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ABSTRACT
Despite several works in the literature targeted predictable execu-

tion models for parallel tasks, limited attention has been devoted

to study how specific implementation techniques may affect their

execution. This paper highlights some issues that can arise when

executing parallel tasks with thread pools, which may lead to dead-

locks and performance degradation when adopting blocking syn-

chronization mechanisms. A new parallel task model, inspired to

a realistic design found in popular software systems, is first pre-

sented to study this problem. Then, formal conditions to ensure

the absence of deadlocks and schedulability analysis techniques are

proposed under both global and partitioned scheduling.
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1 INTRODUCTION
Web services, cloud-based applications, and more recently deep

neural networks (DNNs) are only a few notable examples of applica-

tions characterized by a highly-parallel workload composed of a set

of sequential computations subject to precedence constraints. This

kind of workload is typically modeled with directed acyclic graphs

(DAGs), where nodes represent sequential computations and edges

precedence constraints between them. A key observation is that real

parallel workload often consists of many small sequential computa-

tions (i.e., many nodes in the DAG). Just to name an example, to infer

the InceptionV3 [19] DNN on a multicore platform, the standard

configuration of the popular TensorFlow machine learning frame-

work originates a DAG with more than 34000 sequential nodes,

where most of them have a very small execution time. Clearly, in

such cases it is impossible to create a dedicated thread for each node.

For this reason, a common design pattern to handle parallel work-

load consists in the usage of thread pools. That is, for each parallel

task, a set (i.e., a pool) ofworker threads are created before executing
the task and used to serve the execution of the nodes. Usually, an

additional main thread is in charge of dispatching the nodes to the

worker threads according to a work-conserving policy. For instance,

the Eigen library (used by TensorFlow to handle parallel mathemat-

ical operations) adopts randomized work-stealing scheduling [1].

Furthermore, being this dispatching implemented in user-space

(i.e., by the main thread), preemptions or migrations of the nodes

are typically not supported. In most implementations, nodes just

correspond to functions fetched from queues of the worker threads

and the operating system is not aware of their existence.

Another practical aspect in the usage of thread pools concerns

the way precedence constraints are implemented. To the best of our

records, the most widespread approach relies on the usage of condi-
tion variables, which on one hand makes the software easy to write,

but on the other hand may introduce bottlenecks, unpredictability,

and performance degradation.

To explain the behavior of a parallel task implemented with a

thread pool and condition variables, consider the example reported

in Figure 1(a), which consists of a simple fork-join pattern. A very

common implementation of this parallel task is reported in Listing 1:

a main function v1v5 first executes node v1, then activates the

three child nodes (v2, v3, v4) to be executed concurrently, and

then executes the final node v5 after the child nodes completed. If
condition variables are used to wait for the completion of the child

nodes (as a synchronization barrier), the worker thread serving

v1v5 will be suspended (see Figure 1(b)). Therefore, the usage of
condition variables may temporary reduce the number of available
threads, which could otherwise be used to make progress in the

task execution, e.g., by executing some of the child nodes.
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Figure 1: Inset (b) and (c) illustrate two possible execution of the
graph reported in inset (a), in which the blocking synchronization
worsen the performance (inset (b)) or causes a deadlock (inset (c)).

.

vo id v1v5 ( ) {

< ex e cu t e v1>

< f o r k v2 , v3 , v4>

<wai t f o r v2 , v3 , v4>

< exe cu t e v5>

}

vo id v i ( ) { i = 2 , 3 , 4

< exe cu t e vi >

< s i g n a l >

}

Listing 1: Pseudo-code for a blocking semantic.

vo id v1 ( ) {

< ex e cu t e v1>

< f o r k v2 , v3 , v4>

}

vo id v i ( ) { ( i = 2 , 3 , 4 )

< exe cu t e vi >

< i f a l l v i completed >

< r e l e a s e v5>

}

vo id v5 ( ) {

< ex e cu t e v5>

}

Listing 2: Pseudo-code for a non-blocking semantic.

To further complicate this issue, whenever multiple forking

nodes can concurrently be executed in different threads, deadlocks

can occur. For instance, if there are two replicas of the graph shown

in Figure 1(a), both threads would be suspended and no child node978-1-7281-2425-4/19/$31.00 ©2019 IEEE
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could make progress, leading to a complete stall, as illustrated in

Figure 1(c) (where v1 and v
′
1
denote the root nodes of the replicas).

