
Response-Time Analysis for Self-Suspending Tasks
Under EDF Scheduling
Federico Aromolo
Scuola Superiore Sant’Anna, Pisa, Italy

Alessandro Biondi
Scuola Superiore Sant’Anna, Pisa, Italy

Geoffrey Nelissen
Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract
The self-suspending task model proved to be particularly effective in capturing the timing behavior
of real-time systems characterized by complex execution patterns, such as computation offloading to
hardware accelerators, inter-core synchronization by means of multiprocessor locking protocols, and
highly parallel computation. Most of the existing results for the timing analysis of self-suspending
tasks do not support the widely adopted Earliest Deadline First (EDF) scheduling algorithm, being
instead primarily focused on fixed-priority scheduling. This paper presents a response-time analysis
for constrained-deadline self-suspending tasks scheduled under EDF on a uniprocessor system.
The proposed analysis is based on a model transformation from self-suspending sporadic tasks to
sporadic tasks with jitter, which can then be analyzed using a state-of-the-art analysis method for
EDF scheduling. Experimental results are presented to compare the performance of the proposed
technique in terms of schedulability ratio with that of the pessimistic suspension-oblivious approach
and with a less general technique for task sets with implicit deadlines.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Software
and its engineering → Real-time schedulability

Keywords and phrases Real-Time Systems, Schedulability Analysis, Self-Suspending Tasks, EDF
Scheduling

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.13

Supplementary Material Software (ECRTS 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.1.5

1 Introduction

Modern embedded software systems are characterized by execution behaviors that are
becoming increasingly complex. For instance, with the emergence of heterogeneous computing
platforms that combine scalar multiprocessors with specialized hardware accelerators such
as Field-Programmable Gate Arrays (FPGAs) and Graphics Processing Units (GPUs), the
possibility of speeding up compute-intensive operations by offloading some computational
activities to the accelerators has become commonplace. Complex execution behaviors also
arise in multiprocessing due to inter-core synchronization. For example, this is the case for
locking protocols that regulate the access to resources that are shared by tasks running on
different processors, or for parallel tasks that dispatch computational activities upon multiple
processors, with some of those activities being subject to precedence constraints specified
according to a graph-based topology.

Such execution behaviors share the common pattern that some of the computational
activities in the system may need to wait for some event to occur before continuing with their
execution. In particular, for the case of computation offloading to hardware accelerators,

C
o
n
si
st

en
t *
Complete * W

ell D
o
cu
m
ented * Easy t

o R

eu
se
 *

 *
 Evaluated

 *
 E
C
R
T
S
 *

 Ar
tifact *

 A
E

© Federico Aromolo, Alessandro Biondi, and Geoffrey Nelissen;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 13; pp. 13:1–13:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECRTS.2022.13
https://doi.org/10.4230/DARTS.8.1.5
https://doi.org/10.4230/DARTS.8.1.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Response-Time Analysis for Self-Suspending Tasks Under EDF Scheduling

the task performing the offloading must wait for the event signaling the completion of the
accelerated workload. Instead, in the case of locking protocols, a task requesting access to a
shared resource has to wait for the permission to access that resource in accordance to the
specifics of the protocol. Finally, in the presence of precedence constraints, a subtask may
have to wait for its predecessor subtasks to complete before starting its execution.

Since the delays incurred by a task when waiting for such events to occur may be
significant, the typical implementation forces the task to relinquish the processor by having
it suspend itself until the expected event occurs, as a way to avoid wasting processor time.
The self-suspending task model was introduced to deal with the timing analysis of systems
involving tasks that may suspend themselves to wait for an event to occur. This model has
been extensively studied during the last decade, and proved to be a particularly effective
tool to analyze the complex execution patterns exhibited by modern embedded systems from
the point of view of their timing behavior [8].

Despite the effectiveness of EDF in dealing with both uniprocessor and multiprocessor
scheduling problems, most of the existing analytical results for self-suspending tasks do
not support the popular Earliest Deadline First (EDF) scheduling algorithm, being instead
primarily focused on fixed-priority scheduling. In particular, none of the existing works
provide a specialized and effective method to bound the response times of constrained-deadline
self-suspending tasks in the specific case of uniprocessor systems.

Contributions. This paper presents a response-time analysis method for dynamic self-
suspending tasks with constrained deadlines scheduled under EDF on a uniprocessor system.
The analysis is based on a model transformation to the sporadic task model with release jitter
and on the application of the exact worst-case response time (WCRT) analysis for sporadic
tasks with jitter by Spuri [21]. An experimental comparison with the baseline suspension-
oblivious approach, which pessimistically treats suspensions as additional computation [8],
shows significant improvements in terms of the number of accepted task sets. For the less
general case of task sets with implicit deadlines, in which the relative deadline of each task is
equal to the minimum inter-arrival time of the task, the proposed approach is also compared
with the state-of-the-art suspension-aware response time analysis by Günzel et al. [17]. In
this case, the two approaches are shown to provide comparable performance.

Paper structure. The rest of this paper is organized as follows. Section 2 provides an
overview of the literature on self-suspending task systems. Section 3 describes the system
model and terminology considered in the paper. Section 4 presents the analytical derivation of
the proposed approach and the resulting response-time analysis algorithm. The experimental
results are reported and discussed in Section 5. Finally, Section 6 concludes the paper and
discusses possible avenues for future work.

2 Related work

A comprehensive survey of the literature on self-suspending tasks was recently published
by Chen et al. [8]. As discussed in that survey, many of the previous works on the analysis
of real-time self-suspending tasks were found to be flawed. In addition to establishing a
common framework for the analysis of self-suspending task systems, the survey by Chen et
al. [8] aimed at collecting amendments to as many of those flawed works as possible.

Two main models exist for self-suspending tasks. The segmented self-suspending task
model considers tasks whose execution behavior is determined by a fixed interleaving sequence
of computation and suspension intervals, where each interval is characterized by a specific

F. Aromolo, A. Biondi, and G. Nelissen 13:3

maximum length. The dynamic self-suspending task model, on the other hand, only assumes a
total maximum execution time and a total maximum suspension time, computed, respectively,
across all execution and suspension intervals. In an attempt to reduce the pessimism of
response-time analyses for the dynamic self-suspending task model, von der Brüggen et
al. [22] introduced the hybrid suspension model, which is similar to the dynamic model but
assumes a limit on the maximum number of suspension intervals allowed for each job.

The typical analysis strategies for self-suspending tasks include modeling suspension
time as computation, modeling the effect of suspension on other tasks as release jitter, and
modeling the effect of suspension as a blocking term in the response-time analysis.

One of the most prominent works on the analysis of dynamic self-suspending tasks under
uniprocessor fixed-priority scheduling is the work by Chen et al. [7], which proposed a
response-time analysis for the dynamic self-suspending task model with constrained deadlines
that dominates all other existing schedulability tests by combining elements of both the
jitter-based and the blocking-based analyses. Similarly to the approach in the present paper,
the proof for the analysis in [7] is based on a schedule transformation procedure followed by
the analysis of the transformed schedule. Later, Günzel et al. [16] generalized the approach
of [7] to the case where tasks have arbitrary deadlines and their releases are modeled by
arrival curves.

For the case of segmented self-suspending tasks, Nelissen et al. [20] proposed a response-
time analysis based on optimization methods for tasks with constrained deadlines scheduled
under uniprocessor fixed-priority scheduling. For the case of multiprocessor systems, Liu and
Anderson [18] derived the first suspension-aware WCRT analysis for dynamic self-suspending
tasks under global scheduling. As discussed in [8], both the fixed-priority analyses from [20]
and [18] required later revision due to some incorrect statements that were discovered within
the respective proof frameworks.

