
Scheduling Replica Voting in Fixed-Priority
Real-Time Systems
Pietro Fara #Ñ

Scuola Superiore Sant’Anna, Pisa, Italy

Gabriele Serra # Ñ

Scuola Superiore Sant’Anna, Pisa, Italy

Alessandro Biondi #Ñ

Scuola Superiore Sant’Anna, Pisa,Italy

Ciro Donnarumma #

Rete Ferroviaria Italiana S.P.A., Rome, Italy
Scuola Superiore Sant’Anna, Pisa, Italy

Abstract
Reliability and safety are mandatory requirements for safety-critical embedded systems. The design of
a fault-tolerant system is required in many fields (e.g., railway, automotive, avionics) and redundancy
helps in achieving this goal. Redundant systems typically leverage voting techniques applied to the
outputs produced by tasks to detect and even tolerate failures.

This paper studies the integration of distributed voting protocols in fixed-priority real-time
systems from a scheduling perspective. It analyzes two scheduling strategies for implementing voting.
One is attractive and friendly for software developers and based on suspending the task execution
until the replica provides the data to be voted. The other one is inspired by the Logical Execution
Time (LET) paradigm and requires introducing additional tasks in the system to accomplish voting-
related activities. Queuing and delays introduced by inter-replica communication interfaces are also
analyzed.

Experimental results are finally presented to compare the two strategies, showing that LET-
inspired voting is much more predictable and hence more suitable than the other strategy for
fixed-priority real-time systems.

2012 ACM Subject Classification Computer systems organization → Dependable and fault-tolerant
systems and networks; Computer systems organization → Real-time systems

Keywords and phrases Real-time systems, safety-critical systems, voting, redundancy, fault-tolerance,
logical execution time

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2021.13

1 Introduction

Embedded computing systems have become more and more pervasive in our lives: they
are used to fulfill evermore functions, a lot of which are related to the safety of people and
the surrounding environment. Indeed, embedded systems are nowadays widely present in
avionic, railway, automotive, and military applications in a way that their failures could lead
to catastrophic consequences. As these systems are related to our safety, they are commonly
called safety-critical embedded systems.

In most application domains there exist a lot of regulations to which a safety-critical
system must comply [11, 12]. Such regulations mandate the use of certain techniques to
improve the reliability and the safety of a system. These techniques can be mainly classified
into two categories: fault avoidance (also known as fault intolerance) and fault tolerance.
Fault avoidance techniques aim at drastically reducing by design the probability of failure.
This approach is generally not viable for complex systems because, even by performing a

© Pietro Fara, Gabriele Serra, Alessandro Biondi, and Ciro Donnarumma;
licensed under Creative Commons License CC-BY 4.0

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Björn B. Brandenburg; Article No. 13; pp. 13:1–13:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pietro.fara@santannapisa.it
https://retis.santannapisa.it/~pietro.fara
https://orcid.org/0000-0002-6290-9231
mailto:gabriele.serra@santannapisa.it
https://gabrieleserra.ml
https://orcid.org/0000-0003-0225-6731
mailto:alessandro.biondi@santannapisa.it
https://retis.sssup.it/~a.biondi/
mailto:c.donnarumma@rfi.it
https://doi.org/10.4230/LIPIcs.ECRTS.2021.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


13:2 Scheduling Replica Voting in Fixed-Priority RTS

meticulous design, it could be impossible to eliminate all the internal sources of faults, so that
the system will eventually experience a failure. On the other hand, fault tolerance techniques
aim at making a system capable of properly react to faults, avoiding that they lead to a
failure of the functionality offered by the system [31]. Redundancy is a widespread approach
to build fault-tolerant systems. Redundant systems are built by several subsystems, called
replicas, that perform the same computations over time. The replication allows the detection
and/or the masking of a fault through the voting (i.e., comparison) of the results computed
by all replicas. A redundant architecture is said to be r-out-of-n (with r ≤ n) if it is built by
n replicas, r of which have to properly work to make the whole system failure-free [30].

The 2-out-of-2 architecture is the most used redundant architecture in the railway domain.
It is an architecture that enables the detection of faults: if the results provided by the two
replicas are different, a fault is detected and the system goes into a fail-safe state (e.g.,
shutdown). As described by Shenghua and Li [29], in the railway domain, the 2-out-of-2
architecture is employed in a hierarchical framework where the entire system with two replicas
is further replicated to build a 1-out-of-2 system of systems. In normal conditions, only
the primary system provides the output to the external environment but, as soon as the
voting in the primary system detects a fault, the primary is shut down and the secondary
system (in hot standby) takes over. As a result, this architecture is capable of masking faults
increasing system availability.

Another architecture used in many domains, such as avionics, is the 2-out-of-3 (also
known as Triple Modular Redundancy) [17, 32]. It implements majority-voting and is known
to be capable of providing both fault-detection and fault-masking [31]: if one replica is faulty
(i.e., its output is different by the other two), a fault will be detected and the system output
will continue to rely on the outputs of the other two replicas.

Even though several other redundancy schemes have been proposed, most of them are
based on the same idea: replicated systems perform the same computations on the same
inputs, sending through a communication network their results to be voted. Voting can be
either centralized or distributed. In the former case, voting is implemented on a centralized
node that collects and votes all the results provided by the replicated subsystems. In this
case, the voter itself is clearly a single-point-of-failure. In the latter case, each replica has its
voter, either implemented with a hardware component or with a software algorithm, and
votes its data against the one produced by the other replicas.

In this work, we focus on distributed voting implemented with software techniques, which
is a more and more widespread approach (e.g., in the railway domain) to achieve flexibility
and contain cost in realizing fault-tolerant systems.

The implementation of distributed voting requires dealing with the transmission of
data among replicas, the waiting and synchronization among replicas, and the execution
of the voting protocol itself. These aspects clearly impact on the timing properties of
real-time tasks and call for the investigation of different strategies to suitably schedule all
voting-related activities.

1.1 This work
Informed by experience in safety-critical software for the railway industry, in this work we
analyze and compare two different strategies for scheduling voting-related activities under
2-out-of-2 redundancy. The first one corresponds to a case that is particularly attractive
and friendly for software developers: data is transmitted among replicas whenever they are
produced by the tasks and each task waits for the reception of the data sent by the other
replica by suspending its execution (e.g., by using a classical condition variable). When tasks



P. Fara, G. Serra, A. Biondi, and C. Donnarumma 13:3

are resumed, the data to be voted is available and they can proceed with the execution of
the voting protocol and then complete it. The second one is a new approach proposed in
this work inspired by the Logical Execution Time (LET) [19,28] paradigm where voting is
delayed at the end of the tasks’ periods and delegated to dedicated tasks. Although the
first approach may be preferable by software developers, this work shows that it introduces
several sources of unpredictability that make it particularly challenging to be analyzed from
a worst-case perspective.

In summary, this work makes the following contributions:
It provides a response-time analysis for real-time tasks under two strategies for scheduling
voting-related activities, one of the two being novel and proposed in this work.
It provides an analysis of queuing effects and worst-case transmission delays introduced
during inter-replica communications.
It compares the two strategies by means of an experimental evaluation.

To the best of our records, this is the first work that analyzes in detail the timing
properties of distributed voting protocols implemented upon a fixed-priority real-time system
with periodic multitasking. Software engineers from the railway industry collaborated in this
work. Since this work only addresses how voting operations are scheduled, other aspects such
as fault detection and recovery strategies are not discussed as they depend on the target
application and the adopted voting protocol.

Paper structure. The remainder of this paper is organized as follows. Section 2 reviews the
related work. Section 3 presents the system model by considering both tasks and inter-replica
communication. Section 4 formalizes the behavior of the two voting strategies. Section 5
analyzes queuing effects and delays in inter-replica communications. Section 6 provides
response-time analysis under the two voting strategies. Section 7 presents the experimental
results and Section 8 concludes the paper.

