
Constant Bandwidth Servers with Constrained Deadlines∗

Daniel Casini

Scuola Superiore S. Anna

Pisa, Italy

daniel.casini@santannapisa.it

Luca Abeni

Scuola Superiore S. Anna

Pisa, Italy

luca.abeni@santannapisa.it

Alessandro Biondi

Scuola Superiore S. Anna

Pisa, Italy

alessandro.biondi@santannapisa.it

Tommaso Cucinotta

Scuola Superiore S. Anna

Pisa, Italy

tommaso.cucinotta@santannapisa.it

Giorgio Buttazzo

Scuola Superiore S. Anna

Pisa, Italy

giorgio.buttazzo@santannapisa.it

ABSTRACT
The Hard Constant Bandwidth Server (H-CBS) is a reservation-based
scheduling algorithm often used to mix hard and soft real-time tasks

on the same system. A number of variants of the H-CBS algorithm

have been proposed in the last years, but all of them have been

conceived for implicit server deadlines (i.e., equal to the server

period). However, recent promising results on semi-partitioned

scheduling together with the demand for new functionality claimed

by the Linux community, urge the need for a reservation algorithm

that is able to work with constrained deadlines. This paper presents

three novel H-CBS algorithms that support constrained deadlines.

The three algorithms are formally analyzed, and their performance

are compared through an extensive set of simulations.

CCS CONCEPTS
•Computer systems organization→Real-time operating sys-
tems; Embedded software;

KEYWORDS
Real-time scheduling, resource reservations, temporal isolation

ACM Reference format:
Daniel Casini, LucaAbeni, Alessandro Biondi, TommasoCucinotta, andGior-

gio Buttazzo. 2017. Constant Bandwidth Servers with Constrained Deadlines.

In Proceedings of International Conference on Real-Time Networks and Systems,
Grenoble, France, October 2017 (RTNS’17), 10 pages.
https://doi.org/10.475/123_4

1 INTRODUCTION
Several real-time systems are characterized by multiple computa-

tional activities (tasks) that require to be temporally isolated among

themselves, meaning that the temporal behavior of a task is not

affected by the misbehavior of some other task, for instance due

to execution overruns. This is the case of open environments [24],

where independently developed software components need to be

∗
This work has been partially supported by the RETINA Eurostars Project E10171.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

RTNS’17, October 2017, Grenoble, France
© 2017 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06. . . $15.00

https://doi.org/10.475/123_4

executed in isolation. An effective approach for achieving temporal

isolation is the resource reservation mechanism [21], according to

which each task is assigned a fraction of the total processor capacity

(called reservation bandwidth). In this way, each task running in a

reservation with bandwidth α ≤ 1 behaves (from a temporal point

of view) as if it were executing alone on a virtual processor with

speed α times the one of the physical processor, independently of

the behavior of the tasks running in other reservations.

Resource reservation is especially useful to execute hard real-

time tasks together with soft real-time tasks characterized by exe-

cution times subject to high variations (and for which it is difficult

to find an upper bound) [9]. Resource reservation is also adopted to

implement hierarchical scheduling [6, 24], where each reservation

can handle one or more tasks and schedule them according to a

local scheduling policy.

A reservation is typically implemented through a reservation
server, which is a kernel mechanism that manages the reserva-

tion bandwidth by allocating a time budget Q every period P for

the execution of the served tasks. Several reservation servers have

been proposed in the real-time literature using different policies

for managing the budget, both under fixed-priority schedulers and

the Earliest Deadline First (EDF) algorithm [11]. Existing deadline-

based servers have not been designed to manage constrained dead-

lines. However, recent results on semi-partitioned scheduling [8, 13]

highlighted the need for ad-hoc solutions considering reservation

servers having deadlines lower than their reservation periods. In

fact, in these works, whenever a reservation cannot be allocated in

any processor, it is split into multiple chunks using the C=D split-

ting scheme [10]. According to this scheme the resulting chunks

have always a constrained deadline, thus implicitly requiring reser-

vation servers with a relative deadline shorter than their period. The

need for a theoretically sound framework for deadline-constrained

reservations has also recently come out
1
in the context of on-going

developments of the SCHED_DEADLINE scheduling class of the Linux
kernel [19].

Contributions. This paper proposes three novel extensions to
the popular Hard Constant Bandwidth Server (H-CBS) [7], in
order to cope with constrained deadlines: the first one allows for

ensuring the same worst-case guarantees as a sporadic real-time

task that is configured with the same parameters of the server; the

second and third ones build upon a sufficient schedulability test

to improve the server performance in terms of average-case and

1
https://lkml.org/lkml/2017/2/10/611

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4
https://lkml.org/lkml/2017/2/10/611

RTNS’17, October 2017, Grenoble, France D. Casini et al.

probabilistic metrics, thus being more suitable for soft real-time

systems. The presented approaches are compared both in terms of

analytical properties and empirical performance by simulation.

Paper Structure. The paper is organized as follows. Section 2

introduces the system model, the adopted notation, and reviews

the needed background. Section 3 presents a general formulation

to describe different variants of the H-CBS algorithm. Section 4

highlights shortcomings of existing state-of-the-art reservation

algorithms when dealing with constrained deadlines. Section 5

presents the novel reservation algorithms extending the H-CBS to

work with constrained deadlines. Section 6 presents some simula-

tion results for validating the proposed approach. Finally, Section 7

draws the conclusions and illustrates possible future work on the

topic.

2 SYSTEM MODEL AND BACKGROUND
This paper considers an arbitrary number of virtual processors

running into a partitioned multiprocessor system. Each virtual

processor is implemented by a reservation server ri = (Qi ,Di , Pi)
characterized by a budgetQi , a relative deadlineDi , and a period Pi .

Each reservation server has a bandwidth αi =
Qi
Pi and a constrained

deadline less than or equal to its period (Di ≤ Pi). If Rk is the set

of reservations running on the k-th physical processor, its total

utilization isUk =
∑
ri ∈Rk αi .

The workload running into a reservation ri consists of a set Γi
of sporadic tasks scheduled according to a local scheduling policy,

where each task τ ij is characterized by a worst-case execution time

Cij , a relative deadlineD
i
j , and a periodT

i
j . For the sake of simplicity,

the superscript in task parameters denoting the reservation will

be omitted when referring to a generic reservation or it is clear

from the context. The server index is also removed whenever a

single reservation server is considered. Reservation servers are

assumed to be scheduled according to preemptive EDF and tasks

are assumed to exchange data through asynchronous (i.e., non

blocking) communication mechanisms.

In this paper, the proposed formulations for handling servers

with constrained deadline are based on the H-CBS algorithm.

2.1 Background
A reservation server, although guaranteeing a desired bandwidth

αi , may introduce variable execution delays on the served tasks due

to the fact that, once the budget is exhausted, the server’s tasks will

not be scheduled until the next replenishment time. The worst-case
service delay ∆i depends on the server parameters and the used

budget management policy. Having a bounded worst-case service

delay is a fundamental property for guaranteeing the schedulability

of the workload executing inside the server [22]. In this work,

a server is said to implement a hard reservation if it is able to

guarantee both a bandwidth αi and a worst-case (bounded) service

delay ∆i .
2

2.1.1 Server Schedulability. The schedulability of a constrained-

deadline reservation server can be verified through the Processor

Demand Criterion (PDC) [3]. The PDC builds on the concept of

2
Note that this definition differs to the one proposed by Rajkumar et al. [23].

τ1
t

10 20

τ2
t

10 13 20

τ3
t

13 20.5 22

τ4
t

20 24

τ1 exits

τ4 arrives E
deadline miss

Figure 1: Transient Example

t

sbfi(t)

0 ∆i

Qi

2Qi

t

dbf i(t)

0 Di

Ci

t

dbf e
i (t,∆i, t

E
i)

0 αi αi +DitEi

Ci

Ci + ci

(b)

t

dbf
e

i (t,∆i, t
E
i)

0 Di αi αi +Di

Ci

2Ci

tEi
(d)

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di 3Ti +Di

Ci

2Ci

3Ci

4Ci

1

Figure 1: Approximate demand bound function of a sporadic
task

demand bound function (dbf), which in this case represents the

worst-case computational demand of a reservation in any interval

[0, t]. When the demand of a server does not exceed the one of a

sporadic task with the same parameters, its dbf becomes:

db fi (t) =

⌊
t + Pi − Di

Pi

⌋
Qi , (1)

The processor demand criterion is recalled in Theorem 2.1.