Concerning the analysis of self-suspending task models under EDF scheduling, Liu and
Anderson [18] also proposed a response-time analysis approach for multiprocessor global
EDF scheduling of arbitrary-deadline tasks, which also supports soft real-time scheduling by
means of tardiness thresholds. The approach by Dong and Liu [10] provides a utilization-
based schedulability test for dynamic self-suspending tasks under multiprocessor global EDF
scheduling for the case of implicit deadlines, and was later shown to be equivalent to the
suspension-oblivious analysis for the case of uniprocessor systems [17]. Günzel et al. [17]
provided the first response-time analysis for the dynamic model under EDF, for the case of
implicit deadlines. That same work showed that an earlier analysis by Devi [9] that tried to
solve the same problem was indeed flawed.

Self-suspending task models see fruitful application in the analysis of hardware-accelerated
task systems in the context of heterogeneous computing. The case of hardware acceleration
by means of Graphics Processing Units (GPUs) was explored in the works by Dong et
al. [11] and Elliot et al. [12]. Biondi et al. [4] applied the segmented suspension model to the
analysis of hardware acceleration on Field-Programmable Gate Arrays (FPGAs) embedded
in emerging system-on-a-chip platforms.

Numerous works on the analysis of multiprocessor synchronization protocols hinge on
self-suspending task models to derive a suitable real-time analysis. In this context, self-
suspending task models can capture the behavior of tasks that suspend themselves while
waiting to acquire a shared resource protected by a suspension-based locking mechanism.
Detailed discussion on these works can be found in the most recent survey on multiprocessor
locking protocols by Brandenburg [5].

Relevant applications of self-suspending task models also include the analysis of real-time
parallel workloads. Fonseca et al. [14] considered a transformation to the segmented model for
the analysis of parallel tasks under multiprocessor partitioned scheduling. The event-driven

ECRTS 2022

13:4 Response-Time Analysis for Self-Suspending Tasks Under EDF Scheduling

delay-induced (EDD) task model was introduced by Aromolo et al. [1] to model parallel
topologies that incorporate delays in the concept of precedence constraints, with applications
in the analysis of hardware-accelerated systems and of partitioned parallel tasks. The EDD
task model was analyzed by means of a transformation to the dynamic self-suspending task
model.

Concerning the analysis of non-suspending sporadic tasks with release jitter under
uniprocessor EDF scheduling, the work by Spuri [21] generalizes previous results by Baruah
et al. [2] to obtain both a feasibility test and an exact WCRT analysis based on the workload
analysis approach. These approaches were later revised by George et al. [15] to provide some
algorithmic efficiency improvements to the resulting analyses. To date, the technique by
Spuri [21], combined with the efficiency enhancements in [15], represents a valid approach to
check the feasibility of a set of sporadic tasks with jitter and to obtain their exact WCRTs.

3 System model

We consider a set Γ = {τ1, ..., τn} of n sporadic self-suspending real-time tasks executing
on a single processor and described according to the dynamic self-suspending (DSS) task
model [8]. Each task τi releases a potentially infinite sequence of jobs τi,1, . . . , τi,j , . . . and
is characterized by a tuple (Ci, Si, Ti, Di), where Ci represents the worst-case execution
time (WCET), Si is the maximum suspension time of each job of τi, Ti is the minimum
inter-arrival time between the jobs of τi, and Di is the relative deadline of the task, with
Di ≤ Ti (constrained deadlines). A job of τi may execute for up to Ci time units and may
suspend itself at any point in its execution. When suspending, the job yields the processor for
the execution of other tasks. The total suspension time of a job of τi across all its suspension
intervals is upper bounded by Si time units. The minimum inter-arrival time Ti represents
the minimum amount of time separating successive jobs of τi.

We assume that job releases occur without jitter, so that each job τi,j is released as
soon as it arrives. That is, if ai,j and ri,j represent, respectively, the arrival time and the
release time of τi,j , then it holds that ai,j = ri,j . Once it has arrived, a job τi,j is expected
to complete its execution within Di time units. Let fi,j denote the finishing time of a job
τi,j of τi. We say that τi,j meets its deadline if fi,j is no greater than its absolute deadline
di,j = ri,j + Di. The response time of a job τi,j is given by Ri,j = fi,j − ai,j = fi,j − ri,j .
The worst-case response time (WCRT) Ri of a task τi is defined as the maximum possible
response time across the jobs of τi. A job that is released and not yet completed is said to
be pending.

Tasks in Γ are scheduled on the processor in a preemptive fashion according to the Earliest
Deadline First (EDF) algorithm, which belongs to the class of job-level fixed-priority (JLFP)
scheduling policies. Under EDF, each job τi,j is assigned a fixed priority level according to
its absolute deadline di,j , such that a job with an earlier deadline has a higher priority. Ties
are broken arbitrarily in case multiple jobs have the same absolute deadline.

4 Analysis

This section shows how to derive a schedulability test for a DSS task set Γ scheduled on a
single processor under EDF scheduling, based on the response-time analysis (RTA) approach.
In this approach, an upper bound Ri on the WCRT is derived for each task τi ∈ Γ; then, the
task set is deemed schedulable if Ri ≤ Di holds for every task τi ∈ Γ.

F. Aromolo, A. Biondi, and G. Nelissen 13:5

The analysis for each task τi consists in deriving a transformation of the task set Γ to a
task set Γ′

i of sequential sporadic real-time tasks with jitter, such that the WCRT Ri of τi

in Γ is upper bounded by the WCRT R′
i of the corresponding task τ ′

i in Γ′
i. The task set

Γ′
i can then be analyzed according to the analysis by Spuri [21], hence obtaining a suitable

upper bound for the response time of the DSS task τi.
For simplicity in the presentation, we assume that execution on the processor follows a

discrete-time model where a unit of time corresponds to the length of the smallest relevant
time scale in the system (e.g., the length of a processor cycle). The task schedule can then
be seen as a sequence of time slices, each with a length of one time unit, within which the
scheduling decisions are unaltered.

4.1 Sequential sporadic tasks with jitter
Since our proposed analysis is based on the idea of transforming the set of DSS tasks Γ into a
set of sequential sporadic tasks with jitter, we introduce the terminology associated to sporadic
tasks with jitter. Let Γ′ = {τ ′

1, ..., τ ′
n} represent a task set of sequential sporadic tasks with

release jitter scheduled on a single processor under preemptive EDF. Each sporadic task with
jitter τ ′

i releases a potentially infinite sequence of jobs τ ′
i,1, . . . , τ ′

i,j , . . . and is characterized
by a tuple (C ′

i, J ′
i , T ′

i , D′
i), where C ′

i represents the worst-case execution time (WCET), J ′
i is

the maximum release jitter of each job of τ ′
i , T ′

i is the minimum inter-arrival time between
the jobs of τ ′

i , and D′
i is the relative deadline of the task, with D′

i ≤ T ′
i . The minimum

inter-arrival time T ′
i represents the minimum amount of time separating successive arrivals of

jobs of τ ′
i . The maximum release jitter J ′

i is the maximum time a job of τ ′
i can spend waiting

for release after its arrival. Specifically, letting a′
i,j and r′

i,j represent, respectively, the arrival
time and the release time of a job τ ′

i,j of τ ′
i , it holds that r′

i,j − a′
i,j ≤ J ′

i . Once it has arrived,
a job τ ′

i,j is expected to complete its execution within D′
i time units. Let f ′

i,j denote the
finishing time of a job τ ′

i,j . The absolute deadline of τ ′
i,j is defined as d′

i,j = a′
i,j + D′

i, and is
considered respected if f ′

i,j ≤ d′
i,j . The response time of a job τ ′

i,j is given by R′
i,j = f ′

i,j−a′
i,j .