2 Related Work

Several works in the literature studied fault-tolerant systems from both a hardware and
software perspective.

Davies et al. [14] proposed a hardware-level solution, called Synchronization Voting, for
achieving inter-replica synchronization in a redundant system, overcoming the need for a
common external clock, which is a source of common-mode failures. Their approach consists
of using a set of synchronizer modules (one for each replica) that, by exchanging mutual
feedback, allow replicas to correct for their inevitable drift. McConnel et al. [27] continued
this work by presenting voter designs for different signaling conventions (transition, level, and
pulse). These papers present elegant solutions to implement inter-replica synchronization
and voting at the hardware-level, but they do not consider the effects of multitasking on
the replicated systems, where the voting has to be implemented on the outputs produced
by tasks. Eris et al. [16] focused on railway systems (with 2-out-of-2 redundancy) with
diverse programming. Their approach allows the voter to move the system from a safe state
toward a less safe state only when all replicas agree. They also analyzed the effects of the
synchronization issues (i.e., race conditions) on the railway signaling protocols by proposing
a solution based on a centralized voter acting as a replica coordinator. Again, multitasking
has not been considered.

Some real-time scheduling strategies, aimed at improving the system resilience against
transient faults, have been proposed by Kim and Shin [21], and Kwak and Kim [24]. They are
based on executing different copies of the same task at different times so that the probability

ECRTS 2021



13:4 Scheduling Replica Voting in Fixed-Priority RTS

ICI ICI

RX FIFORX FIFO

ReceiveReceive

TX FIFOTX FIFO

TransmitTransmit

RX FIFORX FIFO

ReceiveReceive

TX FIFOTX FIFO

TransmitTransmit

Figure 1 An overview of the system architecture.

that a common transient fault affects all of them is reduced. Back et al. [1] proposed
TL-NMR, a task-level N Modular Redundancy schema, which allows the execution of several
copies of tasks in parallel upon multiprocessor platforms scheduled by Global Fixed-Priority.
The authors provided an algorithm that allows selecting the number of copies for each task
along with a schedulability test based on the response-time analysis. However, these papers,
focused only on the schedulability of the tasks’ copies, without considering issues related to
inter-replica synchronization and the impact on the scheduling of voting protocols. Another
work that improves the fault-tolerance in the presence of environmentally-induced faults is
due to Gujarati et al. [18]. The authors proposed an algorithm, along with a suspension-free
model of its real-time implementation (based on the Liu and Layland task model), that
allows a distributed real-time system to solve the Interactive Consistency problem in the
presence of Byzantine faults. The authors also provided a detailed real-time-aware reliability
analysis of the proposed solution.

Bernat et al. [4, 5] presented a real-time fault-tolerant architecture capable of handling
transient overload conditions through the firm real-time task model. The proposed archi-
tecture comprises multiple replicated subsystems, each executing a copy of the same task
set, and a dedicated processor for the voting called Redundancy eXecutive (RX). Whenever
a task finishes its execution, it sends the computed results to the RX and suspends its
execution. As soon as the RX has collected enough replicas’ results (some replicas could be
failed), executes the voting protocol and sends the voted output back to the tasks’ copies,
allowing them to resume their computation. Similar to our work, the authors also provided
a detailed schedulability analysis based on the response-time analysis. They consider every
contribution to the tasks’ execution time, such as the communication time spent into the
results exchanging and executing the voting algorithm on the RX subsystem. These works
have several limitations. First, they consider one scheduling scheme for voting only. Second,
they rely on a dedicated subsystem to execute the voting algorithm, introducing a higher
system cost and requiring to deal with the RX subsystem’s potential faults. Third, they do
not provide any experimental evaluation.

From the perspective of voting protocols, researchers consolidated several algorithms such
as the ones presented in [2, 3, 7, 8, 14,25,33].



P. Fara, G. Serra, A. Biondi, and C. Donnarumma 13:5

3 System model

This work considers a 2-out-of-2 redundant system with two replicas R1 and R2. Each replica
Rk consists in a uni-processor platform that executes a set Γk = {τk

1 , . . . , τ
k
n} of n periodic

tasks. Each periodic task τk
i is characterized by a worst-case execution time (WCET) Ck

i ,
a release period T k

i , and a relative deadline Dk
i ≤ T k

i . Tasks are scheduled according to
fixed-priority preemptive scheduling. The set of higher-priority tasks with respect to τk

i that
execute on the same replica Rk is denoted by hp(i, k).

Each periodic task τ1
i running in the primary is associated with a corresponding periodic

task τ2
i running in the secondary and the two tasks form a replica pair ri = {τ1

i , τ
2
i }. The tasks

in a replica pair share the same period and deadline, i.e., T 1
i = T 2

i and D1
i = D2

i , ∀i = 1, . . . , n.
Given a replica Rk, the other replica is referred to as Ror(k), where or(k) = (k + 1) mod 2.
The clocks of the two replicas are synchronized so that the release of the periodic tasks in
each replica pair is synchronized. The WCET of the tasks can be different from replica to
replica, i.e., C1

i can be larger or shorter than C2
i for some pairs of tasks τ1

i and τ2
i .

Inter-replica communication and voting. The two replicas are connected via two wired
inter-replica communication interfaces (ICI): one for sending the data from R1 to R2, and
one for sending data from R2 to R1. An overview of the system architecture is shown in
Figure 1. For instance, the ICI can be realized with serial peripheral interfaces (SPI) for
transmitting data and digital lines connected to general-purpose input/output (GPIO) for
the synchronization signals.

Data transmission via the ICI occurs by acting on memory-mapped device registers. The
ICI provides an output (resp., input) buffer organized as a first-in-first-out (FIFO) queue
of Q elements, each of size b bytes. The ICI also provides synchronization signals to notify
events among replicas (e.g., the completion of a computation). The minimum read/write
rate in accessing such registers is denoted by β (in bytes per time unit), while the maximum
one is denoted by β. The minimum transmission rate guaranteed by the ICI is denoted by α
(in bytes per time unit). The minimum read/write rate to access memory is γ1. For instance,
this means that a task that intends to send x bytes via one of the ICI spends (i) at most
x/γ time units to read the data to be sent from memory, (ii) at least x/β time units and at
most x/β time units of its computation time to fill the ICI queue with data, and (iii) that
such data will be transmitted to the other replica in at most x/α time units.

Periodic tasks may produce vital outputs, i.e., data that are critical for the system. Both
the tasks τ1

i and τ2
i of each replica pair produce the same set of vital outputs. Before the

completion of each job, each periodic task has to vote its vital outputs (if any) with the
corresponding task of its replica pair. Voting is implemented via a distributed voting protocol
[26] that exchanges data via the ICI.

Both the tasks in a replica pair ri exchange Mi data packets with a fixed size of b bytes
that contain the data to be voted.

Tasks that intend to send data via an ICI that has its queue full, busy-wait until at least
one slot in the queue becomes empty. In reception, the ICI can either operate in polling
mode or in interrupt mode. In the former case, tasks receive packets by actively sampling
the ICI queue, possibly wasting processor cycles if the queue is empty. In the latter case,

1 The authors acknowledge that memory write times are generally shorter than read times. A common
rate γ has been considered just for the sake of simplicity as it does not particularly affect the results of
this paper.

ECRTS 2021



13:6 Scheduling Replica Voting in Fixed-Priority RTS

the ICI notify receipt of packets through interrupts. The ICI are programmed to raise one
interrupt every time a packet is received. The corresponding interrupt service routine (ISR)
is in charge of reading the packets in the queue, by acting on the ICI device registers, and
copying them into a memory buffer shared with the task interested by the packet (interrupts
that are raised while the ISR is pending are ignored and the corresponding packets are
processed by the same). Each ISR introduces an overhead of at most σISR time units due to
the management of the ISR activation and completion (i.e., this overhead does not include
the time required to process packets).