These issues could easily be avoided by adopting the sporadic

real-time DAG task model [9], summarized in Listing 2, where each

node is implemented in a dedicated function. This implementation

approach, however, has the following problems: (i) it tends to be

incompatible with the usage of condition variables; (ii) it contrasts

the need for a coherent function context for the node that creates

child nodes; and (iii) when based on dedicated per-node threads,

it suffers from the shortcomings discussed at the beginning of the

paper. For these reasons, many real-world software systems do

not follow this approach. It is therefore of high practical relevance

studying parallel tasks implemented with thread pools and condi-

tion variables; however, to the best of our knowledge, no model and

real-time analysis techniques are available to handle this setting.

Contributions. This paper makes the following three contri-

butions. First, it proposes a new model for parallel real-time tasks

implemented with thread pools and with blocking synchronization

mechanisms (such as condition variables) to realize precedence con-

straints. Second, it presents methods to detect deadlocks and build

schedulability tests under global and partitioned scheduling. Finally,

the proposed analysis approaches are compared with prior work to

asses how the reduction of concurrency affects schedulability.

2 SYSTEM MODEL
This paper considers a set Γ ofn DAG tasks τ1, . . . ,τn to be executed

upon amulticore platform composed ofm identical processors. Each

task τi is scheduled by a thread pool Φi , which consists of a set of

m threads {ϕi, j : j = 1, . . . ,m}, all having the same priority πi .
Each parallel task τi = {Gi ,Di ,Ti ,Φi ,πi } is defined by a DAG

Gi = {Vi ,Ei }, where Vi represents the set of nodes and Ei the set
of directed edges that connect the nodes. Edges denote precedence

constraints between nodes. Each nodevi, j ∈ Vi represents a sequen-
tial computation and is characterized by a worst-case execution

time Ci, j . Each task releases a potentially infinite sequence of jobs

(i.e., task instances), each separated by a minimum inter-arrival

time Ti . Each job is required to complete within a relative deadline

Di ≤ Ti from its release time. The sets of predecessors pred(vi,s )
and successors succ(vi,s ) are defined to denote precedence con-

straints that are either direct (i.e., by means of an edge) or transitive

(i.e., involving intermediate nodes). A node without incoming edges

is referred to as a source node, whereas a node without outgoing
edges is denoted as a sink node. For the sake of simplicity, this paper

assumes a single sink and source node for each DAG. This is not

a limitation, since any DAG with multiple source/sink nodes can

always be transformed in a DAG with single source and sink node

by introducing additional dummy source/sink nodes.

This work considers both the cases in which threads are sched-

uled with global and partitioned scheduling fixed-priority preemp-

tive scheduling. When partitioned scheduling is adopted, for each

pool Φi , each thread ϕi, j ∈ Φi is statically allocated to the j-th core,

and we assume the existence of a function T(vi, j ) that returns the
thread ϕi, j ∈ Φi to which node vi, j is allocated.

Intra-pool scheduling. As it occurs for the threads scheduling,
the workload within each pool Φi can be scheduled in a global
or partitioned fashion. We assume that whenever global or par-

titioned scheduling is adopted for scheduling threads, the same

policy is also adopted for intra-pool scheduling. Under global sched-

uling, the workload is enqueued in a single logical work-queue,
accessible from all the computing elements (i.e., from each thread

ϕi, j ∈ Φi )
1
. Conversely, partitioned scheduling mandates a sepa-

rate work-queue for each computing element, hence requiring a

partitioning phase. As reported in other works, both approaches

have advantages and disadvantages [4–6]. Work-queues are man-

aged in first-in-first-out order, i.e., no different fixed priorities are

assigned to the nodes of the same task, and nodes are dispatched

in a work-conserving manner.