The worst-case response time (WCRT) R′
i of a task τ ′

i is defined as the maximum possible
response time across the jobs of τ ′

i .

4.2 Schedule transformation
By sustainability of self-suspending tasks with respect to their WCETs [6], the WCRT Ri of
a task τi ∈ Γ is produced in a schedule σ of Γ in which all jobs τj,l of all tasks τj ∈ Γ execute
up to their respective WCETs Cj . In the following procedure, we show how to transform
the schedule σ in order to obtain a preemptive EDF schedule σ′ in which none of the jobs
self-suspend and where the response time of at least one of the jobs of τ ′

i in σ′ is equal to Ri.

Step 1 Initially set σ′ := σ.
Step 2 Let τi,k represent a job of τi in σ with response time Ri,k = Ri. Let τ ′

i,k represent
the job of σ′ corresponding to τi,k. Remove all jobs in σ′ with lower priority than
τ ′

i,k, i.e., all jobs with deadline greater than d′
i,k.

Step 3 Replace all suspension intervals of jobs of τ ′
i in σ′ in which the processor is idle with

execution intervals of equivalent length for τ ′
i .

Step 4 Let tf represent the finishing time of τ ′
i,k and tb represent the earliest time instant in

σ′ at and after which the processor is continuously busy until tf , and let IB = [tb, tf)
represent the busy interval for job τ ′

i,k. Identify the set of carry-in jobs CB for the
busy interval IB as the set of jobs suspended at time tb− 1 and that finish at or after
tb in σ′. Remove all jobs in σ′ released before tb that do not belong to CB .

ECRTS 2022

13:6 Response-Time Analysis for Self-Suspending Tasks Under EDF Scheduling

Step 5 Let t0 represent the earliest release time among the jobs in CB. Traverse all time
slices in σ′ within the interval [t0, tb), from tb down to t0. For each such time slice TI

in which the processor is idle, if there is at least one time slice before TI in which
the processor is busy executing a job of CB , let TE represent the latest of such time
slices and JE represent the corresponding job, then, move the execution time of JE

in TE from TE to TI .
Step 6 Let t′

b represent the (updated) earliest time instant in σ′ at and after which the
processor is continuously busy until tf , and let I ′

B = [t′
b, tf) represent the (extended)

busy interval for job τ ′
i,k. For each job JC in CB , if r′

C < t′
b, where r′

C represents the
release time of JC , postpone the release time r′

C of JC to t′
b, without modifying the

arrival time or the execution pattern of JC in σ′. This corresponds to introducing a
release jitter of length t′

b − a′
C for JC , where a′

C represents the arrival time of JC .
Step 7 Remove all the execution that takes place at or after tf from σ′.
Step 8 Traverse the processor time slices in σ′ located within I ′

B , from t′
b up to tf . For each

such time slice TL, if a job JL which is not one of the highest-priority jobs that are
pending in TL is executing in TL, let JH represent any one of the highest-priority
jobs that are pending in TL, and let TH represent the earliest time slice after TL in
which the processor is busy executing JH , then, move the execution time of JH in
TH from TH to TL and move the execution time of JL in TL from TL to TH .

4.2.1 Transformation example
Figure 1 provides an example that illustrates the schedule transformation procedure. In
the provided schedules, upwards dashed arrows, upwards solid arrows, and downwards solid
arrows represent, respectively, the arrival time, the release time, and the absolute deadline
of a job, while white rectangles and grey rectangles represent, respectively, execution and
self-suspension for a job.

Figure 1(a) illustrates an example schedule σ of a set of DSS tasks Γ = {τ1, τ2, τ3, τ4}.
When applying the transformation procedure for task τ1, the transformed schedule σ′ is set
to be identical to σ in Step 1. Assume that the job τi,k identified in Step 2 corresponds to
job τ1,3 in the example. Figure 1(b) shows the transformed schedule σ′ after Step 3 of the
transformation. Then, the transformed schedule after Step 6 is provided in Figure 1(c), where
the busy interval IB = [tb, tf) and the extended busy interval I ′

B = [t′
b, tf) are highlighted.

The set of carry-in jobs CB for IB is composed of the first job of τ ′
2 and the first job of τ ′

3,
and t0 is set to coincide with the release of the first job of τ ′

2. Note that, in Step 6, the
release time of the first job of τ ′

2 is delayed to coincide with t′
b. Finally, Figure 1(d) provides

the resulting transformed schedule σ′, obtained after Step 8. Note that the response time
R′

1,3 of τ ′
1,3 was not altered in the transformation, i.e., R′

1,3 = R1,3.

4.2.2 Properties of the transformed schedule
The following properties of σ′ can be derived based on the transformation procedure.

The following lemma establishes that the start of the extended busy interval t′
b happens

at or before tb.

▶ Lemma 1. In the schedule σ′, the extended busy interval I ′
B starts at or before tb; i.e., it

holds that t′
b ≤ tb.

Proof. By definition, at the beginning of Step 4, the processor is continuously busy within
the busy interval IB = [tb, tf), and, at the beginning of Step 6, the processor is continuously
busy within the extended busy interval I ′

B = [t′
b, tf). Note that the right end of the intervals

F. Aromolo, A. Biondi, and G. Nelissen 13:7

time

(a) Example schedule σ, equivalent to σ′ after Step 1 of the transformation.

time

(b) Example schedule σ′ after Step 3 of the transformation.

time

(c) Example schedule σ′ after Step 6 of the transformation.

time

(d) Example schedule σ′ after Step 8 of the transformation.

Figure 1 Transformation example.

ECRTS 2022

13:8 Response-Time Analysis for Self-Suspending Tasks Under EDF Scheduling

IB and I ′
B is the same, since it is defined as tf in both cases. Given these definitions, it is

sufficient to show that I ′
B cannot be smaller than IB in order to prove the lemma. In other

words, it must be shown that the interval where the processor is continuously busy until
tf at the beginning of Step 6 cannot be shorter than the interval where the processor is
continuously busy until tf at the beginning of Step 4. In Step 4, jobs released before tb

and not belonging to CB are removed from σ′. In order to derive a contradiction, consider
one such job Jj and assume that it executed for at least one time slice within IB before
it was removed from σ′ in Step 4. By the definition of the busy interval IB, the processor
must have been idle at time instant tb − 1 at the beginning of Step 4. Therefore, Jj is
suspended at tb − 1. In fact, if Jj is not suspended at tb − 1, then, by the work-conserving
property of EDF, either Jj is executing at tb − 1 or a job with higher or equal priority than
Jj is executing at tb − 1. This contradicts the fact that the processor is idle at tb − 1. It
follows that Jj satisfies the definition of carry-in job, since it is suspended at time tb − 1
and it executes at or after tb. This is in contradiction with the assumption that Jj does not
belong to CB . As a result, Step 4 does not alter the execution pattern within [tb, tf) in σ′.
Finally, note that Step 5 does not affect the execution pattern within [tb, tf) in σ′, since the
execution slices from jobs in CB can only be moved up to tb − 1 in Step 5. Therefore, it
holds that the busy interval I ′

B identified at the beginning of Step 6 can only be larger than
or equal to IB . ◀

The following lemma shows that the execution within σ′ takes place wholly within the
extended busy interval I ′

B .

