration of the Code
Generator (step 5 ) to enable other micro-benchmarks, which
are presented in the next subsection. In the unfortunate case in
which Π̂ still includes sequences with conflicting positions of
the bg and rg bits, the identification of the addressing mapping
fails and the whole process implemented by the framework is
aborted.

B. Phase B
This phase is concerned with the execution of micro-

benchmarks to compute the interference induced by memory
contention starting from the cumulative memory access la-
tency experienced by a core c0 ∈ C. Again, all other cores
cz ∈ C \ {c0} are used to generate memory interference.

Differently from Phase A, the micro-benchmarks presented
next take multiple measurements by varying the type of mem-
ory requests. The type can be either (i) a memory read (P1),
(ii) a memory write (P2), or (iii) a read or a write randomly
selected with uniform distribution (P3). The collection of all
types is denoted by P = {P1, P2, P3}.

To both explore heterogeneous contention scenarios and
investigate how memory interference varies as the number
of memory requests issued by the interfered core increases,
multiple experimental campaigns are performed by executing
the same micro-benchmark code multiple times with different
numbers of memory requests NQ. We denote by Q the ordered
multiset of the numbers of requests tested in each campaign,
where Q[i] is the value for the i-th campaign.

Measurements are obtained by issuing requests to a wide
range of memory addresses. To maximize coverage with the
tested contention scenario, requests are issued to pseudo-
randomized addresses, which are efficiently generated with the
Multiplicative Linear Congruential Generator (MLCG) [13]
algorithm. Function rand() in the pseudo-code presented
next implements the MLCG algorithm. The pseudo-random
generator generates a number starting from another number,
which is passed as a parameter to the rand() function. It
hence allows generating a chain of numbers where the last
generated number is used to generate the next one. Each
generated number is eventually used to generate the address
of a memory request. Therefore, in the i-th campaign, Q[i]
numbers are generated. The numbers of the chain gener-
ated for core cz during the i-th campaign are denoted by
ωz
i,1, ω

z
i,2, . . . , ω

z
i,j , . . ., where ωz

i,j+1 = rand(ωz
i,j),∀j ≥ 1.

The chain needs to start with a number ωz
i,0 provided by the

user that serves as a seed and allows ensuring reproducibility
of the results across different runs, i.e., ωz

i,1 = rand(ωz
i,0).

One seed per campaign is randomly generated offline by the
Code Generator (step 2 ) and provided in input to the micro-
benchmarks.

For each campaign with index i, the interfered core c0
issues Q[i] requests, hence the corresponding chain of pseudo-
random numbers ends with ω0

i,Q[i]. Conversely, the interfering

cores are required to generate continuous memory accesses
with an unbounded number of memory requests. Hence, the
corresponding chains are unbounded as well.

Function to_addr(ωz
i,j) is used to obtain a valid memory

address from a number in a chain by applying a bit mask. The
micro-benchmarks stimulate the memory subsystem by issuing
memory requests interleaved with some CPU computation,
to mimic the behavior of realistic tasks. To this end, we
use the function delay() to introduce a random number
of NOP instructions after each request. Finally, to extract the
bank number from a memory address, we define the function
bank_of(A) that returns the bits in bg of an address A.
This operation can be performed because the position of bg is
known from Phase A.
Algorithms. The Code Generator (step 2 ) produces two
micro-benchmarks based on the pseudo-code listed in Algo-
rithms 4 and 5. The latter is meant to measure the Cumulative
Memory Access Time (CMAT) from core c0 to each address
obtained from pseudo-random numbers generated from the
seed ω0

i,0 (line 16). Memory is accessed by issuing memory
requests of type Ph ∈ P (line 17), both in isolation (term talone

i,h

at line 18) and when the other cores issue memory requests of
type Pl ∈ P (term tinterf

i,h,l at line 23). All combinations of types
Ph and Pl are tested (note the nested loop at line 20). Being
P fixed, the scalability of this algorithm depends on |Q| only.

The CMAT function (line 5) measures the time elapsed
for issuing Ph memory requests to each address of a given
sequence (line 7). Algorithm 4 reports the pseudo-code of the
micro-benchmark that generates continuous memory interfer-
ence (function MAKE INTERFERENCE). At each iteration, it
calculates the new seed (line 5) used to determine the address
(line 6) to which it issues the Pl memory request (line 8).