Theorem 2.1 (Processor Demand Criterion (From [3])). A
set R of constrained-deadline reservations, whose demand does not
exceed the one of a sporadic task with the same parameters, is EDF-
schedulable iff

∀t ∈ D,
∑
τi ∈R

db fi (t) ≤ t

withD =
⋃
ri ∈R {t = Di + f Ti : t ≤ L∗∧ f ∈ N≥0}, where L∗ is the

maximum analysis interval (see [3, 25] for more details about L∗)).

The PDC has a pseudo-polynomial computational complexity if

U < 1 (exponential if U = 1). Sufficient polynomial-time schedu-

lability tests for constrained-deadline reservations can be derived

by exploiting approximate demand bound functions as defined by

Fisher et al. [18]. Such approximate demand bound functions with

a single discontinuity (see Figure 1) are defined as follows:

db f i (t) =

{
Qi + αi (t − Di) if t ≥ Di ,

0 otherwise.

(2)

A sufficient test exploiting the definition of db f i (t) is reported
below.

Theorem 2.2. A reservation setRk of periodic constrained-deadline
reservations withU ≤ 1 is EDF-schedulable if

∀ri ∈ Rk , α
∗
i +

∑
r j ∈R:j,i∧D j ≤Di

α j ≤ 1 (3)

with α∗i =
Q∗
i

Di
, and

Q∗
i = Qi +

∑
r j ∈Rk :j,i∧D j ≤Di

α j (Pj − D j)

Proof. From Theorem 2.1, if ∀t ≥ 0

∑
ri ∈Rk db fi (t) ≤ t holds,

then the system is schedulable. By definition, db f i (t) ≥ db fi (t).

Hence, if ∀t ≥ 0

∑
τi ∈Rk db f i (t) ≤ t holds, then the system is

schedulable. The function db f i (t) is characterized by a disconti-

nuity at t = Di and by a linear part with slope αi for t > Di .

Then, the function db f (t) =
∑
ri ∈Rk db f i (t) is constituted by a

sequence of n = |R | discontinuities. Let δ1, . . . ,δn be the ordered

sequence of discontinuities. Since in any interval [δi ,δi+1] the func-

tion db f (t) is either constant or linear (with a slope less or equal

Constant Bandwidth Servers with Constrained Deadlines RTNS’17, October 2017, Grenoble, France

τ1
t

10 20

τ2
t

10 13 20

τ3
t

13 20.5 22

τ4
t

20 24

τ1 exits

τ4 arrives E
deadline miss

Figure 1: Transient Example

t

sbfi(t)

0 ∆i

Qi

2Qi

t

dbf i(t)

0 Di Ti +Di

Ci

2Ci

(c)

t

dbf e
i (t,∆i, t

E
i)

0 αi αi +DitEi

Ci

Ci + ci

(b)

t

dbf
e

i (t,∆i, t
E
i)

0 Di αi αi +Di

Ci

2Ci

tEi
(d)

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di 3Ti +Di

Ci

2Ci

3Ci

4Ci

1

Figure 2: Supply bound function of a generic periodic reser-
vation server

thanU , with U ≤ 1 by assumption) in both cases it is sufficient to

check the condition db f (δi) ≤ δi . Hence, the following test can be

considered:

∀ri ∈ Rk ,
∑

r j ∈Rk

db f j (Di) ≤ Di .

Then, substituting the first branch of Equation 2 the test becomes:

∀ri ∈ Rk ,
∑

r j ∈Rk :D j ≤Di

Q j + (Di − D j)
Q j

Pj
≤ Di .

Finally, applying some algebraic transformations the condition

can be rewritten as:

∀ri ∈ Rk , α
∗
i +

∑
r j ∈Rk :j,i∧D j ≤Di

α j ≤ 1

The theorem follows. �

2.1.2 Local schedulability. Guaranteeing the schedulability of

the workload running inside a server requires the definition of the

supply bound function (sbf). The sbf (shown in Figure 2) models the

minimum amount of time available in a reservation ri in every time

interval of length t and can be derived by identifying the minimum

time allocated to ri in the worst-case scenario. The interested reader
can refer to [24] for further details.

3 HARD CONSTANT BANDWIDTH SERVERS
Across the last two decades of literature on reservation algorithms,

various incarnations of the H-CBS algorithm have been proposed

by different authors. To shed the light on the existing proposals

and provide a common basis for presenting the results of this work,

this section presents a generalized formulation of the H-CBS. The

formulation is based on a set of static rules and another set of meta
rules. Such meta rules, which allow differentiating between the var-

ious versions, are then discussed to instantiate the existing variants

of the H-CBS, as well as the novel ones proposed in Section 5 to

cope with constrained deadlines.

A served workload is said to be pending from the time it is re-

leased (i.e., entering an empty service queue) to the time at which

it completes its execution (i.e., leaving the service queue empty).

Furthermore, the workload is said to be ready when it is pending

and can make progress, that is, it is not suspended waiting for

some event. The server is assumed to keep track of the state of

the workload (pending or ready). As long as it has ready workload

to execute, the server is agnostic with respect to the execution re-

quests of the workload, which are managed according to an internal

(server-independent) policy, such as first-in-first-out (FIFO) or EDF.
A generalized formulation for the H-CBS. A H-CBS server is

described by three parameters (Q,D, P), where Q is the maximum

server budget, D is the server relative deadline, and P is the server
period (also named as the reservation period). The server works by
tracking two dynamic state variables: the current budget q (also

known as runtime) and the scheduling deadline d (also known as

server absolute deadline). At any point in time, the server can be

in one of the following states: IDLE, READY, and THROTTLED. The
H-CBS algorithm relies on EDF scheduling and is subject to the

following rules:

R1 Initially the server is in the IDLE state, where the budget
and the scheduling deadline are initialized to (q,d) = (0, 0).

R2 When the server starts having ready workload to execute

at time t :
• If the server is in the IDLE state, a new budget and sched-

uling deadline are generated as (q,d) = generate(q,d, t).
Then, the server will transit to the READY state at time

tw = wakeup(q,d, t).
R3 At any point in time, the server in the READY state that has

the earliest scheduling deadline d is selected for execution.

R4 Whenever the server executes the workload for δ time units,

its budget is decreased as q = q − δ . Furthermore, the server

notifies the consumed budget to the system by means of the

function account(δ ,d).
R5 When the budget exhausts (i.e., q = 0), the server transits

to the THROTTLED state.

R6 While a server is in the THROTTLED state, at time p = d +
P − D (end of the current reservation period) the server

budget is recharged to q = Q and a new scheduling deadline

is assigned as d = d + P . Still at time p, if the server has

ready workload to execute, then it transits to the READY state.
Otherwise, the server transits to the IDLE state.

