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Abstract
Multiprocessors have become the standard computing platform for real-time embedded systems. To
efficiently leverage the computational power of such platforms, software tasks are often characterized
by an internal structure where concurrent subtasks can execute in parallel on different processors.
Existing strategies for the scheduling of parallel real-time tasks on multiprocessor platforms, such
as partitioned, global, and federated scheduling, were inspired by earlier techniques that were
not conceived to explicitly support parallel tasks, thus carrying advantages but also well-known
limitations. This paper introduces replication-based scheduling, a specialized scheduling paradigm
for parallel real-time DAG tasks. Replication-based scheduling leverages the internal structure of the
parallel tasks to assign replicas of the subtasks to different processors, while ensuring that exactly
one replica of each subtask will be executed at runtime for every task instance. This approach aims
at preserving the advantages of partitioned scheduling while simplifying the timing analysis. The
replication-based scheduling framework is first defined, together with a strategy for implementing
replication-based scheduling in real-time operating systems. Then, offline allocation strategies
for subtask replicas and a response-time analysis are presented. In the provided experiments, the
schedulability achieved with replication-based scheduling is compared with that of existing techniques
for the scheduling of parallel real-time tasks on multiprocessors.
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1 Introduction

With the emergence of multiprocessor systems as the standard enabling platform for high-
performance real-time embedded computing systems, computational workloads have evolved
towards highly parallel structures to match the enhanced processing capabilities offered by the
underlying hardware. Numerous models exist to capture and analyze the timing behavior of
the scheduling system and guide the allocation of the computational activities to the available
processing elements, both at design time and at runtime, in order to maximize resource usage
while ensuring timely execution of all software activities in the system. However, existing
scheduling solutions for parallel tasks are characterized by either achieving low resource
utilization levels, or by excessive complexity in their runtime behavior and implementation,
leading to conservative analyses and significant runtime overheads [9, 8, 11, 23, 19].
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18:2 Replication-Based Scheduling of Parallel Real-Time Tasks

Contributions. This paper presents the replication-based scheduling paradigm (RBS) for
managing the execution of sporadic parallel real-time tasks on multiprocessor computing
platforms, which aims at improving the achieved system utilization and schedulability
performance by employing a flexible allocation and execution scheme based on subtask
replication. The main contributions are as follows:
1. Definition of the replication-based scheduling approach and discussion on its distinguishing

features in comparison with existing approaches.
2. Description of a pattern of implementation of replication-based scheduling in real-time

operating systems.
3. Real-time analysis for parallel tasks executing on a multiprocessor platform under pree-

mptive fixed-priority replication-based scheduling.
4. Experimental evaluation of the schedulability performance of replication-based scheduling,

in comparison with existing techniques for the scheduling of real-time parallel tasks.

2 System model

We consider a set τ = {τ1, . . . , τn} of n sporadic parallel real-time tasks, to be scheduled on
a multiprocessor platform consisting of m identical processors P1, . . . , Pm under preemptive
fixed-priority scheduling. Each task τi releases a potentially infinite sequence of jobs,
each separated from the next by at least a minimum inter-arrival time Ti, and subject
to a constrained relative deadline Di, such that Di ≤ Ti. The parallel computational
structure of each task τi is modeled as a directed acyclic graph (DAG) Gi = (Vi, Ei), where
Vi = {vi,1, vi,2, . . . , vi,ni} is a set of ni nodes (or vertices), and Ei ⊆ Vi×Vi is a set of directed
edges between nodes in Vi. Each node vi,a ∈ Vi represents a sequential computational unit,
or subtask, of the task τi, and is characterized by a worst-case execution time (WCET) Ci,a.
Each edge in Ei represents a precedence constraint between two nodes of the DAG Gi. If
ea,b

i = (vi,a, vi,b) is an edge connecting the vertices vi,a and vi,b, then, for every job of τi,
subtask vi,b cannot execute before vi,a is completed. Each task τi is assigned an unique fixed
scheduling priority πi. Subtasks inherit the priority of the corresponding task. The set of
tasks with priorities higher than or equal to that of a task τi, excluding τi itself, is denoted
by hep(τi). Overall, a task τi is characterized by the tuple (Gi, Ti, Di, πi).