The time that τk
i spends to perform computations lasts at most Ek

i time units. This
parameter does not account for packet transmissions and receptions and the execution
of the voting protocol. The transmissions performed by each job of the tasks consist of
copying the vital outputs from memory into the transmission registers of the ICI. For tasks
of the replica pair ri such transmissions take at most V Ti = Mi · PT time units, where
PT =

(
b
γ + b

β

)
. The maximum time needed to receive the packets of the tasks of ri and store

them in a shared-memory buffer, to be later consumed by the voting protocol, is denoted by
V Ri = Mi · PT .

The utilization of the ICI, intended as the amount of bytes transmitted per time unit in
the long run, is defined as U ICI =

∑n
i=1(Mib)/Ti. To avoid dealing with cases in which the

ICI is overutilized, which clearly makes the system not feasible, we require α > U ICI and
β > U ICI.

After the two tasks in a replica pair ri exchanged the data to be voted, a voting protocol
can be executed, which takes at most V Pi time units.

The data transmission is performed by using one of the ICI in a mutually-exclusive
manner. To this end, each task may have to acquire and release a lock before and after
transmitting each packet, respectively. The immediate priority ceiling (IPC) locking protocol
is adopted. The case in which all tasks have to vote data is equivalent to a resource shared
by all tasks: hence, under the IPC protocol, the critical sections to access the communication
interface are equivalent to non-preemptive sections.

4 Voting implementations

This work is focused on analyzing and comparing two schemes to schedule the execution of
the voting protocol and the related data transmissions.

The first one, named passive waiting, is an approach that can be implemented with
a minimal impact on general-purpose programming paradigms, as it corresponds to the
case in which a task sequentially performs the following three operations: (i) compute, (ii)
wait for the other replica to complete by self-suspending its execution, and (iii) execute the
voting protocol. Note that passive waiting can be implemented with classical semaphores
and condition variables. The second one is inspired by the Logical Execution Time (LET)
paradigm and requires introducing additional tasks in the system.

The following rules characterize the behavior of each of the considered scheduling schemes:
Transmission Rule: it defines how data transmission is performed among replicas.
Reception Rule: it defines the behavior of the replica that receives the data.
Waiting Rule: it defines how a task τk

i has to wait for the corresponding task τor(k)
i in

the other replica.
Voting Rule: it defines how the voting protocol is executed.



P. Fara, G. Serra, A. Biondi, and C. Donnarumma 13:7

4.1 Passive waiting
Under passive waiting tasks are composed of three serialized phases: (i) an execution phase
(E), in which the task computes the data to be voted; (ii) a transmission phase (VT) where
vital outputs are transmitted to the other replica; and (iii) a final phase where the voting
protocol (VP) is executed. The reception of packets is handled by ISRs (the ICI are used in
interrupt mode).

ISR

τ
1

1

τ
1

2

ISR

τ
2

1

τ
2

2

R1

R2

time

time

1 1

1 1 2 2

1 1 2 2

1 1

TransmissionExecution Reception Voting Self-Suspended

Figure 2 Example schedule of two replica-pairs under passive waiting.

Transmission rule. When completing its computations, each task τk
i transmits Mi packets

of data to be voted on by the other replica. For each packet to transmit, the task first
acquires the lock on the communication interface, then transmits the packet, and finally
releases the lock.

Reception rule. Whenever a replica Rk receives a data packet, an ISR is executed by
preempting any task in execution in Rk, i.e., the ISRs run at the highest priority level and
are not affected by the locking of the communication interface as two independent ICI are
used for transmission and reception. The ISRs perform the operations specified in Section 3.
For each task τk

i , when the last of the Mi packets sent by τor(k)
i (i.e., from the other replica

Ror(k)) is received, the ISR that handles the packet notifies τk
i that all its data is ready in a

shared-memory buffer to be voted on.

Waiting rule. When a task τk
i completes its transmission phase it self-suspends its execution

until all the Mi packets sent by the other replica task τor(k)
i are received and processed by

the corresponding ISRs. The self-suspension is skipped if all Mi packets have already been
received and processed by ISRs.

Voting rule. The voting protocol is executed after all the Mi packets have been received
and processed by ISRs, i.e., after the eventual self-suspension enforced by the voting rule.
The task terminates after the execution of the voting protocol.

ECRTS 2021



13:8 Scheduling Replica Voting in Fixed-Priority RTS

An example schedule under passive waiting is illustrated in Figure 2. In this example,
two replica-pairs are needing to vote two packets each. The first job of τ1

1 , according to
the waiting rule, does not experience any suspension as it already received all the packets
from the other replica when it becomes ready to vote. On the other hand, the first job of
τ2

1 completes its execution and transmission phases before τ1
1 , so it self-suspends until the

delivery of the second packet. As soon as the ISR of replica R2 handles the last packet, τ2
1 is

awakened to execute the voting protocol. The behaviors of the second jobs of the previous
tasks are dual: task τ2

1 completes without any suspension, instead, τ1
1 self-suspends to wait

for the other replica. Note that, at its release time, the second job of τ2
1 is blocked by τ2

2
because the latter acquires the lock on the ICI to transmit a packet.

Note that with this approach the ICI queues may contain packets of different tasks at
the same time. Indeed, some task τk

i can start sending packets and then be preempted
by another task τk

j that sends its packets, and so on. As such, packets must contain the
identifier of the sender task to be correctly dispatched by ISRs in the other replica.

4.2 LET-inspired voting
The underlying idea of this scheduling scheme is to get rid of both the waiting times and the
any-time data transmission of the preceding scheme by confining all voting-related activities
in predefined time intervals.

Together with the task set Γk, each replica Rk serves the execution of a set Υk =
{υk

1 , . . . , υ
k
n} of voting tasks, one for each task τk

i , each of them executing at the same priority
equal to a value higher than the priority of any task in Γk. Voting tasks are executed with the
same period of the corresponding (regular) task, i.e., T k,V

i = T k
i ,∀i,∀k. Tasks communicate

with their corresponding voting tasks via shared-memory buffers. A task completes as soon
as it finishes its computations, leaving the data to be voted in a shared-memory buffer. Then,
the voting-related activities are delegated to the corresponding voting task υk

i , which is
synchronously activated with τk

i . Note that, being υk
i executed at a higher priority than τk

i ,
it always executes before τk

i . As such, each j-th job of the voting task υk
i accomplishes the

voting-related activities for the preceding job, i.e., the (j − 1)-th one, of τk
i . Voting tasks

are synchronously-released among replicas and executed in the same order on both replicas
(voting tasks are selected according to their identifier whenever they are simultaneously
pending). The execution of the voting tasks is also synchronized among replicas, meaning
that a rendez-vous point is provided at their completion so that each voting task υk

i finishes
together to υor(k)

i . The latter synchronization is implemented by means of the synchronization
signals offered by the ICI.

Voting tasks access the ICI in polling mode (no ICI-related ISRs are present under this
voting scheme). The voting tasks perform the transmission and reception of packets in
inverse order on the two replicas, as stated by the following rules.

Transmission rule. After completing their computations, the tasks terminate their execution
by leaving the packets to be transmitted in memory buffers shared with their corresponding
voting tasks. The transmission is then delegated to the voting tasks. On replica R1, the
voting task υ1

i of τ1
i transmits Mi packets to R2 as soon as it is activated. On replica R2,

the voting task υ2
i of τ2

i transmits Mi packets to R1 after it received the packets sent by υ1
i .

Receiving rule. On replica R1, the voting task υ1
i of τ1

i receives (in polling mode) Mi

packets sent from R2 after it transmitted its packets. On replica R2, the voting task υ2
i of

τ2
i receives (in polling mode) Mi packets from R1 as soon as it is activated.