Node types. This paper considers precedence constraints that can
be implemented either in a non-blocking or blocking manner. To

model the latter feature, a type xi ∈ X = {BF, BJ, BC, NB} is
associated with each node vi, j . A node of type BF (blocking fork)
originates precedence constraints with a blocking semantic, i.e., it

performs some computations, spawns child nodes, and then waits

for their completion on a synchronization barrier (e.g., see v1 in
function v1v5() of Listing 1). While waiting in the barrier, the

thread that is serving the execution of the node is suspended, e.g.,
as it happens when using condition variables. A node of type BJ
(blocking join) is always associated with another node of type BF.
It executes when the corresponding BF node is resumed after the

barrier (e.g., see v5 in function v1v5() of Listing 1). All nodes

vi,x ∈ Vi : xi,x < {BF, BJ} included in a sub-graph delimited by a

pair of nodes of type BF and BJ, respectively, are of type BC (child
of blocking nodes). Formally, let vi,f be a node of type BF and vi, j
be a node of type BJ, then ∀vi,x ∈ succ(vi,f ) ∩ pred(vi, j ),xi,k =
BC. Any other node is of type NB (non-blocking). All nodes are

assumed not to suspend or block due to other mechanisms other

than synchronization barriers. The node types introduced above

allow modeling the example presented in Listing 1, which can

represent the parallelization of an operation in TensorFlow when

performed by the Eigen library.

Concurrency. The total concurrency of a parallel task τi is defined
as the number of threads in Φi . Similarly, at any point in time t ,
the available concurrency l(t ,τi ) of a parallel task τi is defined
as the number of threads in Φi that are actually ready to execute

workload at time t , i.e., those that are not suspended on a block-

ing synchronization barrier. Please note that, whenever a node of

type BF completes its execution, the available concurrency is decre-

mented by one. Indeed, a suspended thread is not able to serve

workload until it is awaken. In a dual manner, the execution of a

BJ node increments the available concurrency by one.

Restrictions. The model considered in this work poses a restric-

tion on the structure of the DAG describing a task, motivated by

the DAG structures found in realistic software systems (such as

Eigen). Specifically, it is assumed that each pair of nodes of type BF
and BJ delimits a sub-graph whose internal nodes are not directly

connected to the rest of the graph. Formally, letV ′i ⊆ Vi be the set of
vertices of one of such sub-graphs, and let (vi,f ,vi, j ) be the pair of
vertices of type BF and BJ that delimitsV ′i . Then, it is required that:
(i) each inner node ofV ′i is not connected to nodes outside the sub-

graph, i.e., ∀vi,x ∈ V ′i \ {vi,f ,vi, j },∀vi,a ∈ Vi \V ′i ,@(vi,x ,vi,a ) ∈
Ei ∧@(vi,a ,vi,x ) ∈ Ei ; (ii) each edge outgoing fromvi,f arrives in a

1
Note that many practical implementations tend to replicate the behavior of global

scheduling with work stealing [17].



node of the same sub-graph, i.e., ∀vi,x ∈ Vi \V ′i ,@(vi,f ,vi,x ) ∈ Ei ;
and (iii) each incoming edge to vi, j starts from a node of the same

sub-graph, i.e., ∀vi,x ∈ Vi \ V ′i ,@(vi,x ,vi, j ) ∈ Ei . Finally, it is as-
sumed that such subgraphs cannot be nested.

3 PROVING THE ABSENCE OF DEADLOCKS
As mentioned in Section 1, the concurrent execution of multiple

nodes of type BF can lead to a deadlock. Intuitively, if for a given

task τi the available concurrency drops to zero, no thread ϕi, j ∈ Φi
can allow making progress in the task execution, hence causing a

stall. Lemma 1 formalizes this intuition.

Lemma 1. If
∃ t ≥ 0 : l(t ,τi ) = 0, (1)

then the execution of τi suffers from a deadlock.

Proof. The lemma directly follows by recalling the definition of

l(t ,τi ), i.e., the number of threads ϕi, j ∈ Φi available for executing
workload at time t . If there exists a point in time in which no thread

is available for executing nodes of τi , the overall graph execution

cannot make progress and a deadlock occurs. �

Lemma 1 reports a simple sufficient condition for deadlocks,

which is independent from the scheduling strategy (global or par-

titioned). Before discussing more specific sufficient conditions for

deadlocks, the definition of work-conserving scheduler is recalled,

adapting it to the case of thread pools in which the computing

resource is a thread (rather than a processor).

Definition 1. An intra-pool scheduler is said to be work-conserving
if it never idles one of the available threads when there exists pending
workload to execute, where a thread ϕi, j ∈ Φi is said to be avail-
able at time t if it is not suspended due to the execution of a node
vi, j ∈ Vi : xi, j = BF.