For each pair of request types, the micro-benchmarks count
the number of memory reads and writes issued by each core
cz ∈ C to each bank Bk ∈ B, which are stored in variables
ηri,z,k and ηwi,z,k, respectively (Algorithm 4, line 9 and Algo-
rithm 5, line 12). The inc keyword in the pseudo-code denotes
the increment of a variable. As for the algorithms presented
in Phase A, the rem start and rem stop commands activate
and deactivate a function on the other cores, respectively.
The CMAT results are eventually stored in a tuple alongside
variables ηri,z,k and ηwi,z,k (store keyword in the pseudo-code).
Note that the latter two variables are recomputed for each
tested pair of request types (Ph, Pl) and are hence individually
correlated with every parameter tinterf

i,h,l (note indeed the RESET
function in Algorithm 5).

To secure the statistical validity of the measurements, all
experimental campaigns are repeated NT times. It is important
to note that, each of these NT times, will issue a predictable
sequence of memory accesses (both in terms of addresses
and types) determined by the seeds used by the pseudo-
random generator. This enables meaningful aggregation and
comparison of the results obtained across different repetitions.

For each campaign with index i, the Filter and Aggregator
(step 4 ) calculates the memory interference estimate Ii,h,l
over the NT samples for all the combinations of access types
Ph, Pl ∈ P . If talone

i,h [v] and tinterf
i,h,l [v] are the CMAT values

in isolation and with interference, respectively, measured at
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Algorithm 4 Interference generator

1: ▷ Interfering cores, i.e., cz ∈ C \ {c0}, generate contin-
uous memory interference. ◁

2: inputs ωz
i,0,∀i, z > 0

3: function MAKE INTERFERENCE(i, Pl)
4: for j = 1, . . . do ▷ infinite loop
5: ωz

i,j = rand(ωz
i,j−1)

6: A = to_addr(ωz
i,j)

7: k = bank_of(A)
8: issue a Pl memory request to address A
9: inc ηri,z,k or ηwi,z,k according to Pl

Algorithm 5 CMAT profiler (executed by c0)

1: inputs Q, ωz
i,0,∀i, z

2: function RESET(i)
3: for all cz ∈ C, Bk ∈ B do
4: ηri,z,k, η

w
i,z,k ← 0, 0

5: function CMAT(ω0
i,0, NQ, Ph)

6: start← get_time()
7: for all j = 1, 2, . . . , NQ do
8: ω0

i,j = rand(ω0
i,j−1)

9: A = to_addr(ω0
i,j)

10: k = bank_of(A)
11: issue a Ph memory request to address A
12: inc ηri,0,k or ηwi,0,k according to Ph

13: delay()
14: dsb()
15: return get_time() − start

16: for all i = 1, . . . , |Q| do ▷ For each campaign
17: for all Ph ∈ P do
18: talone

i,h ← CMAT(ω0
i,0 , Q[i], Ph)

19: store (ω0
i,0, t

alone
i,h )

20: for all Pl ∈ P do
21: RESET(i)
22: rem start MAKE INTERFERENCE(i, Pl)
23: tinterf

i,h,l ← CMAT(ω0
i,0 , Q[i], Ph)

24: rem stop

25: store

tinterf
i,h,l ,

⋃
cz∈C
Bk∈B

{ηri,z,k, ηwi,z,k}



the v-th repetition of the execution of the campaigns, the
interference estimate is computed as

Ii,h,l = max
v=1,...,NT

{
tinterf
i,h,l [v]

}
− max

v=1,...,NT

{
talone
i,h [v]

}
. (9)

The rational behind the above equation is to estimate inter-
ference, for each campaign (subscript i) and combination of
access types (subscripts h and l), as the difference between the
longest-observed CMAT when the interfering cores are active
and the longest-observed CMAT in isolation.

Outcome. This phase returns a substantial amount of data
composed of (i) all the interference estimates Ii,h,l computed
by Eq. (9) and (ii) for each Ii,h,l, all numbers of memory
accesses ηri,z,k and ηwi,z,k stored by Alg. 5 (line 25) in the same

tuple of the parameter tinterf
i,h,l [v] that is maximal in Eq. (9). The

resulting dataset is therefore consisting of a series of tuples of
the form: Ii,h,l ⇒

⋃
cz∈C,Bk∈B

{ηri,z,k, ηwi,z,k}

 . (10)

This dataset is propagated to Phase C to train two MC models
(step 6 ).