The cumulative worst-case execution time (WCET) Ci of a task τi is defined as Ci =∑
vi,a∈Vi

Ci,a. The utilization factor Ui of τi is defined as Ui = Ci/Ti. The response time of
a job of a task τi is defined as the difference between its finishing time, that is, the time at
which the job completes its execution, and its arrival time. The worst-case response time
(WCRT) Ri of a task τi is defined as the maximum response time across all possible jobs of
τi in all possible schedules of task set τ , with respect to the adopted scheduling algorithm.
Analogously, the response time of an instance of a subtask vi,a within a job of τi is defined
as the difference between the finishing time of that instance and the arrival time of the
corresponding job, while the WCRT Ri,a of a subtask vi,a is defined as the maximum possible
response time of vi,a across all possible jobs of τi in all possible schedules of task set τ .

Whenever an edge from vi,a to vi,b exists, vi,a is said to be an immediate predecessor
of vi,b, whereas vi,b is said to be an immediate successor of vi,a. The set of immediate
predecessors of vi,a is denoted by ipred(vi,a), while the set of immediate successors of vi,a

is denoted by isucc(vi,a). When the immediate predecessor and the immediate successor
definitions are applied transitively starting from a node vi,a over the topology of the DAG
Gi, the set of predecessors and the set of successors of vi,a are obtained, respectively. Two
different nodes are said to be independent from each other if neither is a predecessor or a
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Figure 1 Example of computational structure of a parallel task τ1, modeled as a DAG G1.

successor of the other. A node with no incoming edge is referred to as a source node, while a
node with no outgoing edge is referred to as a sink node. The set of sink nodes in a DAG Gi

is denoted by sink(Gi). In the following we assume, without loss of generality, that a single
source node, denoted by vi,S , is present in each DAG Gi. A path in a DAG Gi is defined as
an ordered sequence of nodes where a directed edge exists between any two adjacent nodes
in the sequence, each node in the sequence is an immediate predecessor of the following
node, and the sequence starts from a source node and ends on a sink node. Given a path λ,
V (λ) represents the set of nodes belonging to the path. The set of all paths in a DAG Gi is
denoted by path(Gi).

Running example. Figure 1 depicts the DAG topology G1 of an example parallel task τ1
composed of n1 = 7 nodes. In the figure, the WCET C1,a of each subtask v1,a is reported
next to the corresponding node.

2.1 Scheduling requirements

Designing a suitable scheduling paradigm for parallel tasks requires satisfying the following
requirements for each task set τ scheduled under that paradigm.

Requirement 1. For each task τi ∈ τ , in all jobs of τi, the precedence constraints in Gi

must be properly enforced, meaning that each node in Gi cannot start executing before
all of its predecessors have completed.
Requirement 2. For each task τi ∈ τ , in all jobs of τi, each node in Gi must execute
exactly once.

3 Background and motivations

Several parallel task models have been proposed in the literature to represent the different
forms of workload generated by well-known parallel programming models. In the fork-join
model [22, 27, 4], tasks are represented as an interleaved sequence of sequential and parallel
segments, where synchronization is assumed at the boundary of every segment. The sporadic
DAG model was introduced by Saifullah et al. [28] to support less restrictive parallel structure
structures. A number of works demonstrated that the DAG task model resembles commonly
used parallel programming models such as OpenMP [30, 25].