The notion of available thread is also introduced. Building upon

this definition, Lemma 2 presents a necessary condition for dead-

locks under global scheduling.

Lemma 2. Suppose that a thread pool Φi adopts global work-
conserving scheduling and that the execution of τi stalls at a certain
time. Then, Equation (1) holds.

Proof. The proof is done by contradiction. Assume that there

does not exist a time t ≥ 0 : l(t ,τi ) = 0 but the execution of τi stalls
at a certain time t∗. It follows that at time t∗ there must be l(t∗,τi ) >
0 available threads in Φi , i.e., ready to execute workload, but the

task is not making progress. Since work-conserving scheduling is

assumed, this is impossible and the lemma follows. �

Combining Lemmas 1 and 2, we conclude that Equation (1) is

necessary and sufficient under global scheduling.

When partitioned scheduling is adopted, the execution of a task

τi can also stall under less restrictive conditions with respect to

those related to global scheduling. Indeed, the execution of a task

can also stall as a consequence of the node-to-thread partitioning.

For instance, consider a node vi,x enqueued in the work-queue

of a thread ϕi,w after another node vi,y of type BF. Furthermore,

suppose that ϕi,w is suspended due to vi,y .
If vi,y waits for the completion of vi,x to be awaken (i.e., vi,x is

of type BC), then a deadlock occurs, as vi,x will never be executed,

because vi,y is before vi,x in the work-queue. Note that such sce-

narios can be avoided with an accurate node-to-thread partitioning,

and the following lemma provides a necessary condition for ob-

taining a deadlock-free partitioning. To help the presentation of

the lemma, it is necessary to introduce some accessory notation.

Consider a node vi,a of type BC, and let C(vi,a ) be the set of nodes
of type BF that may concurrently execute with vi,a , i.e., they are

not subject to precedence constraints with respect to vi,a : formally,

C(vi,a ) = {vi,x ∈ Vi : vi,x < {pred(vi,a )∪succ(vi,a )}∧xi,x = BF}.
(2)

Also, letF (vi,a ) be the node of type BF that waits for the completion

of vi,a , i.e., the one delimiting the corresponding sub-graph.

Lemma 3. Let

P(vi,a ) = {ϕi,y ∈ Φi : ∃vi,x ∈ {C(vi,a )∪F (vi,a )}∧T (vi,x ) = ϕi,y }

be the set of threads to which at least a node in C(vi,a ) ∪ F (vi,a ) is
allocated to. If Equation (1) does not hold and

∀vi,a ∈ V : xi,a = BC, T(vi,a ) < P(vi,a ) (3)

then no deadlock can occur during the execution of τi under partitioned
scheduling.

Proof. The proof is by contradiction. Suppose that Equation (1)

does not hold, Equation (3) is satisfied, but a deadlock occurs. Since

Equation (1) does not hold, at any point in time during the execution

of τi there exists at least one available thread. Hence, the deadlock
must be originated by a node of type BF that is waiting for the

completion of at least one node vi,a of type BC that is in turn

waiting in a work-queue of a suspended thread ϕi,w = T(vi,a ).
Thread ϕi,w must be suspended due to the execution of a node

vi,x of type BF, which must be either (i) one of those that may

concurrently execute with vi,a , or (ii) the one that is waiting for

the completion of vi,a . Note that nodes of case (i) are included in

the set C(vi,a ), while the node of case (ii) is F (vi,a ). The threads
to which such nodes are allocated to are those in the set P(vi,a ).
However, by Equation (3) ϕi,w is not included in P(vi,a ), hence
reaching a contradiction. The lemma follows. �

The lemmas proposed in this section can be applied on a per-task

basis: hence, the overall absence of deadlocks can be guaranteed by

applying them ∀τi ∈ Γ.
3.1 A lower bound to the available concurrency
The previous lemmas require verifying the condition∀t ≥ 0, l(t ,τi ) >
0, which involves a universal quantifier, and is hence difficult

to be applied in practice. In principle, one should dispose of the

value l(t ,τi ) for any possible schedule of the tasks. To overcome

this issue, this section proposes a method for computing a lower

bound to the available concurrency that is independent of time, i.e.,

∀t ≥ 0, l(τi ) ≤ l(t ,τi ). In this way, the lemmas can be applied in a

much simpler (but approximate) way by just checking the condition

l(τi ) > 0 for each task. Intuitively, the proposed strategy consists

in identifying the maximum number of nodes of type BF, denoted

as b(τi ), which can affect the execution of another node. Then, l(τi )

can be computed asm − b(τi ).