R7 Whenever the server is in the READY state and stops having
ready workload to execute, it transits to the IDLE state.

3.1 The classic H-CBS
Among all the proposals, the most common variant of the H-CBS

was first proposed by Marzario et al. [20] in 2004, and later reformu-

lated by Abeni et al. [2]. Such an algorithmwas designed for implicit

deadlines only and can be expressed by defining generate(q,d, t)
as follows:

generate(q,d, t) =

{
(q,d) if t < d −

q
α ,

(Q, t + P) otherwise.

(4)

Also, wakeup(q,d, t) = t and account(δ ,d) has no effect.

In 2014, Biondi et al. [7] showed that this formulation is affected

by a schedulability issue whenever the H-CBS is adopted in conjunc-

tion to other scheduling mechanisms that can introduce blocking

times (e.g., non-preemptive sections, locking protocols, etc.), thus

perturbing the standard EDF scheduling of the servers. The au-

thors also proposed a solution to the identified issue, which can be

expressed by defining wakeup(q,d, t) =min(t ,d − q/α) and

generate(q,d, t) =

{
(Q,d −

q
α + P) if t < d −

q
α ,

(Q, t + P) otherwise.

(5)

As it can be noted by looking at the differences between (4)

and (5), the latter formulation always recharges the budget at the

maximum value Q . The difference in the wakeup(q,d, t) function
was provided to guarantee a bounded service delay of 2(P −Q).

RTNS’17, October 2017, Grenoble, France D. Casini et al.

3.2 The revised H-CBS
While the traditional H-CBS algorithm tries to re-use the current

budget (and generates a new scheduling deadline when the current

budget is not usable), the “revised” H-CBS [1] (again, defined for

D = P), instead, tries to re-use the current scheduling deadline as

much as possible (at the cost of decreasing the budget) and is based

on the following definition of the generate() function:

generate(q,d, t) = (max{q,
Q

P
(d − t)},d) (6)

Moreover, wakeup(q,d, t) = t and account(δ ,d) has no effect.

3.3 The H-CBS-SO algorithm
The self-suspending task model [14] has been introduced to capture

possible self-suspensions of the execution (waiting for some event)

that are explicitly caused by the task behavior, i.e., not imposed

by the scheduler or other scheduling mechanisms. Representative

applications of such a model are in the context of semaphore-based

locking protocols or in the use of hardware accelerators. Notably,

self-suspending tasks received a lot of attention in the last years,

being the corresponding schedulability analysis challenging and

affected by several flaws in the literature [15]. A simple approach to

analyze self-suspending tasks is the suspension-oblivious analysis,
where suspension times are pessimistically accounted as execution

times for the purpose of checking the system schedulability.

In 2015, Biondi et al. [4] showed that the suspension-oblivious

analysis is not compatible with the standard H-CBS algorithm.

To reconcile the H-CBS algorithm with a simple analysis for self-

suspending tasks, the same authors proposed a variant of the H-CBS

denoted as H-CBS-SO (H-CBS for suspension-oblivious analysis).

The H-CBS-SO maintains a logical queue, denoted as SS-QUEUE,

that keeps track of the servers that have pending but not ready
workload. The SS-QUEUE follows the EDF ordering. The key dif-

ference with respect to the standard H-CBS (both the formulations

presented in Section 3.1 are compatible) lies in the account(δ ,d)
function, which in the H-CBS-SO is defined as:

account(δ ,d) =

{
qSS = qSS − δ if dSS ≤ d,
no effect otherwise;

(7)

where qSS and dSS denote the budget and the deadline of the server

at the head of the SS-QUEUE, respectively. The servers into the

SS-QUEUE are subject to rules R5 and R6 described in Section 3,

with the only difference that in rule R6 the server does not transits

to the READY state (note that, according to rule R7, a server is in

the IDLE state as long as it is into the SS-QUEUE). Furthermore,

whenever a server leaves the SS-QUEUE, rule R1 is not triggered.

4 PROBLEM DEFINITION
The main objective of this work is the development of a reservation

server with the following features: (i) providing the budget to the

server load within a relative deadline less than or equal to the server

period; (ii) guaranteeing at least a budget Q every period P ; (iii)
guaranteeing a bounded worst-case service delay ∆; and (iv) guar-

anteeing the schedulability of a set of such servers. Note that such

features cannot be achieved by using the traditional formulations

of the Hard Constant Bandwidth Server, because their meta rules

(c)

D < P

t

Q

∆ = P +D − 2Q

Q

P D

Figure 1: H-CBS: Worst Case Delay

(b)

D < P

t

ε

∆ = (P − ε) + (D −Q) ' P +D −Q
Q

P D

Figure 2: H-CBS: Worst Case Delay

(a)

D = P

t

Q ∆ = 2(P −Q) Q

P

Figure 3: H-CBS: Worst Case Delay

1

(c)

D < P

t

Q

∆ = P +D − 2Q

Q

P D

Figure 1: H-CBS: Worst Case Delay

(b)

D < P

t

ε

∆ = (P − ε) + (D −Q) ' P +D −Q
Q

P D

Figure 2: H-CBS: Worst Case Delay

(a)

D = P

t

Q ∆ = 2(P −Q) Q

P

Figure 3: H-CBS: Worst Case Delay

1

(c)

D < P

t

Q

∆ = P +D − 2Q

Q

P D

Figure 1: H-CBS: Worst Case Delay

(b)

D < P

t

ε

∆ = (P − ε) + (D −Q) ' P +D −Q
Q

P D

Figure 2: H-CBS: Worst Case Delay

(a)

D = P

t

Q ∆ = 2(P −Q) Q

P

Figure 3: H-CBS: Worst Case Delay

1

Figure 3: Worst-case delays considering: (a) the original H-
CBS (D=P); (b) a solution which discards the budget when-
ever the server becomes IDLE. Inset (c) shows the desirable
worst-case delay with constrained deadlines.

(e.g., see Equation 4) leverage utilization-based EDF schedulability

theory, which is valid only for implicit deadlines.

The instantiation of such meta-rules is obtained manipulating

the condition U ≤ 1 which is necessary and sufficient to guaran-

tee schedulability when dealing with implicit deadlines. For this

reason, if any server simply executes according to its bandwidth

the system is implicitly schedulable. A naive solution that avoids

leveraging any specific schedulability test could consider to deplete

the whole budget whenever a reservation server remains without

ready workload. According to this approach, wakeup(q,d, t) = t
and account(δ ,d) has no effect. Also, generate(q,d, t) is defined as:

generate(q,d, t) =

{
(0,d) if t < d − D + P ,
(Q, t + D) otherwise.

(8)

In doing so, however, the worst-case service delay would be much

higher than the one that would be experienced with a traditional

H-CBS (shown in Figure 3, inset (a)). Inset (b) of Figure 3 illustrates

the worst-case service delay of such a naive solution. The desirable

worst-case service delay of a constrained-deadline server is shown

in Figure 3, inset (c). A second naive solution could consist in

setting the period of a classical H-CBS equal to the relative deadline

D thus leveraging the so called density-based schedulability test.

For instance, Equation 4 could be reused considering D in place

of P and the ratio
Q
D in place of α . Unfortunately, the condition∑

ri ∈R
Qi
Di

≤ 1 is only sufficient to guarantee servers schedulability

and highly pessimistic. In particular, when using a constrained-

deadline server in the context of C=D Semi-Partitioned scheduling,

a single zero-laxity reservation would occupy a whole processor!

The next section proposes new solutions for reservation servers

that can be used in this context.