The following techniques are considered the primary options when dealing with the
scheduling of sporadic DAG tasks on multiprocessor platforms.
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18:4 Replication-Based Scheduling of Parallel Real-Time Tasks

Global scheduling. Under fixed-priority global scheduling, the m highest-priority pending
subtasks are scheduled at any given time. If tasks are preemptive, the execution of a low-
priority subtask may be preempted by a higher-priority one. When resuming its execution,
the preempted subtask may migrate to a different processor than that on which it was
preempted. Therefore, global scheduling requires the underlying system to be capable of
moving the execution context of a job from one processor to another. Migrations are typically
costly and increase the execution time of jobs. An advantage of global scheduling is that
all scheduling decisions are taken at runtime, and no design time resource assignment is
required. Global scheduling for parallel tasks was investigated in numerous works, such as
those by Bonifaci et al. [12], Baruah [5], and Fonseca et al. [17, 18].

Partitioned scheduling. Under partitioned scheduling, each subtask is statically assigned
to a specific processor at design time, and can only execute on that processor at runtime.
Execution of the subtasks allocated to each processor is then managed by a dedicated
uniprocessor scheduler. As a result, the partitioned scheduling approach entails solving a
complex allocation problem to map subtasks on processors. On the other hand, partitioned
scheduling can be easily implemented in a real-time operating system by reusing techniques
from uniprocessor scheduling. Parallel tasks under partitioned scheduling were analyzed by
Fonseca et al. [19], Casini et al. [13], and Aromolo et al. [2] by means of model transformation
techniques to self-suspending task models [14].

Federated scheduling. Federated scheduling, originally proposed by Li et al. [23], splits the
task set into two disjoint sets: the set of high-utilization tasks, which contains all tasks τi such
that Ui ≥ 1, and the set of low-utilization tasks, which contains all tasks τi such that Ui < 1.
The two sets of tasks are then treated separately. First, each high-utilization task τi is assigned
a set of mi =

⌈
Ci−Li

Di−Li

⌉
dedicated processors, with Li = maxλ∈path(Gi)

{∑
vi,a∈V (λ) Ci,a

}
.

Each high-utilization task is scheduled on its dedicated mi processors by any work-conserving
scheduler. Low-utilization tasks are treated as sequential tasks and executed with any
multiprocessor scheduling algorithm for sequential tasks on the processors that were not
assigned to high-utilization tasks. Subsequent works, such as those by Baruah [6, 7], Jiang
et al. [21], Ueter et al. [29], Dinh et al. [15], and Jiang et al. [20], explored the application of
federated scheduling under different assumptions.

3.1 Motivations
The scheduling approaches mentioned above come with both advantages (e.g., simplicity or
load balancing) and disadvantages (e.g., resource over-provisioning or limited analyzability),
which were properly documented in previous work [9, 8, 11, 2]. It is worth highlighting the
benefits of partitioned scheduling, which include the possibility of accurately controlling
the contention for memory resources and the typically lower overheads implied by its imple-
mentations compared to schedulers that support job migrations. Nevertheless, partitioned
scheduling of parallel tasks proved to introduce significant complexity in the response-time
analysis, which inevitably also affects the performance of partitioning algorithms [19].

Motivated by these observations, this work investigates a specialized scheduling approach
for parallel tasks that aims at preserving the overall philosophy of partitioned scheduling on
a per-job basis, while at the same time drastically simplifying the timing analysis.

The proposed replication-based scheduling algorithm leverages the internal structure of
each parallel task to assign replicas of its nodes to different processors, while ensuring that
exactly one replica of each node will be executed at runtime for every job.
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Other scheduling approaches leveraging replication have been investigated in the context
of high-performance computing, with the aim of reducing communication costs and improving
the expected response times, but are characterized by different scheduling behaviors. For
instance, duplication-based scheduling [1] statically assigns nodes of parallel tasks redundantly
to different processors in order to minimize the overheads incurred due to inter-processor
communication. Duplication-based scheduling was also adopted to devise a specialized parti-
tioning strategy for real-time parallel DAG tasks which aims at eliminating inter-processor
dependencies between subtasks, thus simplifying the resulting schedulability analysis [16].
However, in duplication-based approaches, all copies of each node are executed for each job,
whereas the replication-based scheduling approach ensures that exactly one node replica
executes for each job, meaning that the overall computational workload of the task is not
increased. Concerning distributed server systems, replication-based load balancing techniques
were proposed to minimize the expected response time for the incoming job requests by
creating multiple replicas of the job on different servers [26]. Unlike replication-based load
balancing, which aims at minimizing the expected latency for job requests in distributed
systems, our solution focuses on ensuring that precedence constraints and real-time properties
are satisfied in the scheduling of parallel real-time tasks.