b(τi ) can be computed by recalling that, for each node vi,a ∈ Vi ,
the nodes of type BF that may affect the execution of vi,a are those



contained in the set X(vi,a ), where X(vi,a ) = C(vi,a ) (Eq. (2)) if

xi,a , BC, and X(vi,a ) = C(vi,a ) ∪ F (vi,a ) otherwise. Hence, b(τi )
equals to the maximum cardinality of set X(vi,a ) over all nodes
in the graph. Given a node, set X(vi,a ) can be computed in O(n2)
time [16], hence the overall computational complexity required for

computing l(τi ) is cubic in the number of nodes.

4 SCHEDULABILITY ANALYSIS
This section proposes two methods for analyzing the schedulability

of the task model proposed in this paper under both global and

partitioned scheduling. Despite the lemmas presented in Section 3

can be used to guarantee a deadlock-free execution, the presence

of blocking precedence constraints make schedulability analysis

particularly challenging. Due to space limits, this paper does not

propose novel fine-grained analysis techniques, but rather shows

how existing results can be adapted to handle the proposed model.

4.1 Global scheduling
This section shows how the analysis for DAG tasks presented in [14]

can be modified to account for limited concurrency. This analysis

aims at computing the response time Ri of each task. In this way,

a task set is deemed schedulable if ∀τi ∈ Γ ,Ri ≤ Di . Before

proceeding, it is necessary to recall some definitions from [14].

A path λi,k = (vi,s , . . . ,vi,e ) is an ordered sequence of nodes,

starting from the source and ending in the sink, where there is a

direct precedence constraint between any two adjacent nodes. For

each path, the function len(λi,k ) is defined to return its length, i.e.,

the sum of the WCETs of all the nodes in the path. The critical

path λ∗i is defined as the path with the longest length. Finally, the

volume of a task τi is defined as the sum of the WCETs of all

its nodes, i.e., vol(τi ) =
∑
vi, j ∈Vi Ci, j . The response time analysis

of [14] computes an upper-bound on the actual response time of

each DAG task τi as the sum of (i) the length of its critical path

λ∗i and (ii) the interference due to higher-priority tasks or nodes

vi, j < λ
∗
i , i.e., Ri ≤ len(λ∗i ) + Ii (Ri ), where Ii (L) is defined as the

cumulative time in which, in any interval of length L, there are
nodes belonging to the critical path of τi ready, but not executing
because all the available cores (i.e., threads of the pool in our case)

are busy. The analysis in [14] computes the interference Ii (L) by
leveraging a set of terms Ij,i (L), each denoting a bound on the

amount of workload generated by τj that can potentially interfere

with τi . Then, it exploits the work-conserving property for equally-

dividing the sum of such terms among all the available processors.

Unfortunately, in the limited-concurrency model, the number of

available threads varies over time due to the execution of nodes

of type BF and BJ, and hence the bounds of [14] may not work.

Lemma 4 provides a bound for the interference under the limited-

concurrency model.

Lemma 4. The interference experienced by a task τi in an arbi-
trary time window of length L when scheduled with a global work-
conserving fixed-priority algorithm is upper-bounded by

Ii (L) ≤
∑

τj ∈{hp(τi )∪τi }

Ij,i (L)

l(τi )
, (4)

where hp(τi ) is the set of tasks with higher priority than τi .

Proof. Without loss of generality, assume that a job of τi under
analysis is released at time 0. Consider an arbitrary time window

[t i
1
, t i
2
) ⊆ [0,L) in which τi is delayed (i.e., according to [14], τi is

receiving interference because its critical path λ∗i is delayed) and

there are l i
1
available threads in the τi ’s pool. Since τi is delayed in

[t i
1
, t i
2
), it means that each of the l i

1
threads is either preempted by

a higher-priority thread, or executing other nodes that are not part

of λ∗i . Hence, in [t
i
1
, t i
2
) the threads served (t i

2
− t i

1
) · l i

1
amount of

interfering workload. Generalizing this rationale to all X intervals

[t ik , t
i
k+1) in which τi is delayed and there are l ik available threads,

the total amount of interfering workload processed while τi is de-

layed amounts toW =
∑X
k=1(t

i
k+1 − t

i
k ) · l

i
k . Clearly, the interfering

workloadW cannot be larger that the total amount of interfering

workload that can insist in [0,L), i.e., I =
∑
τj ∈{hp(τi )∪τi } Ij,i (L).