C. Phase C

Next, we distinguish between the two MC models we
considered. Once trained, these models can eventually be used
to enable response-time analysis (step 7 ), as for instance
suggested by previous work [9], [10].

1) Training the coarse-grained model: The first model aims
at quantifying interference based on (i) the number of reads
and writes issued by the interfered core; and (ii) the number
of reads and writes issued by the other interfering cores. The
vector η is introduced to contain these numbers, in the same
order as written above, and denote the input parameters of
the interference function I(η) to be learned from the dataset
exported by Phase B.

To train our MC model it is convenient to further aggregate
the data coming from the previous phase. First, for each
campaign with index i, we aggregate the number of reads and
writes issued to the various banks by the interfered core c0:

ηri,0 =
∑
Bk∈B

ηri,1,k, ηwi,0 =
∑
Bk∈B

ηwi,1,k. (11)

Second, we do the same for all the interfering cores:

ηri,∗ =
∑

cz∈C\{c0}

∑
Bk∈B

ηri,z,k, ηwi,∗ =
∑

cz∈C\{c0}

∑
Bk∈B

ηwi,z,k.

(12)

Given the relationship in Equation (10) that binds Ii,h,l
to parameters ηri,z,k, η

w
i,z,k, it is also possible to bind each

value Ii,h,l to those in Equations (11) and (12). Therefore,
a vector ηi,h,l = [ηri,0, η

w
i,0, η

r
i,∗, η

w
i,∗] can also be associated

with each interference estimate Ii,h,l. This allows defining our
final dataset for training as a list of tuples of the form

(Ii,h,l ⇒ ηi,h,l). (13)

We are interested in learning an interference function I(η)
that satisfies I(ηi,h,l) ≥ Ii,h,l,∀i, h, l. To do so, we present
two methods: one based on constrained regression and another
one based on a convex hull.

Constrained regression. This method aims at learning a linear
function representing a hyperplane defined by the following
equation:

I(η) = W · η⊺ + b, (14)

where W ∈ R4+ and b ∈ R+ represent the slope matrix
and the intercept of the hyperplane1. These terms can assume
only positive values because the interference grows as the

1We denote with R+ the set of the positive real numbers, zero included.
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TABLE I: Table of main symbols.

Sym. Description Sym. Description
cz z-th physical core bg, rg Groups of bits that identify the banks and rows, respectively
Bk k-th memory bank C, B Set of cores and banks, respectively
Rj j-th memory row ηri,z,k , ηwi,z,k Reads and writes of cz on Bk during i-th campaign
A Memory address ηri,0, ηri,∗ Reads of interfered and interfering cores during i-th campaign
NP Number of cores Q Multiset of the numbers of requests per campaign
NQ Number of memory requests Q[i] Num. of mem. reqs. of i-th campaign
NT Micro-benchmark repetitions talone

i,h CMAT of i-th campaign in isolation issuing Ph mem. reqs.
P Set of memory request types tinterf

i,h,l CMAT of i-th campaign issuing Ph mem. reqs. with interfering Pl mem. reqs.
ωz
i,0 Seed of cz for i-th campaign ωz

i,j j-th random number of cz during the i-th campaign
Ph h-th memory request type ηi,h,l Numbers of reads and writes of the interfered and interfering cores associated to Ii,h,l
I(η) Learned interference function Ii,h,l Interference estimate of i-th campaign with Ph and Pl mem. reqs. issued by the interfered

and interfering cores, respectively

components of η increase. The constrained regression is calcu-
lated to minimize the square distance between the interference
estimates measured in Phase B and their projection to the
hyperplane defined by Equation (14). Therefore, the training
of both W and b consists in minimizing the following cost:

|Q|∑
i=1

∑
Ph∈P

∑
Pl∈P

[
I(ηi,h,l)− Ii,h,l

]2
. (15)

Furthermore, the interference function I(η) must be con-
strained to be always larger than all the experimental measure-
ments, hence the following constraint needs to be satisfied:

∀i = 1, . . . , |Q|,∀Ph ∈ P,∀Pl ∈ P, I(ηi,h,l) ≥ Ii,h,l. (16)

Convex hull. While being simple to understand and easy to
train, the model based on constrained regression may be too
pessimistic. For this reason, we present a second method based
on a convex hull to obtain a piece-wise multidimensional func-
tion that provides a tighter bound of the memory interference.
The convex hull that contains all the interference estimates in
the training dataset (Eq. (13)) can be defined by the minimal
set of facets H = {H1, H2, . . .} that guarantees

∀i = 1, . . . , |Q|,∀Ph ∈ P,∀Pl ∈ P,
∀Hx ∈ H, | Wx · [ηi,h,l, Ii,h,l]

⊺ + bx ≤ 0, (17)

where Wx ∈ R5 and bx ∈ R. The Quickhull [14] algorithm can
be used to compute the parameters Wx and bx of the facets,
hence training the convex hull from experimental data. The
interference function I(η) can then be obtained by computing
the projection of η on the hyperplanes of the upper, non-
descending facets of the convex hull.