Constant Bandwidth Servers with Constrained Deadlines RTNS’17, October 2017, Grenoble, France

5 PROPOSED SOLUTIONS
This section presents three solutions for realizing a H-CBS server

with constrained deadlines. The first one is based on the H-CBS-SO

algorithm presented in Section 3.3, and ensures the server schedu-

lability with any safe schedulability test for EDF with constrained

deadlines. The second one explicitly builds upon the sufficient

EDF schedulability test of Theorem 2.2 and its objective is to im-

prove the server performance with respect to the first solution, in

terms of probabilistic performance metrics (such as deadline-miss

ratio of soft real-time workload, response time percentiles, etc.)

and average-case performance (such as average throughput). Fi-

nally, an improved variant of the second solution is also presented,

which adopts the same rationale of the revised H-CBS presented in

Section 3.2. Finally, differences among the proposed solutions are

discussed.

5.1 A solution based on H-CBS-SO
As illustrated in Section 4, the key issue with the existing H-CBS

formulations concerns the case in which a server is suspended

due to the lack of ready workload to execute. A simple insight

can be leveraged to overcome such an issue: since the H-CBS-SO

was conceived to deal with self-suspending tasks running upon

the server, a safe behavior can be achieved by treating any server

suspension in the same manner.

The resulting algorithm is named as H-CBS
D
-W and is defined

as follows. First, a logical EDF-ordered queue, named S-QUEUE, is

provided. Whenever a server transits to the IDLE state, then it is

inserted into the S-QUEUE. The same definition of the account(δ ,d)
function reported in Equation (7) is adopted, where in this case qSS
and dSS are respectively the budget and the deadline of the server

at the head of the S-QUEUE. Analogously to the H-CBS-SO, the

servers into the S-QUEUE are subject to rule R5. Also, when rule

R5 applies to a server, the latter is removed from the S-QUEUE.

Finally, the following definitions are adopted to instantiate the

meta-rules introduced in Section 3 for a server ri :

wakeup(q,d, t) = t (9)

and

generate(q,d, t) =

{
(q,d) if ri is into the S-QUEUE,

(Qi , t + Di) otherwise.

(10)

The following lemma shows that this approach makes the H-

CBS
D
-W compatiblewith any EDF schedulability test for constrained-

deadline sporadic tasks.

Lemma 5.1. If the H-CBSD -W is adopted, the processor demand
of a reservation ri ∈ Rk never exceeds the one of a constrained-
deadline sporadic task with worst-case execution time Qi , minimum
inter-arrival time Pi and relative deadline Di .

Proof. As long as a reservation has ready workload, rules R5

and R6 guarantee that a server ri (i) does not execute for more

than Qi time units every period Pi , and (ii) will always have a

relative deadline equal toDi . Whenever a server stops having ready

workload, according to the definition of the H-CBS
D
-W, the server

is inserted into the S-QUEUE, where it is still subject to rule R5,

so preventing ri to consume more than Qi budget units within its

current period. Such rules take effect because the budget of ri is
decremented by the account(δ ,d) function whenever a sporadic

task with the same parameters of ri would have executed according
to EDF (i.e., when ri is at the head to the S-QUEUE and its deadline

is shorter than all the ones of the servers that are in the READY
state). By the definition of the generate(q,d, t) function, the server
parameters do not change if ri restarts having ready workload when
it is into the S-QUEUE. Finally, consider the case in which ri is not
into the S-QUEUE and restarts having ready workload at time t .
Let p be the end of the ri ’s reservation period in which ri stopped
having ready workload (entering the S-QUEUE). If t ≥ p, then
according to Equation (10) the server restarts executing with budget

Qi and deadline t + Di : note that this behavior is compatible with

a sporadic arrival of a task configured with the same parameters

of ri . Otherwise, if t < p, then ri must be in the THROTTLED state

and hence cannot execute until time p, as a corresponding sporadic
task would do. �

The following lemma bounds the maximum service delay of a

H-CBSD-W server.

Lemma 5.2. Consider a set Rk of H-CBSD -W reservations that are
EDF-schedulable. The service delay of each server ri ∈ Rk is no larger
than ∆i = Pi + Di − 2Qi .

Proof. Consider workload released at time t to be executed

upon a server ri . The service delay is maximized in the scenarios

where (i) ri has no available budget at time t ; and (ii) the following

periodic instance of the server, beginning at time p, starts providing
service to the workload as late as possible without violating the

server schedulability, i.e., at time p+Di −Qi . Among such scenarios,

the worst-case service delay occurs when the distance between

times t and p + Di − Qi is maximal, which happens when (i) the

first instance (beginning at time p − Pi) depletes all its budget as
soon as possible and (ii) time t coincides with the earliest time in

which such a budget is depleted. Following the definition of the

H-CBS
D
-W, the budget is consumed only when the server provides

service or by means of the account(δ ,d) function (see Equation (7)).

In both the cases, the event discussed in (ii) cannot happen before

time t = p − Pi + Qi . The corresponding delay results equal to

(p + Di −Qi) − (p − Pi +Qi) = Di + Pi − 2Qi and is illustrated in

Figure 3-c. �

The above two lemmas imply that the H-CBS
D
-W algorithm

(i) guarantees the highest worst-case schedulability performance,

as the server behaves no worse than a sporadic task, and (ii) pro-
vides the shortest possible worst-case service delay, as identified in

Section 4. However, these features come at the cost of consuming

the server budget even when the server is not actually executing

(note that rule R4 may perform a double budget accounting by

means of the account(δ ,d) function). This drawback leaves room

for improvement in terms of average-case performance and other

metrics that are not related to the worst-case server behavior.

A pragmatic improvement. A possible way to get rid of the dou-

ble budget accounting introduced by the H-CBS
D
-W algorithm

may consist in adopting a mechanism similar to the one proposed

in the CASH [12] algorithm. CASH was designed for reclaiming

unused budget at run-time and relies on an EDF-ordered queue of

RTNS’17, October 2017, Grenoble, France D. Casini et al.

servers with spare budget. For instance, the CASH mechanisms can

be integrated with the H-CBS
D
-W by considering the servers into

the S-QUEUE as servers with spare budget, and contextually (and

carefully) revising the budget accounting rules of the server with-

out affecting the worst-case performance of the server. Due to lack

of space, this alternative is left as a conjecture to be investigated in

future work.

5.2 An analysis-based solution
The key idea of the algorithm proposed in this section is to leverage

a schedulability test for constrained-deadlines servers to solve the

problem identified in Section 4. This new algorithm is denoted as

H-CBS
D
. As discussed in Section 2.1.1, the exact schedulability

test under EDF with constrained deadlines (Theorem 2.1) has a

pseudo-polynomial complexity. Therefore, if such a test is used as a

theoretical foundation to develop some algorithmic rules of the H-

CBS
D
, then the resulting algorithm would in turn require a pseudo-

polynomial complexity, thus potentially leading to a high run-time

overhead. To keep the algorithm overhead low, hence favoring

its practical applicability, it is possible to leverage the (sufficient)

linear-time schedulability test presented in Theorem 2.2. Note that

this choice impacts on the admission test to be adopted for each

reservation ri ∈ Rk , which must be based on Theorem 2.2: clearly,

this reduces the schedulability performance of the system with

respect to the case considered in the previous section. The H-CBS
D

exploits Theorem 2.2 to design a new generate function for the

generalizedH-CBS formulation in Section 3. Thewakeup(q,d, t) = t
and account(δ ,d) functions have no effect, meaning that (i) the

budget is always immediately available as soon as it is recharged

and that, (ii) the budget is not decreased when the server is IDLE.