Hence, it holdsW ≤ I. Also, since l(τi ) ≤ li,k ,∀k (by Sec. 3.1), it

holds

∑X
k=1(t

i
k+1−t

i
k )·l(τi ) ≤ W. Finally, note that the interference

suffered by τi is given by the sum of the length of the intervals in

which τi is interfered, i.e., Ii (L) =
∑X
k=1(t

i
k+1 − t

i
k ). Consequently,

it holds Ii (L) · l(τi ) ≤ W ≤ I, which can be rewritten as Eq. (4).

Hence the lemma follows. �

The interference Ij,i can be of two kinds: (i) the intra-task in-

terference due to nodes vi, j ∈ Vi \ λ
∗
i , and (ii) the inter-task in-

terference due to higher-priority tasks. The former is bounded

by Ii,i (L) ≤ vol(τi ) − len(τi ),∀L ≥ 0 (see [9, 14]), and hence is

not influenced by the presence of reduced concurrency. The latter

is computed by quantifying the amount of interfering workload

generated by the other tasks under a particular release pattern;

specifically, by considering a release jitter equal to Rj −vol(τj )/m,

so obtaining [14]: ∀j , i, Ij,i (L) ≤
⌈
L+Rj−vol (τj )/m

Tj

⌉
· vol(τj ).

Intuitively speaking, the term vol(τj )/m considers that the inter-

fering workload can be uniformly distributed across them threads

to maximize the jitter. However, this may be not possible when

the available concurrency varies over time. Nevertheless, note that

upper-bounding the available concurrency with m still yields a

valid upper-bound for the interference, as ∀l ∈ [l(τj ),m] it holds:⌈
L+Rj−vol (τj )/l

Tj

⌉
≤

⌈
L+Rj−vol (τj )/m

Tj

⌉
.

No other changes are required to the method proposed in [14]

to analyze the limited-concurrency model. Finally, note that these

adaptations may also work in the context of other response-time

analysis approaches for parallel tasks.

4.2 Partitioned scheduling
Besides deadlocks, under partitioned scheduling, the presence of

nodes of type BF can introduce additional delays whenever (i) a

thread is suspended due to the execution of a node of type BF and (ii)
other nodes are waiting in the work-queue of the same thread that

cannot make progress because it is suspended. This phenomenon is

denoted as reduced-concurrency delay. Existing analysis techniques

for the classical DAG task model fail in accounting for this phe-

nomenon and would hence produce an unsafe result. The objective

of this section is to propose a partitioning algorithm that aims at

avoiding—by construction—possible reduced-concurrency delays.

This is accomplished by segregating each node vi,f of type BF in a

different thread with respect to those used to serve the execution



Algorithm 1 Partitioning algorithm.

1: procedure Partitioning
2: for each τi ∈ Γ do
3: ∀vi, j ∈ Vi , T(vi, j ) ← ∅
4: for each vi, j ∈ Vi : xi, j , BJ do
5: ΦBF ← {ϕi,k : ∃vi,x ∈ C(vi, j ) ∪ F′(vi, j ) ∧ T(vi,x ) = ϕi,k }
6: if T(vi, j ) , ∅ ∧ T(vi, j ) ∈ ΦBF then
7: return FAILURE
8: if T(vi, j ) = ∅ ∧ |ΦBF | >=m then
9: return FAILURE
10: if T(vi, j ) = ∅ then
11: T(vi, j ) ← any ϕi,x ∈ {Φi \ ΦBF }
12: if (xi, j = BF) then
13: T(J(vi, j )) ← T(vi, j )
14: for each vi, f ∈ C(vi, j ) ∪ F′(vi, j ) : T(vi, f ) = ∅ do
15: Φ′BF ← {ϕi,k ∈ ϕi : ∃vi,x ∈ C(vi, f ) ∧ T(vi,x ) = ϕi,k }
16: if Φi \ {Φ′BF ∪ T(vi, j )} = ∅ then
17: return FAILURE
18: T(vi, f ) ← any Φi \ {Φ

′
BF ∪ T(vi, j )}

19: T(J(vi, f )) ← T(vi, f )
20: return SUCCESS

of the nodes that may be waiting for the completion of vi,f (i.e.,

enqueued in a work-queue after vi,f ). Once a partitioning of this
kind is obtained, then existing methods (e.g., [10]), can be used to

analyze a parallel task under the limited-concurrency model.