2) Training the fine-grained model: As an alternative ap-
proach, we explored the possibility to train the fine-grained
MC model based on mathematical optimization presented
in [9] (briefly summarized in Sec. III) with the experimental
data produced by the proposed framework. This MC model
is designed to theoretically bound the maximum memory
interference that can be suffered by the interfered core.

Given the theoretical approach at the core of the MC model
presented in [9], it is important to note that the latter copes
with rare worst-case scenarios that are extremely hard (if not
impossible) to observe experimentally. Furthermore, still to
provide conservative and safe results, it limitedly accounts for
pipelining in serving memory requests and transforming data.

Finally, the model from [9] is tied to a scheduling hierarchy
that, while in principle expected to be reasonably similar to
the one of the profiled MC, may differ by a string of details
that are not publicly documented.

As such, the objective of this training is to find the
parameters of this fine-grained MC model so that it can
produce results capable of bounding the experimental data,
while not pretending to learn the actual internal parameters
of the profiled MC. Consequently, the bounds generated by
the fine-grained model are inherently more pessimistic, albeit
safer, than those generated by the coarse-grained model.

The optimization problem on which this model is based
takes as input the number of read requests emitted by all
the cores cz ∈ C to each bank Bk ∈ B for all the address
sequences (i.e., parameters ηri,z,k from Eq. (10)), as well as the
number of write requests ηwi,z emitted by every core cz ∈ C,
independently from the target bank, which is calculated using
the following equation: ηwi,z =

∑
Bk∈B ηwi,z,k. The constraints

of the optimization problem characterize the possible inter-
ference scenarios, in accordance with the arbitration rules of
the memory controller model introduced in Section 3. As a
result, the output of the optimization is the worst-case memory
interference that can be suffered in the depicted scenario.

As introduced in Sec. III, the MC model derived from [9]
depends on four architectural parameters (i.e., Nthr, Wthr, Nwb,
and Qwrite). Since these parameters are not known a priori,
the goal of the training phase is to find a set of values so that
the implied worst-case interference correctly upper bounds the
experimental data.

For this reason, we developed an iterative algorithm to train
such values. Before starting to describe it, we recall that, for
consistency, we need Wthr ≥ Nwb. Also, remember that the
lower the value of the parameters, the lower is the result of
the optimization.

Training algorithm. Initially, we set Nthr = Wthr = Nwb =
Qwrite = 1. Then, we start iterating over the tuples obtained
from Phase B (Eq. (10)), and, using the current values of the
parameters, we query the MC model to find the maximum
theoretical memory interference with the current configuration.
If the theoretical value is larger than the measured value,
then the bound is respected, and we move to the next tuple.
Otherwise, it means that the interference bound imposed by
the model is incorrect with the current set of parameters.
Therefore, we increase the values of one of them by 1.
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The exact parameter to be incremented is chosen with a
round-robin approach (i.e., every time a different parameter
is increased). We then repeat the test of the tuple with the
new configuration and we proceed as already described.

Once all the experimental data has been processed, we are
sure that the MC model, with the set of parameters that was
obtained, can correctly produce memory-interference values
that bound the entire set of observations.

VI. EXPERIMENTAL EVALUATION

This section reports the results of the three phases presented
in the previous section. The micro-benchmarks were executed
on an AMD/Xilinx Ultrascale+ ZCU102 [15], which features
a quad-core Arm® Cortex®-A53 processor and 4 GB DRAM
Micron MTA4ATF51264HZ [16]. The experimental evaluation
requires executing micro-benchmarks for days, collecting gi-
gabytes of data. The highlights are reported in Table II. The
execution time of Phase B grows with the increase of |Q|.

TABLE II: Highlights of the experimental evaluation.