Deriving the generate function.Given a set of reservation servers
Rk , at any point in time t each reservation ri ∈ Rk is character-

ized by a pair of dynamic state-variables: the absolute deadline di
and the current budget qi . When such parameters are used for a

different time instant, say t ′, they are referred to as q′i and d
′
i . The

goal of the following paragraphs is to derive a proper definition

for the generate function by exploiting such dynamic parameters.

First, Lemma 5.3 is provided to bound the demand generated by a H-

CBS
D
server within a time interval in which the generate function

is not invoked. Then, such a bound is used to derive a schedulability

test (Lemma 5.4) for the system within the same interval of interest.

Finally, Lemma 5.4 is used to derive a definition for the generate
function that guarantees to always assign a schedulable pair (q,d).

Lemma 5.3 (Run-time demand function). Let t ′ be an arbitrary
point in time after a call to generate(). Let t ′′ > t ′ the first time
after t ′ in which rule R2 triggers a call to the generate function for
reservation r j . Then, ∀t ′ ≤ t < t ′′, the processor demand of r j is
bounded by its run-time demand function, defined as:

rd fj (t ,q
′
j ,d

′
j) =

{
q′j + α j (t − d ′j) if t ≥ d ′j
0 otherwise

(11)

where q′i and d ′i are the current budget and the current absolute
deadline at time t ′, respectively.

Proof. Similarly as argued in the proof of Lemma 5.1, as long

as the server has ready workload, rules R5 and R6 guarantee that

the server behaves as a sporadic task with the same parameters

of the server. As a consequence, for t ∈ [t ′,d ′j), the generated

demand is zero, as the first instance of the server within [t ′, t ′′]
has deadline at time d ′j . Since the interval of interest started at time

t ′, where the budget of r j is q
′
j , the demand generated in [t ′,d ′j] is

q′j ≤ Qi . By exploiting the linear demand approximation introduced

in Equation (2), from time d ′j on, the demand of r j can be bounded

as q′j + αi (t − d ′j). At any point in time t ≥ t ′, if the server stops

having pending workload, it either transits to the IDLE state or

it is in the THROTTLED state. Consider the first case. To continue

to generate workload, the server must transit back to the READY
state, which however involves a call to generate() (see rule R2).
By hypothesis, this cannot happen in [t ′, t ′′). Similarly, if the server

is in the THROTTLED state, by rule R6 it will transit to the IDLE state
as soon as its budget is replenished: therefore, the same argument

used above applies. The lemma follows. �

To reduce clutter when presenting the following results, the

function state(ri , t
′) is defined to return the state of server ri at

time t ′. Furthermore, the following reservation sub-sets are defined:

Rr
k (t

′) = {ri ∈ Rk : state(ri , t
′) = READY}, and

Rtw
k (t ′) = {ri ∈ Rk : state(ri , t

′) = THROTTLED ∧

ri has ready workload}

Starting from Lemma 5.3, Lemma 5.4 is derived with the aim

of formulating a novel definition for the generate function of H-

CBS
D
. In particular, given a reservation ri which is applying rule

R2, Lemma 5.4 allows verifying if the use of a given budget and a

given absolute deadline guarantees the system schedulability.

Lemma 5.4. Consider a reservation set Rk that is schedulable ac-
cording to Theorem 2.2. Let t ′ be an arbitrary point in time after a
call to generate. Let t ′′ > t ′ the first time after t ′ in which any
of the servers in Rk triggers a call to the generate function. The
reservation set does not experience deadline misses ∀t ′ ≤ t < t ′′ if:

∀t ∈ D∗, rd fj (t ,q
′
j ,d

′
j) +

∑
ri ∈{Rrk (t

′)\{r j }}

rd fi (t ,q
′
i ,d

′
i)+∑

ri ∈Rtw
k (t ′)

db f i (t−t
tw
i)+

∑
ri ∈{Rk \{Rr

k (t
′)∪Rtw

k (t ′)}}

db f i (t−t
′) ≤ t−t ′

(12)

where t ′′ > t ′ is the next time in which a reservation ri ∈ Rk
triggers a call to generate(), t twi = d ′i − Di + Pi ,

D∗ =
⋃

ri ∈Rr
k (t

′)

{d ′i } ∪
⋃

ri ∈Rtw
k (t ′)

{d ′i + Pi },

and∀ri ∈ Rk ,q′i andd
′
i are their current budget and absolute deadline

at time t ′.

Proof. The lemma follows from the processor demand criterion

recalled in Theorem 2.1 provided that all the terms in Equation (12)

are valid demand bounds. Under the hypothesis on times t ′ and t ′′,
by Lemma 5.3 the first two terms are valid demand bounds for the

reservation servers in the READY state (set Rr
k (t

′)). A reservation

server ri in the THROTTLED state with absolute deadline d ′i will

experience a full budget replenishment at t twi = di − Di + Pi , and

cannot generate demand until the latter time. From time t twi , since

Constant Bandwidth Servers with Constrained Deadlines RTNS’17, October 2017, Grenoble, France

the generate function is not called within [t ′, t ′′], its maximum

demand is the same of the one generated by a sporadic task with the

same parameters of the server, hence is bounded by db f i (t−t
tw
i). If

a reservation server ri is in the IDLE state, it must call the generate
function before starting generating workload. Hence, its demand in

the interval of interest is always zero, and consequently the fourth

term is a valid bound. The set D∗
includes all the discontinuities

of the adopted demand bounds. The lemma follows. �

Lemma 5.4 guarantees the system schedulability until the next

call to generate function occurs. The idea of the following results is
to to use Lemma 5.4 within the definition of the generate function
to ensure the same schedulability condition also when generate is

called. Let q′ and d ′ to be the vector of budgets and deadlines for

reservations ri ∈ {Rr
k \ {r j }} at time t ′, respectively.

Based on Lemma 5.4, it is possible to define a function to deter-

mine whether a pair (qj ,dj) can be used by a reservation server r j
without affecting the system schedulability:

check(q′,d ′,qj ,dj) =

{
true if Lemma 5.4 is satisfied

false otherwise

Then, the generate function is defined as follows (for a sake of

simplicity and homogeneity with respect to previous formulations

we omit the dependency from some parameters):

generate(qj ,dj , t) =



(qj ,dj) if check(q′,d ′,qj ,dj)∧
t < dj

(Q j , t + D j) if ¬check(q′,d ′,qj ,dj)
∧check(q′,d ′,Q j , t

D
j , t)∧

t < dj
(max(0,q∗j),dj) otherwise

(13)

where tDj = t + D j , and q
∗
j = Q j − (t − (dj − D j)).

The rationale behind this function is that:

(1) The check function can be used to verify whether the current
budget qj can be safely re-used maintaining the current

absolute deadline dj .
(2) Otherwise, check is used to verify whether is safe to perform

a full budget replenishment qj = Q j at the current time t ,
with deadline t + D j .

(3) Finally, if the first two items fail, the deadline remains un-

changed and the current budget is set to the value that it

would have reached if it always executed in [dj−D j ,min(dj−
D j +Q j , t)]

With the algorithm definition in place, Lemma 5.5 guarantees the

schedulability of H-CBS
D
.

Lemma 5.5 (Safety in the worst case behavior). The budget
and absolute deadline pairs assigned by generate as defined for the
H-CBSD does not violate schedulability.