4 Replication-based scheduling

This section presents the replication-based scheduling strategy for parallel tasks, for the
specific case of preemptive fixed-priority systems. The aim of the proposed replication-based
scheduling paradigm is to mitigate the limitations and performance loss suffered by existing
techniques by leveraging the knowledge of the internal computational structure of the parallel
tasks, in terms of their DAG topology.

4.1 Overview

As with partitioned and federated scheduling, replication-based scheduling consists of two
phases; namely, an allocation phase at design time, and a dynamic scheduling phase at
runtime. The core feature of replication-based scheduling is that, during the allocation
phase, each node of the DAG of a given parallel task can be replicated and made available
for execution on a subset of processors. For each job, a single replica of each node is then
selected for execution at runtime, depending on the dynamic scheduling situation.

4.1.1 Allocation phase

In the system design phase, the computational parallel structure of each task is first de-
composed into a set of linear node sequences by means of a specialized sequence expansion
algorithm, specified later in Section 4.2. Each node sequence generated by this algorithm
represents a subpath in the DAG which should be executed sequentially and without sus-
pension on a single processor. Then, in a sequence allocation step, each node sequence is
allocated to a specific processor, meaning that it can only execute on that specific processor
at runtime. In the following, let Si,q = ⟨vi,a, vi,b, . . . ⟩ represent an ordered sequence of nodes
of task τi, and let Si = {Si,1, Si,2, . . . } represent the set of node sequences generated by the
sequence expansion algorithm for a task τi. Then, P (Si,q) represents the processor to which
a sequence Si,q of a task τi is assigned.

ECRTS 2023
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Running example. Figure 2 illustrates the four linear node sequences {S1,1, S1,2, S1,3, S1,4}
obtained for the example task τ1 of Figure 1 with the sequence expansion algorithm specified
later in Section 4.2. Sequence S1,1 = ⟨v1,1, v1,2, v1,5, v1,7⟩ contains all nodes in the upper
path of τ1. Sequence S1,2 = ⟨v1,3, v1,5, v1,7⟩ contains the subpath starting at node v1,3. S1,3
starts at node v1,4 and S1,4 at node v1,6. The arrows in Figure 2 represent the precedence
constraints between nodes in the sequences, inherited from the DAG G1 of τ1.

Sequence constraints
Inherited constraints

Figure 2 Example set of node sequences S1 obtained from the decomposition of parallel task τ1.

As can be seen from the above example, each node of the original DAG of a given
parallel task can be present in multiple sequences (e.g., v1,5 and v1,7 appear 3 and 4 times,
respectively), which are then potentially allocated to different processors. Therefore, the
nodes that belong to multiple sequences allocated to different processors are said to be
replicated.

4.1.2 Runtime phase
As in the partitioned approach, the scheduling of the node sequences on each processor is
managed by a dedicated uniprocessor scheduler. The runtime scheduler is designed in a way
that ensures that exactly one replica of each node is executed for each job of a parallel task
while enforcing the precedence constraints of the original DAG.

To do so, whenever a sequence completes the execution of a node, it checks whether all
the precedence constraints of the next node in the sequence are satisfied. If they are, then
the next node in the sequence is executed. If they are not, the execution of the sequence is
terminated. This provides two properties. First, during system execution, a node sequence
can be modeled as a sequential task without suspensions but with varying execution time
executed on a single processor. Second, the combination of structural properties observed
on the sequences obtained in the decomposition algorithm and of the early termination
mechanism guarantees that nodes do not execute before their corresponding precedence
constraints are satisfied (i.e., a sequence is ended if precedence constraints of the next node
are not respected), and that exactly one replica of each node will execute for each job of a
task (i.e., the replica in the last sequence reaching that node).