Description Exec. time Raw data Aggreg. data
Phase A about 5 minutes 150 KB -
Phase B about 3 days 2.5 GB -
Phase C-regression about 2 seconds - 53 MB
Phase C-qhull about 2 seconds - 53 MB
Phase C-fine-grain about 70 minutes - 53 MB

Number of campaigns |Q| = 19000

The DRAM Info Extractor was implemented in C. The
Code Generator was implemented with Jinja2 and produces
the micro-benchmarks composed of mostly C code, with the
exception of the code segments to issue memory requests
that are in assembly. Both the DRAM Info Extractor and
the micro-benchmarks were compiled using the aarch64-gcc
compiler. The Filter and Aggregator was implemented in
Python leveraging the NumPy and SciPy libraries. The training
of MC models was implemented in Python as well. The
models were trained on a Dell OptiPlex 7070 that features
a Intel® CoreTM i7-9700 and 32 GB RAM.

Next, we present the results of Phase A. Then, we jointly
present the results of Phases B and C.

A. Results of Phase A

By means of 2D plots, we report the results produced by
Algorithms 2 and 3 to discover the address mapping (position
of bits bg and rg). Figure 4 depicts the results for which
Invariants 1-4 hold. The x-axis and y-axis report the targeted
banks and the memory access latencies in us, respectively,
over NQ = 1000 memory requests measured by c0. One line
per bank accessed by the interfering cores cz ∈ C \ {c0} is
reported. The line labeled with “ALONE” depicts the latency
when the interfered core runs in isolation (Alg. 2 line 14 and
Alg. 3 line 6). Note that each plot refers to a permutation where
the bits of bg, rg, cg, and og are denoted with contiguous
sequence of ‘b’, ‘r’, ‘c’, and ‘o’, respectively, reported above
the plots. The zeros within the permutation are due to a static
memory segmentation employed by the target hardware (see
Sec. III). As it can be observed from the plots, latency peaks

were recorded when the bank accessed by the interfering and
interfered cores is the same.

Figure 5 depicts the results for which Invariants 5-8 hold.
The DRAM Info Extractor retrieved 16 bits in rg for the target
platform, making it hard to plot all combinations. For this
reason and to enhance the scalability of Alg. 3, we focused
on varying three consecutive bits at a time in rg (still denoted
by ‘r’ in the labels above the plots), keeping the other bits in
rg to zero (indicated with a bold ‘0’). This was obtained by
generating a set R̂ for Alg. 3 by (i) taking a sliding window of
three bits in rg, (ii) generating all possible combinations for
such bits, leaving the others set to zero, and (iii) producing all
row numbers by moving the sliding window in all positions
in rg. This ends up in showing the results when the interfered
and interfering cores access a subset of the available rows.
The same exact trends were observed for all other rows not
reported in the plots. The y-axis of Fig. 5 reports the measured
access latency in us over NQ = 1000 memory requests. The
x-axis and the lines report the values taken by the subset of the
rg’s bits in the addresses used by the interfered and interfering
cores. As it can be observed from the plots, latency down-
peaks were recorded when the row accessed by the interfering
and interfered cores are the same (row hits).

Overall, we can conclude the address mapping of the target
MC needs to start with the rg bit group followed by the bg
one. This information is sufficient to proceed to Phase B.

B. Results of Phases B and C
Since the learned interference functions are multidimen-

sional, and hence hard to graphically represent, in this section
we restrict to the case of read requests only to produce
3D plots. The x-axis of the plots reports ηri,0, the y-axis
reports ηri,∗, and the z-axis either the experimental interference
estimates collected in Phase B or the interference bounds
produced by the MC models after training.