▶ Lemma 2. In the schedule σ′, the processor can be busy only within the extended busy
interval I ′

B.

Proof. To obtain the lemma, we prove that (i) the processor cannot be busy at or after tf

and (ii) the processor cannot be busy before t′
b.

(i) In Step 7, all the execution that takes place at or after tf is removed from σ′. Then,
note that the execution slice interchanges within Step 8 can only occur between time slices
that were already busy at the end of Step 7. As a result, the processor cannot be busy at or
after tf in σ′.

(ii) In Step 4, all jobs released before tb that do not belong to CB are removed from σ′.
Therefore, only jobs in CB can execute before tb in σ′ after Step 4. In Step 4, t0 is defined
such that t0 ≤ tb, and the execution slices of jobs in CB are only moved within the interval
[t0, tb). Thus, no job of σ′ executes before t0 after Step 5. As a result, in case t′

b = t0 in
Step 6, no execution of jobs in CB can take place before t′

b. Then, note that the case t′
b < t0

cannot occur, since t′
b is defined in Step 6 as the earliest time instant at and after which the

processor is continuously busy until tf , while the processor is idle before t0 at the beginning
of Step 6. In the following, consider the case in which t′

b > t0. By definition of t′
b, the time

slice TI = [t′
b − 1, t′

b) corresponding to t′
b − 1 is necessarily idle. Given that t′

b > t0, and, by
Lemma 1, t′

b ≤ tb, it holds that TI = [t′
b − 1, t′

b) ⊆ [t0, tb). If time slice TI in [t0, tb) is idle
after Step 5, then it means there are no execution slices of jobs in CB before TI . Thus,
no execution slices of jobs in CB can take place before t′

b after Step 6. Finally, note that
the execution slice interchanges within Step 8 can only occur between time slices that were
already busy after Step 5; therefore, no job of σ′ executes before t′

b after Step 8. ◀

The following lemma shows that the processor is continuously busy within the extended
busy interval I ′

B after the transformation procedure.

F. Aromolo, A. Biondi, and G. Nelissen 13:9

▶ Lemma 3. In the schedule σ′, the processor is continuously busy within the extended busy
interval I ′

B.

Proof. In Step 6, the extended busy interval I ′
B = [t′

b, tf) is identified by construction as
an interval in which the processor is continuously busy. Removing the execution of jobs in
σ′ that takes place at or after tf in Step 7 does not alter the execution pattern within I ′

B.
Then, the execution slice interchanges within Step 8 can only occur between time slices that
were already busy at the beginning of Step 6. Therefore, the processor is continuously busy
within the extended busy interval I ′

B in the transformed schedule σ′. ◀

The following lemma shows that jobs of the task under analysis τ ′
i cannot be categorized

as carry-in jobs in Step 4 of the schedule transformation.

▶ Lemma 4. The set CB of carry-in jobs for the busy interval IB does not contain any job
of τ ′

i .

Proof. By the definition of the busy interval IB in Step 4, the processor is idle at time
instant tb − 1. Then, in order for a job τ ′

i,l of τ ′
i to belong to the set CB , it must hold that

τ ′
i,l is suspended when the processor is idle at time tb − 1 in Step 4. This is impossible since,

in Step 3, all suspension intervals of jobs of τ ′
i in which the processor is idle are replaced

with execution intervals of equivalent length for that job. ◀

The following lemma shows that the response time of job τi,k is preserved after the
transformation.

▶ Lemma 5. The response time of job τ ′
i,k in σ′ is equal to the response time of τi,k in σ,

i.e., it holds that R′
i,k = Ri,k.

Proof. In Step 2, all jobs with priority lower than that of τ ′
i,k are removed from the schedule

σ′. Therefore, τ ′
i,k is one of the jobs that share the lowest priority in the schedule σ′.

In Step 3, additional execution slices of τ ′
i,k can only be added before its finishing time

f ′
i,k = fi,k. Then, in Step 4, only jobs that are released before tb can be removed from σ′.

Note that, by definition, the right end of the busy interval IB = [tb, tf) defined in Step 4
corresponds to the finishing time f ′

i,k of τ ′
i,k, with f ′

i,k = fi,k. In addition, in Step 3, all
suspension intervals of τ ′

i,k in which the processor is idle are replaced with execution intervals
of equivalent length for τ ′

i,k; thus, within the interval [a′
i,k, f ′

i,k), the processor is either busy
executing τ ′

i,k or another job with higher or equal priority than τ ′
i,k. It follows that the

start of the busy period tb must necessarily occur at or before the arrival time a′
i,k of τ ′

i,k.
Therefore, Step 4 does not affect the execution of τ ′

i,k. Similarly, Step 5 only affects the
execution of jobs belonging to CB, which, by definition, are released before tb. Thus, the
execution of τ ′

i,k is not affected by Step 5. Then, in Step 7, removing the execution of jobs
in σ′ taking place at or after tf does not affect the finishing time of τ ′

i,k. Finally, in Step 8,
execution slices of a job JH can only be anticipated to an earlier time slice TE if JH has
higher priority than the job executing in TE . Since τ ′

i,k is one of the jobs that share the
lowest priority in the schedule σ′, it is not possible that the final execution slice of τ ′

i,k is
anticipated in Step 8. Therefore, the finishing time of τ ′

i,k after the transformation is given
by f ′

i,k = fi,k. In addition, since arrival times for jobs of σ′ are not modified with respect to
the corresponding jobs of σ within the transformation procedure, it holds that a′

i,k = ai,k. It
follows that R′

i,k = f ′
i,k − a′

i,k = fi,k − ai,k = Ri,k. ◀

The following lemma shows that jobs in σ′ are scheduled in accordance with the preemptive
EDF scheduling policy.

ECRTS 2022

13:10 Response-Time Analysis for Self-Suspending Tasks Under EDF Scheduling

▶ Lemma 6. For any time slice Tσ in the schedule σ′, the processor executes one of the jobs
with earliest absolute deadline that are pending in Tσ, if any.

Proof. The statement trivially holds for any time slice of σ′ in which no job is ready for
execution. By Lemma 2, the time slices in which the processor is busy are limited to the
busy interval I ′

B. Concerning the time slices within I ′
B, in Step 8, for each time slice TL

within I ′
B, the schedule σ′ is modified such that one of the highest-priority jobs that are

pending in TL is executing in TL. The statement follows since the priority ordering in Step 8
is determined according to the EDF scheduling policy. ◀

The following lemma guarantees that the execution of a job in σ′ cannot occur before the
release time of the corresponding job in σ.

▶ Lemma 7. Consider a job τ ′
j,l of a task τ ′

j in σ′. The execution of τ ′
j,l that takes place in

σ′ does not start before rj,l.