P. Fara, G. Serra, A. Biondi, and C. Donnarumma 13:9

τ
1

1

τ
1

2

R1

time

v
1

1

v
1

2

τ
2

1

τ
2

2

R2

time

v
2

1

v
2

2

TransmissionExecution Reception Voting

Figure 3 Example schedule under LET-inspired voting for a system with two replica pairs.

Waiting rule. None: when a task has finished its execution phase it terminates.

Voting rule. The voting protocol is executed by voting tasks after they completed both the
packet transmission and reception. When the voting protocol terminates, the voting tasks
busy waits until the corresponding voting task on the other replica sends a signal through
the ICI synchronization line to notify the completion of the voting protocol.

The behavior of this LET-inspired scheduling scheme for voting is illustrated in Figure 3.
Note that, since voting tasks are synchronously released together with their corresponding
regular tasks and have a higher priority, voting is guaranteed to occur before starting
executing the next job of regular tasks. In this way, voting is still logically occurring in the
temporal context given by the period of the tasks that generate the data to be voted.

5 Inter-replica communication

This section deals with the analysis of inter-replica communications employing the ICI. Two
problems are addressed. First, since under passive waiting packets can be sent at any time
and that the communication is asynchronous (the ICI works in interrupt mode), packets
of different tasks can be enqueued together in the ICI queues. This makes the worst-case
transmission delay experienced by the packets of a certain task particularly challenging to
be bounded, especially if considering the additional delays introduced by the waiting for the
emptying of the queue. For this reason, we derive an analysis to ensure that the ICI queues
are never full, hence getting rid of these additional delays by construction. Subsequently, we
also provide a bound on the maximum delay introduced by the ICI.

5.1 Queuing analysis
We begin by bounding the amount of data sent within arbitrary time windows.

ECRTS 2021



13:10 Scheduling Replica Voting in Fixed-Priority RTS

▶ Lemma 1. In any time window of length t, the tasks can provide in the ICI queue at most
g(t) bytes of data, where

g(t) = min
{

n∑
i=1

⌈
t+ Ti

Ti

⌉
Mib, βt

}
. (1)

Proof. In any time window of length t a periodic task in ri can release at most ⌈(t+ Ti)/Ti⌉
jobs (e.g., see [9], Ch. 5). Each job of the tasks in ri sends at most Mi packets, each of size
b bytes. Hence the first term in the minimum of Eq. (1). Note that the amount of data the
tasks can send within a time window is also limited by the maximum rate with which the
ICI queue can be filled, which is given by β. Hence the lemma follows. ◀

The above lemma can then be used to derive a safe condition under which the ICI queues
are never full.

▶ Lemma 2. No task can find the ICI queues full if

∀t > 0, g(t) − αt ≤ Qb. (2)

Proof. Assume by contradiction that at a certain time instant t1 a task finds an ICI queue
full. Let t0 < t1 be the latest time at which the ICI queue has been empty and let t = t1 − t0.
It holds that (t0, t1] is an interval of length t in which the ICI has always been busy with
packets to transmit to the other replica. Let x(t) be the amount of bytes issued by the tasks
to be provided in the ICI queue in (t0, t1]. Note that during this interval the ICI must have
sent at least αt bytes: hence, if the queue is full at time t1 it holds that x(t) − αt > Qb.

By Lemma 1, in any time window of length t the cumulative amount of bytes provided in
the ICI queue is bounded by g(t). Hence, g(t) ≥ x(t), which implies g(t) − αt > Qb. This
contradicts Eq. (2). Hence the lemma follows. ◀

Note that Lemma 2 does not consist in a practical test as any possible value of t shall be
checked. This issue is solved below by limiting the test to a finite number of check-points.

▶ Lemma 3. Lemma 2 holds also if ∀t ∈ Φ, g(t) − αt ≤ Qb, where

Φ =
n⋃

i=1
{kTi + ϵ ≤ t∗, k = 0, 1, 2, . . .} ∪ {ψ} (3)

with

t∗ =
2

∑n
i=1 Mib

α−
∑n

i=1
Mib
Ti

, ψ =
{
t ≤ t∗ |

n∑
i=1

⌈
t+ Ti

Ti

⌉
Mib = βt

}
, (4)

and ϵ > 0 arbitrarily small.

Proof. We prove the lemma by showing that function g(t) − αt can be maximal only for
values t ∈ Φ. First note that the minimum of two functions is upper bounded by the upper
bound of one of the two functions. Hence g(t) ≤ G(t) =

∑n
i=1

(
t+Ti

Ti
+ 1

)
Mib.

Note that both G(t) and αt are two lines with slope U ICI =
∑n

i=1(Mib)/Ti and α,
respectively. Recall that α > U ICI (see Section 3). Therefore G(t) and αt intersect and, from
their intersection on, we have g(t) ≤ G(t) ≤ αt and hence also g(t) − αt ≤ 0.

The intersection occurs for the value t∗ such that G(t∗) = αt∗ and can be computed
by solving the latter equality with respect to t∗, hence getting the expression at the left of
Eq. (4). Therefore, for values of t > t∗ function g(t) − αt cannot be maximal.



P. Fara, G. Serra, A. Biondi, and C. Donnarumma 13:11

If g(t) =
∑n

i=1

⌈
t+Ti

Ti

⌉
Mib note that function g(t) − αt can be maximal only for those

values of t that correspond to a step of the ceiling term of g(t). The values are of the form
t = kTi + ϵ with k being a non-negative integer and ϵ > 0 arbitrarily small. Conversely, if
g(t) = βt, being both the latter function and αt monotonic increasing, function g(t) − αt

can be maximal only for those values of t for which at t′ = t+ ϵ (when α ≤ β) or t′ = t− ϵ

(when α > β), with ϵ > 0 arbitrarily small, it holds g(t′) ̸= βt. These values of t must be an
intersection between the two components that define g(t), which are those of the set ψ at
the right of Eq. (4). Hence the lemma follows. ◀

5.2 Delay analysis
▶ Definition 4. The ICI-related delay ∆ICI is an upper bound on the maximum time that
can elapse from the time a packet is stored in the ICI queue by the sender task to the time
the packet is available to be read from the ICI queue at the receiver.

In the following the ICI-related delay is studied with queuing theory for networks [6] [23].
Under this approach, the ICI-related delay is decomposed as

∆ICI = dprop + dtrans + dproc + dqueue,

where dprop is the propagation delay, dtrans is the transmission delay, dproc is the processing
delay at the receiver, and dqueue is the queuing delay. We proceed by individually bounding
the above delay components.

Propagation delay. This delay corresponds to the physical propagation of the data along
the wires that connect the two replicas. Clearly, it depends on both the technology used
to realize the ICI and the wire length, as well as other physical properties such as the wire
material. For instance, a typical SPI has a propagation delay of 5 ns/m [22], which is hence
mostly negligible in an integrated system with short wiring. Hence dprop ≈ 0.

Transmission delay. This delay is simply bounded by the minimum guaranteed transmission
rate α of the ICI as dtrans ≤ b/α.

Processing delay. This delay corresponds to the time taken by the ICI peripheral to make
a packet available to be read from the ICI queue after it has been received. For instance, for
SPI it is typically in the order of a very few microseconds (e.g., see [34]) and is hence mostly
negligible. Thus dproc ≈ 0.

Queuing delay. This delay corresponds to the maximum time some data can remain in the
ICI queues before being actually transmitted. In order to bound this delay component, the
maximum number of packets that can be enqueued in the ICI queues at any time must be
bounded first.

▶ Lemma 5. The ICI queues never contain more than QMAX packets, where

QMAX = max
t∈Φ

{⌈
g(t) − αt

b

⌉}
(5)

and Φ is defined as in Lemma 3.