Figure 6 depicts the experimental interference esti-
mates (grey point clouds, computed by Eq. (9)) along-
side the bounds of the coarse-grained model. The num-
ber of read requests of each campaign varies in the range
{10, 30, 50, 100, 200, 300, 500, 750, 1000} (x-axis values). The
micro-benchmark of Alg. 5 was repeated NT = 100 times.
The red plane represents the interference function obtained
with constrained regression, while the blue surface represents
one obtained with the convex hull. As expected, the red surface
is linear while the blue one expresses a tighter bound. We
trained the coarse-grained model using the 85% of the aggre-
gated data, while the remaining 15% was used for validation.
The latter shows an accuracy of 99, 99% and 99, 97% for
constrained regression and convex hull, respectively. Figure 7
reports the same experimental data alongside the theoretical
interference bounds produced by the fine-grained MC model,
for the same numbers of read requests recorded in Phase B,
achieving 100% accuracy. Comparing this figure with Fig. 6,
we can note how the fine-grained MC model is more pes-
simistic than the coarse-grained one, since it accounts for rare
worst-case scenarios that are hard to observe experimentally.
As reported in Tab. II, training the coarse-grained model
requires much less time than the fine-grained one.
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Fig. 4: Results of Phase A: sequences with bg and rg in the same position for which Invariants 1-4 hold.
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Fig. 5: Results of Phase A for which Invariants 5-8 hold. They allow verifying the address mapping tested in Fig. 4.
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Fig. 6: Experimental results from Phase B alongside the interference bounds
of the coarse-grained model.
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Fig. 7: Experimental results from Phase B alongside the interference bounds
of the fine-grained model.

VII. RELATED WORK

Several works studied timing bounds due to memory con-
tention both following experimental and theoretical approaches
based on the MC internals. In their work, Hassan et al. [17]
presented a latency-based analysis methodology to deduce
fundamental properties of the MC, including address mapping,
page policy, and command arbitration schemes. Unlike our
approach, which involves profiling a real-world platform, their
analysis was conducted via simulation only.

Other research efforts have concentrated on providing an-
alytical bounds to memory access times in the presence of
contention. Casini et al. [10] proposed an analysis building
upon rule-based MC internals to holistically determine a bound
of memory access time for parallel real-time tasks. Similarly,
Kim et al. [18] proposed an analysis with the ultimate goal
of bounding memory interference through DRAM bank par-
titioning. Hassan and Pellizzoni [19], [20] and Pellizzoni et
al. [21] proposed analysis methods focused on bounding the
per-request delay.

Other works focused on tackling memory interference by
limiting the memory bandwidth of each core in a multi-
core platform. In this context, it is worth mentioning Mem-
Guard [2], [3], which statically regulates the memory band-

width from each core, and BWLOCK [22], that whenever a
task obtains the bandwidth privilege, it enforces regulation on
non-critical cores through the observation of their bandwidth
consumption. Other works [23], [24] leverage the information
of the memory utilization obtained through the hardware per-
formance counters to dynamically regulate the memory band-
width of each core. Conversely to these hardware-software
mixed approaches, Zini et al. [9] explored the ARM’s Memory
System Resource Partitioning and Monitoring (MPAM) spec-
ification [25]. They delved into MPAM’s hardware memory
bandwidth regulation mechanisms and derived a memory
contention analysis for each of them.

Retrieving the memory address mapping also proved to
be valuable in the domain of memory allocators. In this
context, Yun et al. [26] proposed PALLOC, an allocator to
map virtual memory pages of different processes to different
memory banks, thereby minimizing bank sharing and ensuring
isolation. Other works focus on managing memory contention.
Sohal et al. [27] proposed a framework to predict the timing
behavior of applications in multi-core systems. They employed
a profile-driven approach to provide accurate predictions.
Borgioli et al. [28] presented a framework, designed for a
virtualized environment, to control the memory contention



12

delays due to the access of shared I/O devices.
To the best of our knowledge, there have been no prior

attempts at establishing a way to automatically learn MC
timing models from experimental data.

VIII. CONCLUSION

This work presented FrATM2, a framework to automatically
learn timing models for memory contention for embedded
multi-core platforms. We described the framework internals
and a 3-phase workflow that allow discovering the address
mapping (positions of bits in memory addresses that index
banks and rows), experimentally measure memory access
latency in different contention scenarios, and eventually train
two MC models: a coarse-grained model based on the con-
strained linear regression or a convex hull, and a fine-grained
model based on mathematical optimization. Our models aim to
provide analytic interference bounds based on the learned ex-
perimental data. The fine-grained model achieved an accuracy
of 100%, while the coarse-grained one has proven an accuracy
not less than 99, 97% with a training time much faster than
the fine-grained model, i.e., about 2s against the 70m required
for the latter.

We evaluated our workflow on an AMD/Xilinx Ultrascale+
SoC (zcu102 board). We demonstrated its effectiveness by
successfully discovering the address mapping of the MC and
training the two models. Future work should investigate the
applicability of our approach to a broader set of platforms,
better investigate on other modeling methods (also based on
machine learning), and extend the framework to consider
memory contention generated by I/O peripherals [29].
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