Proof. The execution of the job τj,l corresponding to job τ ′
j,l in σ cannot start before its

release time rj,l. In the following, we show that no execution slices for job τ ′
j,l are added

before rj,l within the transformation procedure. In Step 3, additional execution time can
only be introduced for a job τ ′

j,l in a time slice TS where τ ′
j,l is suspended in σ, meaning that

τ ′
j,l was released before TS . In Step 5, execution slices of jobs in CB can only be delayed to

a later time slice, meaning that no execution slices of τ ′
j,l are introduced before rj,l. Finally,

consider that, in case an execution slice of τ ′
j,l is moved as part of Step 8, then either one of

the following scenarios occurs:
1. An execution slice of τ ′

j,l originally occurring at TH is anticipated to TL. By construction
of Step 8, in order for this situation to occur, τ ′

j,l must have been pending in TL, meaning
that it was released at or before the start of TL.

2. An execution slice of τ ′
j,l originally occurring at TL is delayed to TH , which occurs after

TL by construction. Since job τ ′
j,l was executing in TL, the release time rj,l must have

occurred at or before the start of TH .
As a result, no matter how many times the execution slices of τ ′

j,l are moved in Step 8, no
execution slices of τ ′

j,l are introduced before rj,l. ◀

The following lemma shows that jobs in σ′ do not execute before their release time.

▶ Lemma 8. Consider a job τ ′
j,l of a task τ ′

j in σ′. Job τ ′
j,l does not execute before its release

time r′
j,l.

Proof. The release time of a job τ ′
j,l in σ′ can only be modified in Step 6 of the transformation.

In case τ ′
j,l does not belong to CB , its release time is not modified in Step 6, meaning that

r′
j,l = rj,l in the transformed schedule σ′. By Lemma 7, the execution of a job τ ′

j,l in σ′

does not start before rj,l. Therefore, in case τ ′
j,l /∈ CB , τ ′

j,l does not execute before r′
j,l in σ′.

Similarly, in case τ ′
j,l ∈ CB and r′

j,l ≥ t′
b at the beginning of Step 6, the release time of τ ′

j,l

is not modified, therefore r′
j,l = rj,l, and, by Lemma 7, the execution of τ ′

j,l in σ′ does not
start before rj,l. Finally, in case τ ′

j,l ∈ CB and r′
j,l < t′

b at the beginning of Step 6, then the
release time of τ ′

j,l is set to r′
j,l = t′

b. By Lemma 2, none of the jobs in σ′ execute outside the
busy interval I ′

B = [t′
b, tf), thus τ ′

j,l does not execute before r′
j,l = t′

b. ◀

The following lemma provides an upper bound on the release jitter introduced for the
jobs in σ′.

F. Aromolo, A. Biondi, and G. Nelissen 13:11

▶ Lemma 9. Consider a job τ ′
j,l of a task τ ′

j in σ′. The release jitter of τ ′
j,l is upper bounded

by Rj − Cj.

Proof. Since arrival times are not altered for jobs of σ′ with respect to σ, it holds that
a′

j,l = aj,l. Within the schedule transformation, the release time of jobs in σ′ can only be
postponed for jobs of CB (in Step 6). Therefore, in case τ ′

j,l does not belong to CB, the
release jitter of τ ′

j,l is given by r′
j,l − a′

j,l = rj,l − aj,l = 0. In the following, consider the
case in which τ ′

j,l belongs to CB. In case the release time r′
j,l is not modified in Step 6,

then the release jitter of τ ′
j,l is 0. Otherwise, the release time r′

j,l is set to t′
b. Therefore,

in the latter case, the resulting release jitter for τ ′
j,l is given by r′

j,l − a′
j,l = t′

b − aj,l. By
definition of carry-in job, the finishing time of τ ′

j,l is greater than or equal to tb in Step 4.
Furthermore, because Step 5 does not alter the schedule σ′ at or after tb, the finishing time
of τ ′

j,l is unchanged at the end of Step 5, i.e., just before the release time r′
j,l is postponed

in Step 6 to yield the release jitter of τ ′
j,l. In addition, note that, by the assumption that

job τj,l executes for its WCET Cj in σ, and since none of the steps in the transformation
up to Step 6 reduce or increase the total execution time of any job in CB, τ ′

j,l executes
for Cj units of time in σ′ at the beginning of Step 6. Finally, by Lemma 8, the execution
of τ ′

j,l only takes place at or after r′
j,l = t′

b in Step 6. It follows that, at the beginning of
Step 6, fj,l ≥ t′

b + Cj . As a result, the release jitter introduced for τ ′
j,l in Step 6 can be

upper bounded as t′
b − aj,l ≤ fj,l − Cj − aj,l = Rj,l − Cj ≤ Rj − Cj . ◀

4.3 Model transformation to enable the response-time analysis
To prove that the schedule σ′ resulting from the schedule transformation is suitable to be
analyzed as a set of sequential sporadic tasks with jitter, we first define a legal schedule for a
set of sequential sporadic tasks with jitter under preemptive EDF scheduling.

▶ Definition 10. A schedule σ′ is considered legal with respect to preemptive EDF scheduling
of a set Γ′ of sequential sporadic tasks with jitter if the following statements hold for each job
τ ′

j,l of all tasks τ ′
j in σ′:

Property 1. The minimum inter-arrival time constraint is satisfied; i.e., if l > 1, it
holds that a′

j,l ≥ a′
j,l−1 + T ′

j.
Property 2. The absolute deadline d′

j,l of τ ′
j,l is such that d′

j,l = a′
j,l + D′

j.
Property 3. The processor does not execute τ ′

j,l for more than C ′
j units of time.

Property 4. The release of τ ′
j,l takes place at or after its arrival; i.e., it holds that

r′
j,l ≥ a′

j,l.
Property 5. The processor does not execute τ ′

j,l before its release time r′
j,l.

Property 6. The release jitter constraint is satisfied, i.e., it holds that r′
j,l − a′

j,l ≤ J ′
j.

Property 7. For each time slice from the release time r′
j,l up to the finishing time f ′

j,l

of τ ′
j,l, the processor is either busy executing τ ′

j,l or another job with absolute deadline
smaller or equal than that of τ ′

j,l.

The following lemma shows that σ′ is a legal preemptive EDF schedule of a set of
sequential sporadic tasks with jitter.

▶ Lemma 11. Consider a task set Γ′
i = {τ ′

1, ..., τ ′
n} of sequential sporadic tasks with release

jitter, with τ ′
i = (Ci + Si, 0, Ti, Di) and τ ′

j = (Cj , Rj − Cj , Tj , Dj) for all τ ′
j ≠ τ ′

i . The
transformed schedule σ′ is a legal schedule of Γ′

i under preemptive EDF scheduling.

Proof. In the following, we show that σ′ complies with Definition 10 with respect to task
set Γ′

i. First, note that the arrival times and the absolute deadlines of the jobs in σ′ are kept
equal to the arrival times and absolute deadlines of the corresponding jobs in σ. Therefore,

ECRTS 2022

13:12 Response-Time Analysis for Self-Suspending Tasks Under EDF Scheduling

Property 1 and Property 2 in Definition 10 hold for each job in σ′. Then, consider that
the schedule transformation procedure does not increment the cumulative execution time
of jobs of τ ′

j in σ′ such that τ ′
j ̸= τ ′

i , thus the amount of execution for such jobs is within
Cj . In addition, the execution time of jobs of τ ′

i is not incremented by more than Si (in
Step 3). Therefore, Property 3 holds for each job in σ′. Within the schedule transformation,
the release times of jobs in σ′ can only be modified for jobs of CB (in Step 6). By Lemma 4,
jobs of τ ′

i do not belong to the set CB ; therefore, it holds that r′
i,l = ri,l for each job τ ′

i,l of
τ ′

i . As a result, r′
i,l = a′

i,l holds for each job τ ′
i,l of τ ′

i . Then, consider a job τ ′
j,l that belongs

to CB . If at the beginning of Step 6 r′
j,l < t′

b, then the release time of τ ′
j,l is postponed to t′

b;
therefore, it holds that r′

j,l ≥ a′
j,l in the transformed schedule σ′. Otherwise, the release time

of τ ′
j,l is not modified, i.e., r′

j,l = a′
j,l. Thus, Property 4 holds for all jobs in σ′. Property 5

and Property 6 follow directly from Lemma 8 and Lemma 9, respectively, for each job in σ′.
Finally, by Lemma 6, for any time slice Tσ in the schedule σ′, the processor executes one of
the jobs with earliest absolute deadline that are pending in Tσ, if any. Therefore, Property 7
holds for each job in σ′. ◀

The following theorem shows how to obtain a task set Γ′
i of sequential sporadic tasks

with jitter that can be analyzed in order to obtain a WCRT upper bound for task τi.