ECRTS 2021



13:12 Scheduling Replica Voting in Fixed-Priority RTS

Proof. Assume by contradiction that at a certain time instant t1 there are more than
QMAX packets in an ICI queue. Let t0 < t1 be the latest time at which the ICI queue has
been empty and let t = t1 − t0. Similarly as argued in the proof of Lemma 2 this implies
g(t) − αt > QMAXb, which in turn also implies

⌈
g(t)−αt

b

⌉
> QMAX. By Lemma 3, function

g(t) −αt can be maximal only for values t ∈ Φ, hence Eq. (5) also gives the maximal value of⌈
g(t)−αt

b

⌉
that must be both equal and larger to QMAX. This is a contradiction. The lemma

follows. ◀

The maximum time a packet can be delayed while being in the queue is guaranteed not
to be larger than the cumulative transmission time of all the preceding packets in the queue,
which can be at most QMAX − 1. Hence

dqueue ≤ (QMAX − 1) · b/α. (6)

6 Response-time analysis

This section focuses on bounding the worst-case response time of tasks under both passive
waiting and LET-inspired voting.

6.1 Passive waiting
Following Section 4, besides its regular execution, which lasts at most Ek

i time units, each
task also executes the transfer of the data to be voted into the ICI registers and the voting
protocol, which last at most V Ti and V Pi time units, respectively, on both replicas. Hence,
the cumulative WCET of task τk

i is given by

Ck
i = Ek

i + V Ti + V Pi. (7)

The analysis of tasks under passive waiting is split into two parts. First we bound the
partial response time of a task, which is defined as the response time up to the copy into the
ICI registers of the data to be voted, i.e., just before the start for the waiting of the other
replica. Subsequently, the response time of the whole task is bounded as a function of the
partial response time.

Up to the partial response time, task τk
i can be delayed by (i) its own execution and the

transfer of the data to be voted into the ICI registers, which can last at most Ek
i + V Ti time

units, (ii) the interference generated by high-priority tasks, (iii) the blocking time generated
by low-priority tasks, and (iv) the interference generated by the ISRs (which run at higher
priorities). We proceed by bounding these components individually.

Note that, under passive waiting, tasks behave as self-suspending tasks [13]. As such,
high-priority interference can be bounded utilizing a state-of-the-art result provided that the
WCET bound of Equation (7) is used.

▶ Lemma 6. Under passive waiting, the high-priority interference generated to a job of task
τi by high-priority tasks in any interval of length t is bounded by

Ik,hp
i (t) =

∑
τk

j
∈hp(i,k)

⌈
t+Rk

j − Ck
j

Tj

⌉
· Ck

j ,

where Rk
j is an upper bound on the response time of τk

j .



P. Fara, G. Serra, A. Biondi, and C. Donnarumma 13:13

Proof. Follows by [13] (Theorem 1). ◀

Now, we proceed by bounding the non-preemptive blocking generated by low-priority
tasks because of the locking of the ICI.

▶ Lemma 7. Under passive waiting, a job of task τi can be blocked at most twice, one before
its partial response time and one after, and each time by at most PT time units.

Proof. Due to the transmission rule under passive waiting (Sec. 4.1), a task can lock one
of the ICI to transmit a packet, hence entering a non-preemptive section that can delay a
higher-priority task. As the lock is released after the packet is stored in the ICI registers,
the non-preemptive section can last at most PT time units. Tasks can be prevented from
execution due to non-preemptive blocking (i) at their release, and (ii) when resuming their
execution after self-suspensions, which occurs after their partial response time. Case (ii) can
happen only once as tasks suspend once to wait for the completion of the replica task. Hence
the lemma follows. ◀

▶ Lemma 8. Let PRk

j be an upper bound on the partial response time of task τk
j . Under

passive waiting, the interference generated to a job of task τk
i , in any interval of length t, by

ISRs that handle packets for τk
j is bounded by

Ik,ISR
i,j (t) =

 t+ PR
or(k)
j + ∆ICI

Tj

 ·Mj · (σISR + PT ).

Proof. Consider an arbitrary time interval [0, t] and a replica Rk. ISRs are activated by
packets sent by jobs of tasks running in the other replica Ror(k). Each job of task τor(k)

j in
Ror(k) can send at most Mj packets, each requiring PT time units to be read by ISRs in Rk.
Each job of task τor(k)

j can also activate at most Mj ISRs in Rk, one per packet sent, each
introducing an overhead of at most σISR time units. Overall, the total ISR-related workload
generated by a job τ

or(k)
j is bounded by Mj · (σISR + PT ).

Now, note that tasks can send packets only before the occurrence of their partial response
time. Hence, a job of task τor(k)

j released before time −(PRk

j + ∆ICI) cannot activate an ISR
in Rk during [0, t] as its packets would have already been sent and transmitted before the
beginning of the interval. Hence, only jobs of τor(k)

j released in interval [−(PRk

j + ∆ICI), t]

may activate ISRs in [0, t]. This means that there are most
⌈

t+P R
or(k)
j +∆ICI

Tj

⌉
jobs of τor(k)

j

that can activate ISRs in Rk during [0, t]. Hence the lemma follows. ◀

Bounds on contributions (i)-(iv) mentioned above are hence now available. Following
classical response-time analysis, a bound on the worst-case partial response time PRk

i of
each task τk

i can then be computed as the least positive fixed point of the recurrence:

PRk
i = Ek

i + V Ti + Ik,hp
i (PRk

i ) + PT +
n∑

j=1
Ik,ISR

i,j (PRk
i ). (8)

Note that Equation (8) uses the interference bound of Lemma 8, which in turn requires
the knowledge of an upper bound on the partial response time PRk

j that is to be computed
by Equation (8), hence introducing a circular dependency. This issue can be solved with
a typical refinement algorithm for response-time bounds starting from a safe value (e.g.,
see [10]), such as the task deadline.

It is now possible to bound the total response time of the tasks by bounding the worst-case
response time of the execution of the voting protocol.

ECRTS 2021



13:14 Scheduling Replica Voting in Fixed-Priority RTS

▶ Lemma 9. After at most

Jk
i = max{PRk

i , PR
or(k)
i } + ∆ICI +QMAX · (σISR + PT ) (9)

time units from the task release, the voting protocol of task τk
i is ready to start executing.

Proof. Given the task behavior under passive waiting specified in Section 4.1, the voting
protocol of task τk

i can start executing only after that (i) all its Mi packets have been sent
to the other replica, and (ii) all packets sent by the replica task τor(k)

i have been received
and handled by ISRs.

Let us consider times related to the release of τk
i . At time max{PRk

i , PR
or(k)
i } both

τk
i and τ

or(k)
i have sent their packets by definition of partial response time. The last

packet sent by τ
or(k)
i will take at most ∆ICI to be transmitted to Rk. Hence, at time

max{PRk
i , PR

or(k)
i } + ∆ICI all packets sent by τ

or(k)
i must already have been received by

Rk. When the last of such packets is received it may still be the case that there are some
other packets ahead in the ICI queue to be processed: by Lemma 5, they can be at most
QMAX − 1 and each of them can take at most (σISR + PT ) time units to be processed as
discussed in the proof of Lemma 8. At most other (σISR + PT ) time units are needed to
process the last packet sent by τor(k)

i . Hence the lemma follows. ◀

The above lemma allows studying the execution of the voting protocol of each task τk
i as

a sub-task with jitter Jk
i whose completion corresponds to the completion of τk

i .

▶ Theorem 10. The response time of task τk
i is bounded by Jk

i +Rk
i , where Rk

i is the least
positive fixed point of the following recurrence:

Rk
i = V Pi + PT + Ik,hp

i (Rk
i ) +

n∑
j=1
j ̸=i

Ik,ISR
i,j (Rk

i ). (10)

Proof. Task τk
i completes when the execution of the voting protocol completes. The latter

lasts at most V Pi time units and can be delayed by (i) non-preemptive blocking, (ii) the
execution of high-priority tasks, and (iii) the execution of ISRs. By Lemma 7, non-preemptive
blocking is no larger than PT time units. By Lemma 6, high-priority task interference is
bounded by Ik,hp

i (t). Note that only ISRs that handle packets of other tasks τk
j ̸= τk

i can
interfere with the execution of the voting protocol as the latter becomes eligible for execution
only when all packets of τk

i have been received. Hence, by Lemma 8, the last term in Eq. (10)
bounds the ISR interference.