It is worth observing that the same principle of Lemma 3 can be

used to obtain such a partitioning. Indeed, by extending Equation (3)

to account for nodes of types in {BC, BF, NB}, it is possible to identify
the condition under which the allocation of such nodes cannot

generate reduced-concurrency delays. The only difference with

respect to Lemma 3 resides in a slight adaption to ensure consistency

with the notation: F (vi,a )must be replaced with function F ′(vi,a )
defined as F ′(vi,a ) = F (vi,a ), if vi,a is of type BC, and F ′(vi,a ) =
∅ otherwise. Also note that, since nodes of types BF and BJ are

introduced to model parts of the same function (see Listing 1), their

partitioning is forced to the same thread and hence there is no need

to test them with Equation (3). These observations allow designing

the partitioning algorithm reported in Algorithm 1.

The proposed approach incrementally assigns nodes to threads

(and hence to processors). For each task τi , the algorithm iterates

over all the nodes vi, j of the graph and computes the set ΦBF of

threads where nodes of type BF are allocated, since they may gen-

erate reduced-concurrency delay tovi, j . As mentioned in Lemma 3,

these threads either serve (i) nodes of type BF that may concurrently

execute with vi, j (see Eq. (2)) or (ii) when vi, j is a node of type BC,
the corresponding node of type BF.

If vi, j has already been allocated to a thread in ΦBF , then it may

suffer reduced-concurrency delay and the partitioning fails (line 7).

If it has not been allocated but the nodes in ΦBF are spread across

all threads, then it is not possible to avoid reduced-concurrency

delay and the partitioning fails (line 9). Otherwise, vi, j is allocated
to one of the remaining threads (line 11). Whenever vi, j is of type
BF, the algorithm also forces the allocation of its corresponding

node of type BJ (denoted with J(vi,f ) in the algorithm). Finally,

the algorithm allocates the nodes of type BF that may generate

reduced-concurrency delay to vi, j that have not yet been allocated.

To avoid reduced-concurrency delay, each of such nodes vi,f is

allocated to threads to which (i) vi, j is not allocated to, and (ii) the

nodes that may in turn generate reduced-concurrency delay to vi,f
(set Φ′BF at line 15) are not allocated to. If no threads of this kind

exist, the algorithm fails (line 17). The set C(vi, j ) ∪ F
′(vi, j ) can

be computed in O(|Vi |
2) [16] hence the computational complexity

required for applying the algorithm to a single task is O(|Vi |
4).

5 EXPERIMENTS
This section presents an experimental study that has been con-

ducted to assess the impact of reduced concurrency under global

and partitioned scheduling.

DAG tasks have been generated with the technique reported

in [14], which is not described here due to lack of space; please

refer to [14] for the details. This task generator has been extended

to be compliant with the model proposed in Section 2. In partic-

ular, each node vi, j has been associated with a type: whenever a

fork-join subgraph is generated, it has an associated probability

pBF = d
d+1 to be delimited by nodes of type BF and BJ, where d

denotes the depth (i.e., the degree of nesting in the fork-join graph,

with higher numbers representing deeper nodes) of the node in

the graph. Source and sink nodes are always assigned to type NB.
Similarly to [14], the WCET of each node was randomly gener-

ated in the interval [0, 100] with uniform distribution, d = 2, and

task utilizations were generated with the UUnifast algorithm [3]

by specifying a fixed number of tasks n and a target utilization

U =
∑
τi ∈Γ Ci/Ti , where Ci =

∑
vi, j ∈Vi Ci, j . Periods are obtained

as Ti = Ci ·Ui , and Di = Ti for all tasks.
Two types of experiments have been conducted. In the first one,

the analysis in [14], which targets global fixed-priority scheduling

of standard DAG-tasks, is compared against the one proposed in

Section 4. In the second one, Algorithm 1 is compared against the

case in which tasks are partitioned using the worst-fit heuristic

(with respect to the utilization of each processor). When a node

can be allocated in multiple threads according to Algorithm 1, one

of them is chosen with the worst-fit heuristic. Once a partitioning

was obtained, the analysis of Fonseca et al. [10] (in conjuction with

the SPLIT analysis for self-suspending tasks [10]) was used to test

the system schedulability. Clearly, when Algorithm 1 failed or the

worst-fit heuristic failed, the task set was deemed unschedulable.