▶ Theorem 12. Given a task set Γ of DSS tasks, the WCRT Ri of a task τi ∈ Γ is upper
bounded by the WCRT R′

i of a sequential sporadic task τ ′
i in Γ′

i, where Γ′
i = {τ ′

1, ..., τ ′
n}

is a set of sequential sporadic tasks with release jitter, with τ ′
i = (Ci + Si, 0, Ti, Di) and

τ ′
j = (Cj , Rj − Cj , Tj , Dj) for all τ ′

j ̸= τ ′
i .

Proof. By Lemma 5, the response time of job τ ′
i,k in σ′ is equal to the response time of τi,k

in σ, which is in turn equivalent to the WCRT Ri of the task under analysis τi; i.e., it holds
that R′

i,k = Ri,k = Ri. In addition, since by Lemma 11 σ′ represents a legal schedule of Γ′
i

under preemptive EDF scheduling, it holds that R′
i,k ≤ R′

i. It follows that Ri ≤ R′
i. ◀

4.4 Response-time analysis algorithm
The schedulability of a task set Γ of DSS tasks can be verified by means of the iterative
approach described in Algorithm 1. The algorithm produces a vector of WCRT upper bounds
R =

[
R1, ..., Rn

]
for all tasks in Γ using Theorem 12 (ModelTransformation at line 10),

starting from the initial condition in which Ri is set to Di for each τi ∈ Γ. Then, the
algorithm iteratively applies Theorem 12 to each task τi ∈ Γ in order to obtain the WCRT R′

i

of task τ ′
i by means of the response-time analysis approach by Spuri [21] (JitterAnalysis

at line 11). At each iteration, the value of Ri in R is set to the newly obtained R′
i in case

R′
i < Ri, and the task set is deemed schedulable if R′

i ≤ Di holds for each τi ∈ Γ. Otherwise,
the iterative loop continues until either the task set is deemed schedulable or the vector R is
not updated within the iteration, in which case the task set is deemed not schedulable.

The use of this iterative algorithm is supported by the following reasoning. Assume that
the behavior of the preemptive EDF scheduler is altered by means of a run-time mechanism
M that forcibly terminates all jobs at the time of their absolute deadline. With mechanism
M in place, the relative deadline Di represents a valid upper bound on the WCRT Ri of
a task τi in Γ. Then, if in a given iteration of the algorithm the WCRT upper bound R′

i

obtained for each task τi is found to be lower than or equal to the corresponding deadline Di,
then all the possible jobs of all tasks in Γ will terminate within their absolute deadline. In
this situation, the mechanism M does not need to prevent execution for any job, therefore
its presence is irrelevant and the resulting behavior is equivalent to standard preemptive

F. Aromolo, A. Biondi, and G. Nelissen 13:13

EDF scheduling, wherein M is not deployed. Otherwise, if in the same iteration at least one
of the WCRT upper bounds R′

i for a task τi is found to be greater than the corresponding
relative deadline Di, then the task set cannot be deemed schedulable at that iteration. Then,
if at least one of the WCRT upper bounds in R was updated, the algorithm proceeds to the
next iteration to potentially reduce the WCRT upper bounds of the other tasks in Γ. This
reasoning was also adopted in [19] to obtain a similar iterative approach for the derivation of
WCRT upper bounds in systems where tasks synchronize their access to shared resources.
Note that, by construction, in a given iteration beyond the first, each of the values in R is
less or equal than the corresponding value at the previous iteration, and that the algorithm
terminates as soon as none of the values in R are updated after an iteration.

When applying Theorem 12 within the algorithm to analyze a task τi ∈ Γ (at line 10),
note that the exact value of the WCRT Rj of each task τj ̸= τi is not known; therefore,
when constructing Γ′

i, Rj −Cj must be used as an upper bound of the jitter of τ ′
j in place of

J ′
j = Rj−Cj . To ensure that the algorithm remains consistent with this substitution, consider

a generic iteration of the algorithm. In case Rj was never updated during the previous
iterations of the algorithm, then Rj = Dj , and, assuming M is active, Dj = Rj ≥ Rj .
Instead, if Rj was updated in at least one of the previous iterations of the algorithm, then
Rj must have been set to Rj = R′

j , where R′
j was obtained by analyzing τj by means of task

set Γ′
j in Theorem 12 with respect to previous values of the WCRT upper bounds in R. In

this case, by Theorem 12, it holds that Rj ≤ R′
j , with R′

j computed with respect to Γ′
j ; thus,

Rj ≤ Rj . As a result, Rj ≥ Rj holds for both cases. Therefore, since Rj − Cj ≥ Rj − Cj ,
and since increasing the maximum jitter parameter for a task in a task set of sporadic tasks
with jitter cannot reduce the WCRT of tasks in that task set, Rj − Cj can be used as a safe
upper bound on the jitter J ′

j of τ ′
j for the analysis of τi.

Note that the response-time analysis by Spuri [21] can only be applied to systems that are
not overloaded, i.e., to those systems for which the system utilization factor U ′ =

∑
τ ′

i
∈Γ′

C′
i

T ′
i

does not exceed one. Therefore, this condition must be verified in Algorithm 1 before a
task set Γ′

i can be analyzed. Given a task set Γ′
i generated to analyze a task τi in Γ, this

precondition on the system utilization is satisfied if Si

Ti
+

∑
τj∈Γ

Cj

Tj
≤ 1. This is because

the WCET C ′
i of τ ′

i is incremented by Si with respect to the original task τi ∈ Γ, while the
WCET C ′

j of tasks τ ′
j ̸= τ ′

i is kept equal to Cj . However, note that the resulting utilization
factor for each task set Γ′

i to be analyzed in Algorithm 1 is independent of the values of the
jitter J ′

i , i.e., it is independent of the values of the elements of R. Therefore, it is sufficient
to check if Si

Ti
+

∑
τj∈Γ

Cj

Tj
≤ 1 holds for each task under analysis τi ∈ Γ before starting the

iterative refinement of the WCRT upper bounds R in Algorithm 1 (NecessaryConditions
at line 2).

Finally, note that the iterative loop does not need to terminate immediately in case the
task set is deemed to be schedulable (i.e., when R′

i ≤ Di holds for each τi ∈ Γ). In fact, it is
possible to obtain tighter WCRT upper bounds by performing additional iterations with the
updated vector R.

5 Experimental results

This section presents the results of an experimental evaluation of the proposed response-time
analysis approach. For the case of constrained deadlines, we propose a comparison with the
suspension-oblivious approach. Then, for the case of implicit deadlines, where the relative
deadline of each task is equal to its minimum inter-arrival time, the proposed approach is
also compared with the response-time analysis technique by Günzel et al. [17].