Due to the fact that all the phenomena that can delay the execution of the voting protocol
are safely bounded, by standard response-time analysis the least positive fixed point of
Eq. (10) bounds the largest amount of time the execution of the voting protocol can take to
complete from the time it becomes ready to execute. Therefore, after recalling Lemma 9,
Jk

i +Rk
i is a safe response time and the theorem follows. ◀

6.2 LET-inspired voting
Under the LET-inspired scheduling scheme for voting, the tasks compute their results and
terminate without undertaking any voting-related activity. Therefore, the WCET of each
task τk

i can be computed as just Ck
i = Ek

i .
Conversely, the voting tasks (i) receive the data produced by the other replica, (ii)

transmit the data to the other replica, (iii) execute the voting protocol, and (iv) finally wait
for the completion of the corresponding voting task on the other replica. As specified in



P. Fara, G. Serra, A. Biondi, and C. Donnarumma 13:15

Section 4.2, voting tasks are synchronized among replicas: being synchronously released and
synchronously terminated, the execution of the voting tasks running on the two replicas
perfectly overlaps in time. This allows bounding the WCET of the voting tasks as follows.

▶ Theorem 11. The WCET of voting task υk
i is bounded by

Ck,V
i = 2

(
V Ti + Mib

α
+ V Ri

)
+ V Pi. (11)

Proof. Following the behavior specified in Section 4.2, voting tasks execute the transmission
and reception of packets in different orders. We then separately study the voting tasks on
the two replicas. On R1, υ1

i first executes the transmission and then the reception. The
time taken to perform these operations is due to (i) the actual copies to and from the ICI
device registers and (ii) the eventual busy waiting either because the ICI queue is full during
transmission or because the ICI queue is empty during the reception. Contribution (i) can
be at most V Ti + V Ri time units.

Since voting tasks are synchronously executed on the two replicas and the transmission and
reception phases are performed in inverse orders on the two replicas, when υ1

i is transmitting
packets υ2

i can continuously make progress in receiving them, and vice versa. Furthermore,
since the completion of voting tasks is synchronized among replicas, the ICI queues are
guaranteed to be empty whenever the voting tasks are activated. Hence, during the execution
of υ1

i and υ2
i only packets related to replica pair ri can be present in the ICI queues. This

means that υ2
i can take at most Mib

α + V Ri time units to receive the packets sent by υ1
i and

υ2
i can take at most Mib

α + V Ti time units to transmit its packets to υ1
i . These terms bound

the corresponding waiting times experienced because the ICI queues are either full or empty.
Hence, contribution (ii) is bounded by 2 Mib

α + V Ri + V Ti.
Finally, since the reception is performed in polling mode, when υ1

i starts executing the
voting protocol υ2

i must already have transmitted its packets, otherwise the reception phase
of υ1

i would not be completed. Hence, υ1
i can either execute the voting protocol for at

most V Pi time units or wait for the completion of just the execution of the voting protocol
in R2, which lasts anyway at most V Pi time units. Overall, υ1

i can execute for at most
(V Ti + V Ri) + (2 Mib

α + V Ri + V Ti) + V Pi time units, hence matching Eq. (11).
Now, let us consider υ2

i . For the same reasons discussed above, this task can wait at
most Mib

α + V Ti time units during the reception of packets performed at the beginning
of the task. At the time t∗ at which υ2

i received all packets it is guaranteed that υ1
i has

completed its transmission phase. Hence, υ2
i cannot wait for more than the time υ1

i can
take to complete its reception phase and the execution of the voting protocol, which is
bounded by Mib

α + V Ri + V Ti + V Pi as discussed above. From t∗ on, υ2
i can also executes

its transmission phase and voting protocol for no more than V Ti + V Pi time units. Hence,
the total time υ2

i can take from t∗ to its completion, either busy waiting or executing, is
bounded by max{ Mib

α + V Ri + V Ti + V Pi, V Ti + V Pi} = Mib
α + V Ri + V Ti + V Pi. Hence,

the total execution time of υ2
i is bounded again by Eq. (11). The theorem follows. ◀

With the above lemma in place, it is now possible to bound the worst-case response time
of the tasks as follows. The worst-case response time of task τk

i is bounded by the least
positive solution of the following recurrence:

Rk
i = Ck

i + Ik,hp
i (Rk

i ) + Ik,V
i (Rk

i ),

where Ik,hp
i (Rk

i ) is a bound on the interference generated by high-priority tasks and Ik,V
i (Rk

i )
is a bound on the interference generated by voting tasks.

ECRTS 2021



13:16 Scheduling Replica Voting in Fixed-Priority RTS

▶ Lemma 12. It holds Ik,hp
i (Rk

i ) =
∑

τk
j

∈hp(i,k)

⌈
Rk

i

T k
j

⌉
· Ck

j .

Proof. Under LET-inspired voting, tasks τk
i behave as regular periodic tasks (note that no

suspensions are involved). Thus, the lemma follows from standard response-time analysis for
periodic tasks under preemptive fixed-priority scheduling [20]. ◀

▶ Lemma 13. It holds Ik,V
i (Rk

i ) =
∑

υk
j

∈Υk

⌈
Rk

i

T k,V
j

⌉
· Ck,V

j .

Proof. Voting tasks have a higher priority than any task in Γk, hence they all generate
high-priority interference to τk

i . They are also periodically activated and execute as standard
periodic tasks. Hence the lemma follows as for Lemma 12 provided that the WCET bound
of Theorem 11 is used. ◀

6.3 Discussion
As it can be noted from the above sections, the analysis of voting with passive waiting is
much more challenging than the one under LET-inspired voting due to the various sources of
unpredictability introduced by that scheme. In addition, passive waiting requires the analysis
of packet queuing presented in Section 5 to deal with any-time packet transmissions.

On the other hand, passive waiting is relatively simple to implement from the perspective of
the programmer and does not require introducing additional tasks in the system. Furthermore,
it introduces limited priority inversion related to voting: indeed, a high-priority task can
be delayed by voting-related activities of low-priority tasks only by the transmission of one
packet and the reception of packets by means of ISRs.

Conversely, LET-inspired voting does not require the packet queuing analysis since the
voting data is communicated in precise time intervals during which the interested voting tasks
are synchronously executed on both replicas. Nevertheless, this approach tends to introduce
larger priority inversion because all voting-related activities are executed by LET tasks at
the highest priority. Hence, the whole transmission and reception of packets as well as the
voting protocol of a low-priority task can interfere with the execution of a high-priority task.

7 Experimental results

This section reports the results of an experimental evaluation that was conducted to compare
those two voting scheduling strategies studied in this paper.

Workload generation. Given a target task set utilization U and a number of tasks n, N
task sets have been generated with the Emberson et al.’s generator [15], which was configured
to randomly select the task periods in the range [Tmin, Tmax] with log-uniform distribution.
The task sets Γ1 and Γ2 of the two replicas were then generated as follows. For each replica
pair ri, one replica was randomly selected to be the slower in executing it, say Rk, then
E

or(k)
i was set to the WCET value obtained by the task generator and Ek

i = E
or(k)
i · ξ, where

ξ was randomly selected in [ξmin, 1] with uniform distribution. Note that, since the WCET
provided by the task generator is used to control the worst-case duration of the execution
phase of tasks (parameter Ek

i ), the utilization U used to control the generation refers to
the maximum per-replica utilization without voting-related activities. A random number
⌊pvital · n⌋ of tasks, with pvital randomly chosen in [0.6, 0.8] with uniform distribution, were
selected to be vital in each replica pair, and hence to require voting. For each vital replica pair,
the number of packets Mi was randomly generated in [0,Mmax] with uniform distribution.