Figure 2 shows six representative configurations for global and

partitioned scheduling, reported in insets (a)-(c)-(e) and (b)-(d)-(f),

respectively. The generation parameters are reported in the cap-

tions above the graphs. For each value in the graphs, 500 task sets

were tested. In the experiments where the maximum available con-

currency lmax have been varied, the generation enforced that the

number of nodes of type BF of a task that may be concurrently

executed is included in the interval [bmin ,bmax ], thus allowing

to explicitly control the reduction of concurrency in the genera-

tion. Tasks that violated this requirement or which are deemed not

schedulable by to the schedulability test that does not consider the

reduction of concurrency ( [14] for global scheduling and [10] for

partitioned) were discarded and re-generated. Note that, in this case,

the lower bound to the available concurrency is always included in

the interval [lmin , lmax ] = [m − bmax ,m − bmin ]. When the other

parameters are varied (i.e.,m and n), no task is discarded. In Fig-

ure 2 (a) and (b) lmax has been varied form = 8. Figure 2 (a) targets

global scheduling and shows that the schedulability ratio (i.e., the

percentage of schedulable task sets) starts decreasing abruptly for

lmax ≥ 4. Figure 2 (b) shows that partitioned scheduling exhibits a

more graceful degradation of the schedulability as lmax decreases.
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Figure 2: Schedulability ratio when lmax ,m, and n are varied.

This is attributed to the fact that, while the analysis for global sched-

uling considers a constant reduction of concurrency for each task,

Algorithm 1 considers the reduction of concurrency locally to each

node. Figure 2 (c) and (d) show that the schedulability achieved in

the presence of reduced concurrency is lower when the number of

threads is low, whereas it is almost comparable with the original

schedulability test form ≥ 8. Finally, Figure 2 (e) and (f) illustrate

how schedulability decreases with the number of tasks: this is be-

cause with more tasks it is more likely to have some of them with

a largely-reduced available concurrency. Overall, this experimental

study highlights that new analysis methods (as those presented

in this paper) are needed to analyze parallel tasks implemented

with thread pools, as the optimism introduced by state-of-the-art

analysis techniques is quite consistent.

6 RELATEDWORK
The literature related to real-time analysis techniques for parallel

tasks is quite vast: hence, only a selection of the related papers

is discussed in the following. Most works adopted the DAG task

model and targeted global scheduling [9, 14], federated schedul-

ing [11, 13, 20], and partitioned scheduling [7, 10]. Other works

targeted different task models: some examples are the fork-join [12],

dataflow [15], and gang [8] task models. However, none of them

focused on modeling implementations with thread pools and condi-

tion variables, nor addressed issues related to reduced concurrency.

The analysis of specific implementations of parallel tasks has

been studied in some works, mainly targeting the OpenMP [2]

framework. For instance, Serrano et al. [17] studied tied and untied
sub-tasks in OpenMP, proposing a schedulability analysis for the

case of a single DAG task composed of only untied sub-tasks. A

tied sub-task represents a sub-graph whose nodes must all execute

on a single thread, whereas untied sub-tasks have no additional

constraints. Finally, Sun et al. [18] proposed an improved scheduling

policy for OpenMP that improves schedulability for a single DAG

task with tied sub-tasks.

7 CONCLUSIONS
This paper presented a novel scheduling model for parallel real-time

tasks that allows modeling the case in which they are implemented

with thread pools and condition variables. Techniques to verify

the absence of deadlocks and analyze the task set schedulability

have been proposed for both global and partitioned scheduling.

An experimental study showed how the reduction of concurrency

affects schedulability. Future work will be aimed at improving the

proposed analysis techniques, e.g., by explicitly considering the

variability of the available concurrency during tasks execution and

by designing improved partitioning algorithms.
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