ECRTS 2022

13:14 Response-Time Analysis for Self-Suspending Tasks Under EDF Scheduling

Algorithm 1 Schedulability analysis for a task set Γ.

1: procedure SchedulabilityTest(Γ)
2: if NecessaryConditions(Γ) = FALSE then
3: return FALSE
4: end if
5: ∀τi ∈ Γ, Ri ← Di

6: update← TRUE
7: while update = TRUE do
8: update← FALSE
9: for all τi ∈ Γ do

10: Γ′
i ← ModelTransformation(Γ, i, R)

11: R′
i ← JitterAnalysis(Γ′

i, i)
12: if R′

i < Ri then
13: Ri ← R′

i

14: update← TRUE
15: end if
16: end for
17: if ∀τi ∈ Γ, R′

i ≤ Di then
18: return TRUE
19: end if
20: end while
21: return FALSE
22: end procedure

5.1 Experimental setup

The proposed experiments are based on the analysis of randomly generated task sets. The
task set generator used in the experiments was instrumented as follows. The number of
tasks generated for each task set is set to a fixed number n. For each task set, the UUniFast
algorithm by Bini and Buttazzo [3] was used to generate a set of utilization values Ui, such
that U =

∑
τi∈τi

Ui, where U is a generation parameter representing the system utilization,
which is varied within the experiments. For each task τi in the randomly generated task
set, the minimum inter-arrival time was selected from a discrete log-uniform distribution
in the range [Tmin, Tmax], where Tmin and Tmax are generation parameters representing
the minimum and the maximum possible value of Ti, as suggested by Emberson et al. [13].
The WCET of τi was then set to Ci = Ui · Ti. The maximum suspension time Si of τi was
selected from a discrete uniform distribution in the range [(Ti − Ci) · βmin, (Ti − Ci) · βmax],
where βmin and βmax are generation parameters such that βmin ∈ [0, 1] and βmax ∈ [0, 1].
The relative deadline Di of τi was selected from a discrete uniform distribution in the
range [Ci + (Ti − Ci) · α, Ti], where α is a generation parameter such that α ∈ [0, 1] for
the experiments with constrained deadlines, so that Di ≤ Ti, and is instead equal to 1 for
the experiments with implicit deadlines, so that Di = Ti. In the experiments, the system
utilization U is varied from 0 to 1 in increments of 0.05. For each value of U , 1000 task
sets were tested using the approaches under evaluation. The performance metric for the
experiments is the schedulability ratio with respect to a specific system utilization U ; i.e.,
the ratio of task sets deemed schedulable by a specific analysis approach over the number of
task sets generated for the system utilization point U .

F. Aromolo, A. Biondi, and G. Nelissen 13:15

5.2 Results with constrained deadlines

For the case of constrained deadlines, the performance of the proposed approach (SS-RTA)
in terms of schedulability ratio is compared with that of the suspension-oblivious RTA
approach (SO-RTA). In the SO-RTA approach, suspensions are regarded as additional
computation time, and the resulting task set is evaluated with the EDF analysis by Spuri [21].
In particular, the task set analyzed in SO-RTA is constructed as Γ′ = {τ ′

1, . . . , τ ′
n}, where

τ ′
i = (Ci + Si, 0, Ti, Di) for each τi ∈ Γ. Figures 2(a)-(c) report the results of the experiments

with constrained deadlines. In these experiments, the values of Tmin and Tmax were set
to 100 and 1000, respectively. Figure 2(a) shows that the proposed approach outperforms
the suspension-oblivious approach by a significant margin, even with moderate amounts of
suspension. When the parameter βmax is increased to 0.6 (Figure 2(b)), the schedulability
ratio obtained with the suspension-oblivious analysis approaches 0, even for low values of
utilization. As shown in Figure 2(c), the proposed approach retains significant schedulability
ratios even with the shorter deadlines introduced by generating task sets with shorter relative
deadlines (i.e., with a smaller value of α).

5.3 Results with implicit deadlines

The results of the experiments on implicit deadlines are provided in Figures 2(d)-(f). In these
experiments, the proposed approach (SS-RTA) is compared with the suspension-oblivious
approach (SO-RTA) and the state-of-the-art RTA for implicit deadlines by Günzel et al. [17]
(SA-RTA). In this case, for the SO-RTA approach, it is sufficient to inflate the WCETs
of each task by the maximum suspension time and to check whether the utilization of the
resulting task set is less than or equal to 1. In addition, the performance of the schedulability
test obtained with the logic OR of SS-RTA and SA-RTA, which deems a task set under
analysis schedulable in case at least one of SS-RTA and SA-RTA deems the task set
schedulable, is reported in the experiments (OR-RTA). The values of Tmin and Tmax are
again set to 100 and 1000, respectively. Figure 2(d) shows that, when relatively small values of
βmin and βmax are applied, SA-RTA outperforms SS-RTA by a slight margin. Nonetheless,
it should be noted that the combination of the two approaches (OR-RTA) provides some
improvement over using SA-RTA by itself. This means that the two approaches are not
comparable, in the sense that there exist task sets that are deemed schedulable by SS-RTA
and that are deemed not schedulable by SA-RTA, and vice-versa. The gap between the two
approaches is reduced with larger values for the maximum suspension time of the generated
tasks, i.e., when βmax is increased to 0.6 (Figure 2(e)). Finally, Figure 2(f) shows that the
the performance of the proposed approach surpasses the performance of SA-RTA when
more tasks are included in each task set (n = 15).

Overall, these experiments show that the performance levels of the proposed approach
SS-RTA and of the state-of-the art approach SA-RTA are comparable, and that neither of
the methods dominates the other. In fact, the strongest performance is obtained with the
combined approach OR-RTA, which theoretically dominates both approaches and provides
slight empirical improvements under specific system configurations. It should be noted that
the main advantage of SS-RTA over SA-RTA is that it allows evaluating task sets with
constrained deadlines in addition to task sets with implicit deadlines. Finally, the experiments
show that both approaches vastly outperform the basic suspension-oblivious approach, which
is only capable of accepting a very limited number of task sets under the evaluated scenarios.

ECRTS 2022

13:16 Response-Time Analysis for Self-Suspending Tasks Under EDF Scheduling

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1
Sc

he
d.

ra
tio

(a) n = 5, βmin = 0.1, βmax = 0.3, α = 0.8

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Sc
he

d.
ra

tio

(b) n = 5, βmin = 0.0, βmax = 0.6, α = 0.8

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Sc
he

d.
ra

tio

(c) n = 5, βmin = 0.0, βmax = 0.6, α = 0.6

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Sc
he

d.
ra

tio

(d) n = 5, βmin = 0.1, βmax = 0.3, α = 1.0

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Sc
he

d.
ra

tio

(e) n = 5, βmin = 0.0, βmax = 0.6, α = 1.0

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Sc
he

d.
ra

tio

(f) n = 15, βmin = 0.0, βmax = 0.6, α = 1.0

System utilization (U)
SS-RTA SO-RTA SA-RTA OR-RTA

Figure 2 Comparison of the proposed RTA approach with state-of-the-art techniques in terms of
the schedulability ratio obtained with different system configurations.