P. Fara, G. Serra, A. Biondi, and C. Donnarumma 13:17

Table 1 Nominal setting of the parameters that control the workload generation.

Parameter Value Description
N 500 Number of task sets
n 10 Number of tasks per replica

pvital [0.6, 0.8] Vital task ratio for each replica pair
T min 5000 Task minimum period (µs)
T max 500000 Task maximum period (µs)
ξmin 0.85 Minimum faster-replica speed coefficient

Mmax 5 Maximum number of packets sent by a task
α 15 ICI bandwidth (MB/s)
b 16 Number of bytes per packet
Q 8 ICI queue size (packets)
γ 13.24 Minimum read/write rate to access memory (MB/s)
β 13.24 Minimum read/write rate to access device registers (MB/s)
β 56.47 Maximum read/write rate to access device registers (MB/s)

σISR 2 ISR overhead (µs)
λVP 50 Time required to vote a packet of data (µs)

Parameters V Ri and V Ti were computed accordingly as a function of Mi. The WCET of the
voting protocol was also generated as V Pi = λVP ·Mi where λVP ≥ 0 is another parameter
that control the generation. For non-vital replica pairs we set V Pi = V Ti = V Ri = 0. All
tasks were assigned implicit deadlines (i.e., Di = Ti).

To configure the device register and memory access rates β, β, and γ we took the
Xilinx Ultrascale+ SoC (considering the Cortex-A cores running at 1.2 GHz) as a reference
platform, from which we obtain respectively, 725, 170, and 170 clock cycles by profiling. The
configuration of other parameters that are not mentioned above is varied in the experiments
presented next and, whenever mentioned, is kept fixed to the nominal setting reported in
Table 1.

Experiments. A first experiment was conducted by varying the utilization without voting
U and testing N = 500 task sets per utilization value. The results under four representative
configurations are reported in Figure 4. The plots report the schedulability performance of the
proposed analysis techniques for voting with passive waiting (Section 4.1) and LET-inspired
voting (Section 4.2), as well as for the system without voting activities (used as a reference
upper bound of the schedulability performance). These results were obtained under the
setting reported above each plot, where the parameters that are not mentioned were set to
the nominal configuration of Table 1.

As it can be noted from the plots, LET-inspired voting always outperforms passive waiting.
Passive waiting is strongly penalized in the presence of short ICI queues (see Fig. 4(a) vs.
Fig. 4(b)) due to the queuing analysis, while LET-inspired voting is almost insensitive to the
ICI queue size as expected. The performance of both approaches degrades as the number
of packets sent by tasks increases (see Fig. 4(c) vs. Fig. 4(d)), but LET-inspired voting is
capable of guaranteeing much better schedulability performance than passive waiting as
Mmax increases.

Another experiment was conducted to study the dependency of the schedulability perfor-
mance of the two approaches as a function of other parameters different than U . The results
are reported in Figure 5, where 500 task sets have been tested for each value of the varied
parameters. Figure 5(a) illustrates the dependency of the schedulability performance on the
minimum task period Tmin in a condition of high system load (U= 0.9). This figure clearly

ECRTS 2021



13:18 Scheduling Replica Voting in Fixed-Priority RTS

0.0 0.2 0.4 0.6 0.8 1.0

50

100

U

(a) Q = 8, Mmax = 5

0.0 0.2 0.4 0.6 0.8 1.0

50

100

U

(b) Q = 20, Mmax = 5

0.0 0.2 0.4 0.6 0.8 1.0

50

100

U

(c) Q = 20, Mmax = 6

0.0 0.2 0.4 0.6 0.8 1.0

50

100

U

(d) Q = 20, Mmax = 8

Passive Waiting LET-inspired No voting

Figure 4 Schedulability ratio (y-axis of the plots) as a function of the voting-unrelated utilization
U used to control the task set generation under four representative configurations.

2 4 6 8 10 12

50

100

T min (milliseconds)

(a) Q = 20, Mmax = 5, U = 0.9, B = 16

2 4 6 8 10 12

50

100

Mmax

(b) Q = 20, U = 0.9, B = 16

100 200 300 400 500 600

50

100

λVP

(c) Q = 20, U = 0.7, Mmax = 5

6 8 10 12 14 16

50

100

Q

(d) U = 0.7, Mmax = 5

Passive Waiting LET-inspired No voting

Figure 5 Schedulability ratio (y-axis of the plots) as a function of T min, Mmax, λVP, and Q

under four representative configurations.



P. Fara, G. Serra, A. Biondi, and C. Donnarumma 13:19

6 8 10 12 14 16 18

50

100

n

(a) Q = 10, Mmax = 5, U = 0.7

6 8 10 12 14 16 18

50

100

n

(b) Q = 20, Mmax = 5, U = 0.7

6 8 10 12 14 16 18

50

100

n

(c) Q = 10, Mmax = 5, U = 0.9

6 8 10 12 14 16 18

50

100

n

(d) Q = 20, Mmax = 5, U = 0.9

Passive Waiting LET-inspired No voting

Figure 6 Schedulability ratio (y-axis of the plots) as a function of n under four representative
configurations.

shows that LET-inspired voting is penalized in the presence of very short task periods due
to the priority-inversion generated by voting tasks discussed in Section 6.3. Figures 5(b)
and 5(c) show how the performance of both approaches degrades as either Mmax or λVP

increases, and that the gap between the two reduces for large values of these parameters.
Finally, Figure 5(d) confirms that passive waiting exhibits very poor performance in the
presence of short ICI queues and that LET-inspired voting is insensitive to this parameter.
The last experiment was conducted to assess how the schedulability ratio of both approaches
varies as a function of the number of tasks in the tested task sets. Figure 6(a) shows that
the performance of passive waiting quickly degrades by increasing the number of tasks while
LET-inspired voting is not affected by the size of the task set. Figure 6(b) reports the results
under the same configuration of Figure 6(a) but considering larger ICI queues: in this case,
the performance of passive waiting definitively improves but is still lower than the one of
LET-inspired voting. Furthermore, Figure 6(c) and Figure 6(d) show that the performance
of both approaches decreases as the number of tasks increases at high utilization (U = 0.9).
Nevertheless, LET-inspired voting always outperforms passive waiting in all the tested cases.

8 Conclusion and future work

This paper studied two scheduling strategies for distributed voting protocols in 2-out-of-2
redundant real-time systems, namely passive waiting (based on task self-suspensions to wait
for the other replica) and LET-inspired voting. Both queuing and delays related to inter-
replica communication interfaces have been studied. Response-time analysis for real-time
tasks under the two strategies has been presented. The pros and cons of the two scheduling
strategies have also been discussed. The two strategies have been experimentally compared
in terms of schedulability performance. The experimental results revealed that LET-inspired
voting is always preferable to passive waiting, exhibiting even a 100% performance gap

ECRTS 2021



13:20 Scheduling Replica Voting in Fixed-Priority RTS

in the presence of short packet queues of inter-replica communication interfaces. In other
configurations with longer queues, LET-inspired voting is also capable of scheduling up to
five more times task sets than passive waiting.

Future work should investigate the possibility of improving the analysis of passive waiting,
both in terms of packet queuing and response times, and on the design of improved scheduling
strategies that can better control the priority inversion introduced by LET-inspired voting.

References
1 Jaemin Baek, Jeonghyun Baek, Jeeheon Yoo, and Hyeongboo Baek. An n-modular redundancy

framework incorporating response-time analysis on multiprocessor platforms. Symmetry,
11(8):960, 2019.