Proof. Since Lemma 5.4 guarantees schedulability until the next

call to generate occurs and the generate function uses Lemma 5.4,

the safety of the first two cases of Equation (13) is automatically

guaranteed. Considering the third branch of Equation (13), the reser-

vation server ri which is calling the generate function maintains

the same deadline di and a budget q∗i obtained considering that

it executed while it was actually IDLE. It is worth noting that ri

is guaranteed with a budget qi ≥ q∗i (by means of a previous call

to generate which exploited Lemma 5.4, if any, or by the admis-

sion test), regardless of the state of ri . Then, the system remains

schedulable if ri requires less demand. The lemma follows. �

Lemma 5.6 shows that the H-CBS
D
algorithm guarantees to each

reservation ri a full budget replenishment and an absolute deadline

t + Di to each server ri which wakes-up after at least Pi after the
last replenishment.

Lemma 5.6. Whenever H-CBSD is adopted, at any point in time t
such that t ≥ di −Di +Pi , the algorithm guarantees a pair (q∗i ,d

∗
i) =

(Qi , t + Di) for each reservation ri .

Proof. At the system startup, a pair (q∗i ,d
∗
i) is implicitly guaran-

teed by the admission test (Lemma 2.2). When the first two branches

of the generate function are considered, the reservation-set is guar-
anteed exploiting Lemma 5.4. It can be observed that the proof of

Lemma 5.4 would follow also without adding the term:∑
ri<{Rr

k∪R
tw
k }

db f i (t − t ′),

because each reservation ri < {R
r
k∪R

tw
k } does not consume budget

at time t ′. Then, in this case the presence of that term is sufficient

to reserve a pair (q∗i ,d
∗
i) to each server passing from IDLE to READY

at least after Pi since the last replenishment. Conversely, when

considering the third branch of generate the demand required

by a reservation ri is always lower or equal than the one that it

would required if it would be READY (the budget is consumed even

if the reservation is not actually executing). Hence, a pair (q∗i ,d
∗
i)

is implicitly guaranteed by the previous call(if any) to generate
which did not use the third branch, or by the admission test. The

lemma follows. �

As a consequence of Lemma 5.6, the third branch of the generate
function is never taken whenever it is called after at least Pi after
the last replenishment (at least the condition for choosing second

branch always succeeds). Lemma 5.7 bounds the maximum service-

delay of H-CBS
D
.

Lemma 5.7 (Bounded-delay). Consider a reservation set Rk of
H-CBSD reservations that are EDF-schedulable. The service delay of
each server ri ∈ Rk is no larger than ∆i = Pi + Di − 2Qi .

Proof. According to the general H-CBS formulation presented

in Section 3, whenever new workload arrives at time t∗ while the
server is IDLE, generate is called. Let us analyze separately the

worst-case delay of the algorithm when the three different branches

of the generate function are taken.

First branch. The budget qi is available to be used within the abso-

lute deadline di . The worst-case scenario occurs when the period

instance of the server starts executing as late as possible, i.e., at

time t ′ = di − qi . Hence, the worst-case delay is equal to t ′ − t∗.
Since di − t∗ ≤ Di , then t ′ − t∗ ≤ ∆′ = Di .

Second branch. A budget Qi is available to be used within t∗ + Di .

In the worst-case the server starts executing at t ′′ = t∗ + Di −Qi ,

leading to a delay ∆′′ = t ′′ − t∗ = Di −Qi .

Third branch. The budget q∗ is available to be executed within the

current absolute deadline di . By definition, q
∗
is the budget that the

RTNS’17, October 2017, Grenoble, France D. Casini et al.

server would has if it always executed from its last replenishment to

time t∗. The scenario which maximizes the delay occurs when new

workload arrives in the first time instant in whichq∗ = 0 and the fol-

lowing instance of the server executes as late as possible. This situa-

tion occurs when the workload arrives at at t ′ = di −Di +Qi and the

server starts executing at t ′′ = di +Pi −Qi . The worst-case delay in

this case is∆′′′ = t ′′−t ′ = di+Pi−Qi−(di−Di+Qi) = Pi+Di−2Qi .

Finally, the global worst-case delay allowed by the algorithm is

∆ =max(∆′,∆′′,∆′′′) = Pi + Di − 2Qi . The lemma follows. �

Improving the available budget.Alternatively, the first branch
of generate could be defined to follow a principle similar to the

one adopted in the revised CBS [1]: maintain the current scheduling

deadline and use the maximum budget qj allowed by Lemma 5.4.

Such a budget can be derived as described in Lemma 5.8.

Lemma 5.8. Consider a reservation set Rk that is schedulable ac-
cording to Theorem 2.2. Given an absolute time t ′ in which a reserva-
tion r j transited from IDLE to READY with an absolute deadline dj , the
maximum safe budget qj which preserves the algorithm properties is:

qsj =mint ∈D∗∧t ≥djqj (t),

where D∗ is defined in Lemma 5.4, and

qj (t) = −α j (t − dj) − K + t − t ′ (14)

with K =
∑
ri ∈{Rrk \{r j }}

rd fi (t ,qi ,di) +
∑
ri ∈Rtw

k
db f i (t − t twi)+∑

ri<{Rr
k∪R

tw
k } db f i (t − t ′).

Proof. The lemma follows directly as a consequence of Lemma 5.4,

writing rd fj (t ,qj ,dj) in its extended form (by means of Equation 12,

substituting the first branch of its definition, and then considering

only absolute-deadlines greater or equal than dj) and solving with

respect to qj . �

In this case the generate function is defined as follows:

generate(qj ,dj , t) =


min(Q j ,max(0,qsj)) if t < dj ∧ qsj > 0

(Q j , t + D j) if t < dj ∧ qsj ≤ 0 ∧

check(q′,d ′,Q j , t
D
j , t)

(max(0,q∗j),dj) otherwise

where tDj = t+D j . The algorithm obtained by leveraging Lemma 5.8

is named H-CBS
D
-R. It is worth noting that using H-CBS

D
-R each

call to generate may cause the calling reservation to request a

demand higher than the one of a sporadic task with parameters

(Q j ,D j , Pj) (but still guaranteeing schedulability), thus implement-

ing a sort of budget-reclaiming mechanism.

5.3 Discussion
The proposed solutions provide the same worst-case guarantees,

namely both of them are able to provide the same worst-case delay

and to maintain schedulability among servers. However, they differ

in many points:

Applicability. The H-CBSD -W is independent of the schedulabil-

ity test used for admitting reservations. This implies that it can be

used both under global, partitioned and semi-partitioned schedul-

ing. Conversely, the H-CBS
D
and H-CBS

D
-R algorithms leverage

the approximated schedulability analysis presented in Lemma 5.4,

which is a processor-demand based analysis suitable only for parti-

tioned or semi-partitioned EDF-based scheduling. Moreover, the

schedulability test used for admitting reservation is constrained to

be the same as the one presented in Theorem 2.2.

Average-case performance. H-CBSD and H-CBS
D
-R leverage

the schedulability analysis to improve the average-case perfor-

mance and probabilistic metrics (typically used for soft real-time

workload) with respect to H-CBS
D
-W. In particular H-CBS

D
-R

potentially reclaims some spare budget whenever the generate
function is called.

Implementation and Complexity. Algorithm H-CBS
D
-W can

implement all the meta-rules in constant-time. On the other hand,

it may require the implementation of an additional server queue,

the S-QUEUE. Differently, H-CBS
D
and H-CBS

D
-R do not require

additional data structures. Also, wakeup(q,d,t) can still be imple-

mented in constant-time and account(q,d,t) does not require any
implementation. As a drawback, the generate function has linear

complexity.

6 SIMULATION RESULTS
As previously shown (see Lemmas 5.2 and 5.7), all the algorithms

presented in this paper have the same worst-case performance.

Whenever each reservation server is used to schedule a single task

with worst-case execution time smaller than or equal to than the

maximum budget, minimum inter-arrival time larger than or equal

to the reservation period, and the same relative deadline of the

server, then all its deadlines are guaranteed to be respected (this

is sometimes refferred as hard schedulability property of the CBS).