6 Conclusions and future work

This paper presented a response-time analysis for dynamic self-suspending tasks under
preemptive EDF scheduling with constrained deadlines. The analysis is based on a model
transformation to sporadic tasks with release jitter and on the subsequent application of a
state-of-the-art analysis for the target task model. Experiments on randomly generated task
sets compared the performance of the proposed approach in terms of schedulability ratio in
the case of both implicit and constrained deadlines. The proposed approach significantly
outperformed the baseline suspension-oblivious analysis in all the evaluated scenarios. Then,
the approach was shown to provide comparable performance with the state-of-the-art response-
time analysis for implicit deadlines by Günzel et al. [16]. Most importantly, the schedulability
test which combines the two analyses was shown to outperform both techniques, meaning that
the proposed approach does not dominate the response-time analysis by Günzel et al. [16]
and vice-versa. Future work should consider leveraging the insights from both techniques to
obtain a unifying analysis which can provide tighter WCRT upper bounds for the analysis
of constrained-deadline self-suspending task systems under EDF. In addition, the proposed
approach can be applied to the analysis of the EDD task model [1] towards the derivation of
a response-time analysis for parallel tasks scheduled by the partitioned EDF algorithm and
the analysis of hardware acceleration patterns under EDF scheduling.

References

1 Federico Aromolo, Alessandro Biondi, Geoffrey Nelissen, and Giorgio Buttazzo. Event-driven
delay-induced tasks: Model, analysis, and applications. In Proceedings of the 27th IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS 2021), pages 53–65.
IEEE, 2021.

F. Aromolo, A. Biondi, and G. Nelissen 13:17

2 Sanjoy K. Baruah, Louis E. Rosier, and Rodney R. Howell. Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks on one processor. Real-Time
Systems, 2(4):301–324, 1990.

3 Enrico Bini and Giorgio C. Buttazzo. Measuring the performance of schedulability tests.
Real-Time Systems, 30(1-2):129–154, 2005.

4 Alessandro Biondi, Alessio Balsini, Marco Pagani, Enrico Rossi, Mauro Marinoni, and Giorgio
Buttazzo. A framework for supporting real-time applications on dynamic reconfigurable
FPGAs. In Proceedings of the 37th IEEE Real-Time Systems Symposium (RTSS 2016), pages
1–12. IEEE, 2016.

5 Björn B. Brandenburg. Multiprocessor real-time locking protocols. In Yu-Chu Tian and
David Charles Levy, editors, Handbook of Real-Time Computing, pages 1–99. Springer, 2020.

6 Felipe Cerqueira, Geoffrey Nelissen, and Björn B. Brandenburg. On strong and weak sus-
tainability, with an application to self-suspending real-time tasks. In Proceedings of the 30th
Euromicro Conference on Real-Time Systems (ECRTS 2018), pages 26:1–26:21, 2018.

7 Jian-Jia Chen, Geoffrey Nelissen, and Wen-Hung Huang. A unifying response time analysis
framework for dynamic self-suspending tasks. In Proceedings of the 28th Euromicro Conference
on Real-Time Systems (ECRTS 2016), pages 61–71. IEEE, 2016.

8 Jian-Jia Chen, Geoffrey Nelissen, Wen-Hung Huang, Maolin Yang, Björn Brandenburg, Kon-
stantinos Bletsas, Cong Liu, Pascal Richard, Frédéric Ridouard, Neil Audsley, Raj Rajkumar,
and Georg von der Brüggen. Many suspensions, many problems: A review of self-suspending
tasks in real-time systems. Real-Time Systems, 55(1):144–207, 2019.

9 UmaMaheswari C. Devi. An improved schedulability test for uniprocessor periodic task
systems. In Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS
2003), pages 23–30. IEEE, 2003.

10 Zheng Dong and Cong Liu. Closing the loop for the selective conversion approach: A
utilization-based test for hard real-time suspending task systems. In Proceedings of the 37th
IEEE Real-Time Systems Symposium (RTSS 2016), pages 339–350. IEEE, 2016.

11 Zheng Dong, Cong Liu, Soroush Bateni, Kuan-Hsun Chen, Jian-Jia Chen, Georg von der
Brüggen, and Junjie Shi. Shared-resource-centric limited preemptive scheduling: A com-
prehensive study of suspension-based partitioning approaches. In Proceedings of the 24th
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2018), pages
164–176. IEEE, 2018.

12 Glenn A. Elliott, Bryan C. Ward, and James H. Anderson. GPUSync: A framework for
real-time GPU management. In Proceedings of the 34th IEEE Real-Time Systems Symposium
(RTSS 2013), pages 33–44. IEEE, 2013.

13 Paul Emberson, Roger Stafford, and Robert I. Davis. Techniques for the synthesis of multi-
processor tasksets. In Proceedings of the 1st International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS 2010), pages 6–11, 2010.

14 José Fonseca, Geoffrey Nelissen, Vincent Nélis, and Luís Miguel Pinho. Response time
analysis of sporadic DAG tasks under partitioned scheduling. In Proceedings of the 11th IEEE
Symposium on Industrial Embedded Systems (SIES 2016), pages 1–10. IEEE, 2016.

15 Laurent George, Nicolas Rivierre, and Marco Spuri. Preemptive and non-preemptive real-time
uniprocessor scheduling. Research Report RR-2966, INRIA, France, 1996.

16 Mario Günzel, Niklas Ueter, and Jian-Jia Chen. Suspension-aware fixed-priority schedulability
test with arbitrary deadlines and arrival curves. In Proceedings of the 42nd IEEE Real-Time
Systems Symposium (RTSS 2021), pages 418–430. IEEE, 2021.

17 Mario Günzel, Georg von der Brüggen, and Jian-Jia Chen. Suspension-aware earliest-deadline-
first scheduling analysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 39(11):4205–4216, 2020.

18 Cong Liu and James H. Anderson. Suspension-aware analysis for hard real-time multiprocessor
scheduling. In Proceedings of the 25th Euromicro Conference on Real-Time Systems (ECRTS
2013), pages 271–281. IEEE, 2013.

ECRTS 2022

13:18 Response-Time Analysis for Self-Suspending Tasks Under EDF Scheduling

19 Geoffrey Nelissen and Alessandro Biondi. The SRP resource sharing protocol for self-suspending
tasks. In Proceedings of the 39th IEEE Real-Time Systems Symposium (RTSS 2018), pages
361–372. IEEE, 2018.

20 Geoffrey Nelissen, José Fonseca, Gurulingesh Raravi, and Vincent Nélis. Timing analysis of
fixed priority self-suspending sporadic tasks. In Proceedings of the 27th Euromicro Conference
on Real-Time Systems (ECRTS 2015), pages 80–89. IEEE, 2015.

21 Marco Spuri. Analysis of deadline scheduled real-time systems. Research Report RR-2772,
INRIA, France, 1996.

22 Georg von der Brüggen, Wen-Hung Huang, and Jian-Jia Chen. Hybrid self-suspension models
in real-time embedded systems. In Proceedings of the 23rd IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA 2017), pages 1–9.
IEEE, 2017.

	1 Introduction
	2 Related work
	3 System model
	4 Analysis
	4.1 Sequential sporadic tasks with jitter
	4.2 Schedule transformation
	4.2.1 Transformation example
	4.2.2 Properties of the transformed schedule

	4.3 Model transformation to enable the response-time analysis
	4.4 Response-time analysis algorithm

	5 Experimental results
	5.1 Experimental setup
	5.2 Results with constrained deadlines
	5.3 Results with implicit deadlines

	6 Conclusions and future work