2 Julian M Bass. Voting in real-time distributed computer control systems. PhD thesis, University
of Sheffield, 1995.

3 H Benítez-Pérez, G Latif-Shabgahi, HA Thompson, S Bennett, PJ Fleming, and JM Bass.
Integration and comparison of fdi and fault masking features in embedded systems. IFAC
Proceedings Volumes, 32(2):7712–7717, 1999.

4 Guillem Bernat, Jose Miro-Julia, and Julian Proenza. A technique to analyze the tolerance to
transient overloads of a fault-tolerant real-time system. In Proceedings 1997 High-Assurance
Engineering Workshop, pages 221–226. IEEE, 1997.

5 Guillem Bernat, Jose Miro-Julia, Julian Proenza, et al. Fixed priority schedulability analysis
of a distributed real-time fault tolerant architecture. In PDPTA, pages 479–487, 1997.

6 Dimitri Bertsekas and Robert Gallager. Data Networks (2nd Ed.). Prentice-Hall, Inc., USA,
1992.

7 DM Blough and GF Sullivan. Voting using predispositions. IEEE Transactions on reliability,
43(4):604–616, 1994.

8 Douglas M Blough and Gregory F Sullivan. A comparison of voting strategies for fault-tolerant
distributed systems. In Proceedings Ninth Symposium on Reliable Distributed Systems, pages
136–145. IEEE, 1990.

9 B. Brandenburg. Scheduling and locking in multiprocessor real-time operating systems. In
Ph.D. dissertation, The University of North Carolina at Chapel Hill, 2011.

10 D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo. Partitioned fixed-priority scheduling of
parallel tasks without preemptions. In 2018 IEEE Real-Time Systems Symposium (RTSS),
pages 421–433, 2018. doi:10.1109/RTSS.2018.00056.

11 EN CEI. Cei en 50126-1. Railway Applications - The Specification and Demonstration of
Reliability, Availability, Maintainability and Safety (RAMS). Part 1: Generic RAMS Process,
2019.

12 EN CEI. Cei en 60730-1. Automatic electrical controls - Part1: General requirements, 2019.
13 J. Chen, G. Nelissen, and W. Huang. A unifying response time analysis framework for dynamic

self-suspending tasks. In 2016 28th Euromicro Conference on Real-Time Systems (ECRTS),
pages 61–71, 2016. doi:10.1109/ECRTS.2016.31.

14 Daniel Davies and John F. Wakerly. Synchronization and matching in redundant systems.
IEEE Computer Architecture Letters, 27(06):531–539, 1978.

15 P. Emberson, R. Stafford, and R.I. Davis. Techniques for the synthesis of multiprocessor
tasksets. In 1st International Workshop on Analysis Tools and Methodologies for Embedded
and Real-time Systems (WATERS), pages 6–11, July 2010.

16 Oytun Eriş, Uğur Yıldırım, Mustafa S Durmuş, Mehmet T Söylemez, and Salman Kurtulan.
N-version programming for railway interlocking systems: Synchronization and voting strategy.
IFAC Proceedings Volumes, 45(24):177–180, 2012.

17 Saurabh Gohil, Aravind Basavalingarajaiah, and Varadharajan Ramachandran. Redundancy
management and synchronization in avionics communication products. In 2011 Integrated

https://doi.org/10.1109/RTSS.2018.00056
https://doi.org/10.1109/ECRTS.2016.31


P. Fara, G. Serra, A. Biondi, and C. Donnarumma 13:21

Communications, Navigation, and Surveillance Conference Proceedings, pages C3–1. IEEE,
2011.

18 Arpan Gujarati, Sergey Bozhko, and Björn B Brandenburg. Real-time replica consistency
over ethernet with reliability bounds. In 2020 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 376–389. IEEE, 2020.

19 T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: a time-triggered language for
embedded programming. Proceedings of the IEEE, 91(1):84–99, 2003. doi:10.1109/JPROC.
2002.805825.

20 M. Joseph and P. Pandya. Finding Response Times in a Real-Time System. The Computer
Journal, 29(5):390–395, January 1986. doi:10.1093/comjnl/29.5.390.

21 Hagbae Kim and Kang G Shin. Sequencing tasks to minimize the effects of near-coincident
faults in tmr controller computers. IEEE transactions on computers, 45(11):1331–1337, 1996.

22 Thomas Kugelstadt. Extending the spi bus for long-distance communication. Analog Applica-
tions Journal, 2011. URL: https://www.ti.com/lit/an/slyt441/slyt441.pdf.

23 J.F. Kurose and K.W. Ross. Computer Networking: A Top-Down Approach. Pearson Education,
Limited, 2010. URL: https://books.google.it/books?id=2hv3PgAACAAJ.

24 Seong Woo Kwak and Byung Kook Kim. Task-scheduling strategies for reliable tmr controllers
using task grouping and assignment. IEEE Transactions on Reliability, 49(4):355–362, 2000.

25 G Latif-Shabgahi, JM Bass, and S Bennett. Complete disagreement in redundant real-time
control applications. IFAC Proceedings Volumes, 31(4):223–228, 1998.

26 G Latif-Shabgahi, Julian M Bass, and Stuart Bennett. A taxonomy for software voting
algorithms used in safety-critical systems. IEEE Transactions on Reliability, 53(3):319–328,
2004.

27 Stephen R McConnel and Daniel P Siewiorek. Synchronization and voting. IEEE Transactions
on Computers, 100(2):161–164, 1981.

28 P. Pazzaglia, D. Casini, A. Biondi, and M. Di Natale. Optimal memory allocation and
scheduling for dma data transfers under the let paradigm. In 58th Design Automation
Conference (DAC), 2021.

29 Dai Shenghua and Li Yishi. Research on 2-out-of-2 multiplying 2 redundancy system used in
high-speed train. In 2011 IEEE International Conference on Computer Science and Automation
Engineering, volume 2, pages 483–486. IEEE, 2011.

30 Martin L Shooman. Reliability of computer systems and networks. Wiley Online Library, 2002.
31 Daniel Siewiorek and Robert Swarz. Reliable computer systems: design and evaluatuion.

Digital Press, 2017.
32 Daniel P Siewiorek and Priya Narasimhan. Fault-tolerant architectures for space and avionics

applications. NASA Ames Research http://ic. arc. nasa. gov/projects/ishem/Papers/Siewi,
2005.

33 Zhijun Tong and Richard Y Kain. Vote assignments in weighted voting mechanisms. IEEE
Transactions on Computers, 40(5):664–667, 1991.

34 Xilinx. Zynq-7000 soc: Dc and ac switching characteristics - ds191, 2018. URL: https://www.
xilinx.com/support/documentation/data_sheets/ds191-XC7Z030-XC7Z045-data-sheet.
pdf#G1940899.

ECRTS 2021

https://doi.org/10.1109/JPROC.2002.805825
https://doi.org/10.1109/JPROC.2002.805825
https://doi.org/10.1093/comjnl/29.5.390
https://www.ti.com/lit/an/slyt441/slyt441.pdf
https://books.google.it/books?id=2hv3PgAACAAJ
https://www.xilinx.com/support/documentation/data_sheets/ds191-XC7Z030-XC7Z045-data-sheet.pdf#G1940899
https://www.xilinx.com/support/documentation/data_sheets/ds191-XC7Z030-XC7Z045-data-sheet.pdf#G1940899
https://www.xilinx.com/support/documentation/data_sheets/ds191-XC7Z030-XC7Z045-data-sheet.pdf#G1940899

	1 Introduction
	1.1 This work

	2 Related Work
	3 System model
	4 Voting implementations
	4.1 Passive waiting
	4.2 LET-inspired voting

	5 Inter-replica communication
	5.1 Queuing analysis
	5.2 Delay analysis

	6 Response-time analysis
	6.1 Passive waiting
	6.2 LET-inspired voting
	6.3 Discussion

	7 Experimental results
	8 Conclusion and future work