Otherwise, some deadlines can be missed: in this case, the proba-

bility to respect or miss a deadline depends on the used algorithm.

To test the performance of the three scheduling algorithms when

serving this kind of real-time tasks, an extensive simulation study

has been carried out and is presented in this section.

The algorithms have been tested in a widely variable set of

situations, by randomly generating a workload composed by real-

time tasks with random execution and inter-arrival times. The

workload running into each reservation server consists of a single

sporadic task τi . The workload (i.e., the computation time and

the inter-arrival time of each job) is controlled by the following

parameters:

(1) The ratio Cr between the average computation time ci of a
task τi and the maximum runtime Qi of the server used to

schedule it: ci = CrQi .

(2) The ratio a between the average utilization of a task τi and

the utilization of the server used to schedule it:
ci
pi
= a

Qi
Pi ,

where pi is the average inter-arrival time of τi .
(3) The variance of the execution and inter-arrival times.

The sets of servers and tasks used in the simulations have been

generated as follows. Given n = 5 reservations
3
and a target total

utilization U =
∑
i
Qi
Pi , budgets and periods have been generated

using the Randfixedsum algorithm [17]. The periods Pi of the reser-
vations are distributed between 5000 and 500000. Then, the relative

3
Simulations with a different number of reservation servers have been performed,

showing that the number of reservations does not affect the results. Hence, only results

for n = 5 are reported.

Constant Bandwidth Servers with Constrained Deadlines RTNS’17, October 2017, Grenoble, France

deadlines of each reservation server have been generated with uni-

form distribution in the interval [Qi + β(Pi −Qi), Pi], with β = 0.4.

Reservation sets that are not schedulable according to Theorem 2.2

have been discarded.

All the sets generated using this approach withU ≤ 0.7 resulted

to be schedulable according to Theorem 2.2. For U = 0.75, about

2% of the generated reservations sets are not schedulable according

to Theorem 2.2, whereas they are all schedulable performing an

exact schedulability test; the situation becomes more interesting for

U = 0.9, when 49% of the generated server sets are not schedulable

according to Theorem 2.2 but only 16% of the server sets are really

not schedulable using an exact test. This fact has an impact on the

usability of the proposed algorithms, since (as previously discussed)

H-CBS
D
-W can be used with any schedulability test while the other

two algorithms require to use Theorem 2.2 to check the servers’

schedulability
4
.

After generating the reservation-sets, the task τi served by each

server has been generated considering variables execution times,

distributed according to a uniform random variable with average

ci = CrQi . Similarly, the inter-arrival times have been considered to

be variable and distributed according to a uniform random variable

with average value pi = Pi
ci
aQi

. The execution times are uniformly

distributed in [ci −
sci
2
, ci +

sci
2
] and the inter-arrival times are

uniformly distributed in [pi −
spi
2
,pi +

spi
2
], where csi = Qisz,

psi = Pisz, and sz is a parameter in the task set generation. The

relative deadline of each task τi is equal to the relative deadline of

the server used to schedule it.

The generated sets have been simulated by using event-based

simulator. For each set of parameters, (U , a, Cr , sz), 100 different
reservation-sets have been generated, and the number of missed

deadlines for each task has been counted. The ratio of total missed

deadlines has been computed for each run, averaging results over

the 100 repetitions (also computing the 90% confidence interval).

The simulator has been validated by testing sets of tasks and

servers generated as described above together with servers that

have been correctly dimensioned to respect the hard schedulability

property of the CBS
5
. For those, the simulations correctly reported

0 missed deadlines.

Impact of the Total Utilization U. In a first set of simulations,

the impact of the total servers utilization U =
∑
i
Qi
Pi has been

evaluated by varying U in the interval [0.5, 1] with steps of 0.1

while keeping Cr , a and sz constant. The simulations showed that

U had no significant impact on the percentage of missed deadlines.

This is consistent with the temporal isolation property provided

by the CBS algorithm: the real-time performance of a task depends

on the parameters of the task and on the server used to schedule it,

but does not depend on the other tasks and servers running in the

system. Due to this result, in the following simulations the total

utilization has been fixed toU = 0.7.

Impact of the Server Load.More interesting is the case in which

the varied parameter is the parameter a (which is the ratio between

4
These results have been obtained by generating 1000 random task sets according to

the explained algorithm, and checking their schedulability according to Theorems 2.2

and 2.1.

5Qi larger or equal than the worst-case execution time of the served task and Pi
smaller or equal than the minimum inter-arrival time, with the same relative deadline.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

d
e
a
d
li
n
e
 h

it
 r

a
ti

o

a

sz=0.8 cr=0.6 U=0.7

H-CBSD-W
H-CBSD

H-CBSD-R

Figure 4: Deadline hit ratio vs a.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

d
e
a
d
li
n
e
 h

it
 r

a
ti

o

Cr

sz=0.8 a=0.6 U=0.7

H-CBSD-W
H-CBSD

H-CBSD-R

Figure 5: Deadline hit ratio vs Cr .

the average utilization of the served task and the bandwidth of

the reservation: this value can be considered an estimation of the

“server load”). When a approaches 1, in the average case the served

task tends to use all the execution time provided by the server, with

a significant number of instances exceeding the provided budget

and completing in subsequent periods, thus missing their deadlines.

Decreasing a, the number of respected deadlines increases.

Figure 4 shows the fraction of deadlines that have been respected

as a function of a, with Cr = 0.6 and sz = 0.8. For small values

of a all the algorithms are able to respect almost all of the dead-

lines. When a increases, H-CBS
D
-R continues to respect a very

high percentage of deadlines, because it provides a sort of budget-

reclaiming, as discussed in Section 5.3, while the performance of

the other two algorithms degrade. Since H-CBS
R
-W decreases the

budget of a the server even if the task does not execute, from Fig-

ure 4 it results to perform worse.

Impact of the Average Execution Time. Figure 5 shows the frac-
tion of respected deadlines as a function of Cr , with a = 0.6 and

sz = 0.8. In this situation, the performance of H-CBS
D

and H-

CBS
D
-R are similar, while H-CBS

R
-W performs slightly worse. All

the algorithms are strongly penalized by large Cr values.
Impact of the Execution and Inter-Arrival Times Variance.
Figure 6 shows the fraction of respected deadlines as a function of

sz, with a = 0.6 andCr = 0.6. Again, H-CBSR -W misses more dead-

lines than the other two algorithms. The plot also shows that the

number of misses deadlines increases with sz, confirming that large

variances in the execution and inter-arrival times have a negative

impact on performance. The above observations are also confirmed

in Figure 7, showing the deadline hit ratio vs both Cr and sz, in
a summarizing 3D plot spanning across a different region of the

parameters space, with Cr from 0.7 to 1.1, sz from 0.6 to 0.8 and

a = 0.6.

RTNS’17, October 2017, Grenoble, France D. Casini et al.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.8 0.9 1 1.1 1.2

d
e
a
d
li
n
e
 h

it
 r

a
ti

o

SZ

cr=0.6, a=0.60, U=0.7

H-CBSD-W
H-CBSD

H-CBSD-R

Figure 6: Deadline hit ratio as a function of sz.

deadline hit ratio (a=0.60, U=0.7)

H-CBSD-W
H-CBSD

H-CBSD-R

 0.7
 0.8

 0.9
 1

 1.1
CR 0.6

 0.65
 0.7

 0.75
 0.8

SZ
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Figure 7: Deadline hit ratio as a function of sz and Cr .

7 CONCLUSIONS AND FUTUREWORK
This paper proposed three different algorithms which extend the

Hard Constant Bandwidth Server to work with constrained dead-

lines. All the three algorithms showed having the same worst-case

properties. However, the first one is a generic solution independent

of the adopted schedulability test, whereas the others build upon a

specific sufficient schedulability test and showed having better per-

formance in terms of probabilistic metrics (i.e., deadline hit ratio).

In the literature, many CBS-based reservation algorithms were pre-

sented, but none of them is able to deal with constrained deadlines.

The proposed algorithms can be used as building blocks to effi-

ciently (e.g., in terms of worst-case delay) implement mechanisms

for Semi-Partitioned scheduling in real-time operating systems. Fu-

ture research directions include the support for shared resources

under constrained-deadline reservations both in uniprocessor and

multiprocessor platforms (e.g., extending the BROE protocol [5])

and the evaluation of the overhead introduced bymeans of an imple-

mentation in a real operating system kernel (e.g., Linux). Moreover,

both H-CBS
D
and H-CBS

D
-R could be extended to support global

scheduling with bounded tardiness [16].

REFERENCES
[1] L. Abeni, G. Lipari, and J. Lelli. 2014. Constant bandwidth server revisited. In

Proceedings of the EmbedWith Linux 2014Workshop (EWiLi 2014) (CEURWorkshop
Proceedings), Vol. 1291. Lisboa, Portugal. http://ceur-ws.org/Vol-1291

[2] L. Abeni, L. Palopoli, C. Scordino, and G. Lipari. 2009. Resource Reservations for

General Purpose Applications. IEEE Transactions on Industrial Informatics 5, 1
(Feb 2009), 12–21.

[3] S. K. Baruah, L. E. Rosier, and R. R. Howell. 1990. Algorithms and complexity con-

cerning the preemptive scheduling of periodic, real-time tasks on one processor.

Real-time systems 2, 4 (1990), 301–324.
[4] A. Biondi, A. Balsini, and M. Marinoni. 2015. Resource Reservation for Real-time

Self-suspending Tasks: Theory and Practice. In Proc. of the 23rd International
Conference on Real Time and Networks Systems (RTNS ’15). ACM, 10.

[5] A. Biondi, G. C. Buttazzo, and M. Bertogna. 2015. Supporting component-based

development in partitioned multiprocessor real-time systems. In Proceedings of
the 27th Euromicro Conference on Real-Time Systems (ECRTS 2015). Lund, Sweden.

[6] A. Biondi, G. C. Buttazzo, and M. Bertogna. 2016. Schedulability Analysis of

Hierarchical Real-Time Systems under Shared Resources. IEEE Trans. Comput.
65, 5 (2016), 1593–1605.

[7] A. Biondi, A. Melani, and M. Bertogna. 2014. Hard Constant Bandwidth Server:

Comprehensive Formulation and Critical Scenarios. In Proceedings of the 9th IEEE
International Symposium on Industrial Embedded Systems (SIES 2014). Pisa, Italy.

[8] B. Brandenburg and M. Gul. 2016. Global Scheduling Not Required: Simple,

Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reser-

vations. In Proceedings of the 37th IEEE Real-Time Systems Symposium (RTSS 2016).
Porto, Portugal.

[9] B. B. Brandenburg and J. H. Anderson. 2007. Integrating Hard/Soft Real-Time

Tasks and Best-Effort Jobs on Multiprocessors. In 19th Euromicro Conference on
Real-Time Systems (ECRTS’07). 61–70.

[10] A. Burns, R. Davis, P. Wang, , and F. Zhang. 2012. Partitioned EDF scheduling for

multiprocessors using a C=D task splitting scheme. Real-Time Systems 48 (2012),
3–33.

[11] G. C. Buttazzo. 2011. Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications, Third Edition. Springer.

[12] M. Caccamo, G. Buttazzo, and L. Sha. 2000. Capacity sharing for overrun control.

In Proc. of the 21st IEEE conference on Real-time systems symposium. Orlando,

Florida, USA.

[13] D. Casini, A. Biondi, and G. Buttazzo. 2017. Semi-Partitioned Scheduling of

Dynamic Real-Time Workload: A Practical Approach Based On Analysis-driven

Load Balancing. In Proceedings of the 29th Euromicro Conference on Real-Time
Systems (ECRTS 2017). Dubrovnik, Croatia.

[14] J.J. Chen, G. Nelissen, and W.H. Huang. 2016. A unifying response time analysis

framework for dynamic self-suspending tasks. In 28th Euromicro Conference on
Real-Time Systems (ECRTS). IEEE.

[15] J.J. Chen, G. Nelissen, W.-H. Huang, M. Yang, K. Bletsas B. Brandenburg, C. Liu,

P. Richard, F. Ridouard, N. Audsley, R. Rajkumar, and D. de Niz. 2016. Many
suspensions, many problems: A review of selfsuspending tasks in real-time systems.
Technical Report. Faculty of Informatik, TU Dortmund.

[16] U. M. C. Devi and J. H. Anderson. 2005. Tardiness bounds under global EDF

scheduling on a multiprocessor. In 26th IEEE International Real-Time Systems
Symposium (RTSS’05). 12 pp.–341.

[17] P. Emberson, R. Stafford, and R. Davis. 2010. Techniques for the synthesis of

multiprocessor tasksets. In Proc. of the 2nd International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems (WATERS 2010).
Brussels, Belgium.

[18] N. Fisher, T. P. Baker, and S. Baruah. 2006. Algorithms for Determining the

Demand-Based Load of a Sporadic Task System. In 12th IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications (RTCSA’06).
Sydney, Australia.

[19] J. Lelli, C. Scordino, L. Abeni, and D. Faggioli. 2016. Deadline Scheduling in the

Linux kernel. Software: Practice and Experience 46, 6 (Jun 2016), 821–839.

[20] L. Marzario, G. Lipari, P. Balbastre, and A. Crespo. 2004. IRIS: A New Reclaiming

Algorithm for Server-Based Real-Time Systems. In 10th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS 2004). Toronto, Canada.

[21] C. W. Mercer, S. Savage, and H. Tokuda. 1994. Processor capacity reserves for

multimedia operating systems. In Proceedings of IEEE international conference on
Multimedia Computing and System. Boston, Massachusetts, USA.

[22] A. K. Mok, X. Feng, and D. Chen. 2001. Resource partition for real-time systems.

In Proceedings Seventh IEEE Real-Time Technology and Applications Symposium
(RTAS 2001).

[23] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. 1998. Resource kernels: A

resource-centric approach to real-time and multimedia systems. In SPIE/ACM
Conference on Multimedia Computing and Networking. San Jose, CA, USA.

[24] I. Shin and I. Lee. 2004. Compositional real-time scheduling framework. In

Proceedings of the 25th IEEE Real-Time Systems Symposium(RTSS 2004). Lisbon,
Portugal.

[25] F. Zhang and A. Burns. 2009. Schedulability Analysis for Real-Time Systems with

EDF Scheduling. IEEE Trans. Computers 58, 9 (2009), 1250–1258.

http://ceur-ws.org/Vol-1291

	Abstract
	1 Introduction
	2 System Model and background
	2.1 Background

	3 Hard Constant Bandwidth Servers
	3.1 The classic H-CBS
	3.2 The revised H-CBS
	3.3 The H-CBS-SO algorithm

	4 Problem Definition
	5 Proposed solutions
	5.1 A solution based on H-CBS-SO
	5.2 An analysis-based solution
	5.3 Discussion

	6 Simulation Results
	7 Conclusions and Future Work
	References