This means that resources are initially set aside for the execution of a specific node on
multiple processors, but those resources will only be utilized in one processor for each job of
the task, depending on the ongoing dynamic scheduling situation.

Running example. Assume that the sequences of Figure 2 are each assigned to a different
processor of a multicore platform, so that P (S1,1) = P1, P (S1,2) = P2, P (S1,3) = P3, and
P (S1,4) = P4. Note that there are four replicas of v1,7 and three replicas of v1,5 in this case.
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Figure 3 Example schedules of parallel task τ1 under replication-based scheduling, in isolation
(a) and with preemption by a higher-priority task τh (b).

Figure 3(a) provides an example schedule of a job of task τ1 when all its subtasks execute
for their WCET in isolation according to the algorithm explained above. The figure depicts
the schedule of each sequence in S1 on the corresponding processor. In the example, the job
of τ1 is released at time 0. Therefore, the corresponding sequences arrive on the associated
processor at time 0, as represented by the upward arrows. Since it corresponds to the only
source node in the DAG G1, subtask v1,1 starts executing on processor P1 as part of the
sequence S1,1. Once v1,1 terminates at time 1, subtasks v1,2, v1,3, and v1,4 can start their
execution and sequences S1,2 and S1,3 are released on processors P2 and P3. At time 2,
subtask v1,4 terminates. At this point, the incoming precedence constraints towards the next
subtask in the sequence S1,3, i.e., v1,5, are not yet satisfied. For this reason, the execution of
the sequence S1,3 is forcibly terminated for this job, and it will not execute its replicas of the
nodes v1,5 and v1,7. Similarly, at time 3, the execution of subtask v1,2 terminates, but the
next subtask in the sequence S1,1, i.e., v1,5, cannot start executing at this time because the
precedence constraint incoming from node v1,3 is not yet satisfied. Therefore, the execution
of sequence S1,1 is also terminated early for this job. S1,1 does not execute its replicas of the
nodes v1,5 and v1,7. When, at time 4, subtask v1,3 terminates its execution as part of the
sequence S1,2, all precedence constraints towards node v1,5 are satisfied. This means that
the replica of node v1,5 belonging to the sequence S1,2 can start its execution at time 4. At
the same time, the precedence constraints towards node v1,6 are satisfied, so that sequence
S1,4 can start its execution on processor P4. When subtask v1,5 terminates at time 6, node
v1,7 cannot start executing because the precedence constraint incoming from v1,6 is not yet
satisfied, therefore the corresponding sequence S1,2 is terminated early. Finally, subtask
v1,7 starts executing on processor P4 once subtask v1,6 terminates at time 7, since all of its
precedence constraints are satisfied at that time. The job of τ1 finishes at time 9, when S1,4
completes the execution of v1,7.

Figure 3(b) provides an example schedule of a job of task τ1 and another higher-priority
task τh executing some workload on processor P1 between time instants 2 and 5. This example
highlights how the overall scheduling scenario on the multiprocessor system dynamically
affects the selection of the replica to be executed for a job of any parallel task in the system.

In this scenario, node v1,2 is preempted at time 2 on processor P1, and cannot execute
until time 5, when the processor becomes again available for execution of τ1. Since node
v1,2 is the last of the predecessors of v1,5 to terminate in this schedule, the replica of v1,5
to be executed in this case is the one in S1,1, instead of S1,2 as in the previous schedule
(Figure 3(a)). Similarly, the replica which is executed for the sink node v1,7 is the one in
S1,1, again differently from the previous case.

ECRTS 2023



18:8 Replication-Based Scheduling of Parallel Real-Time Tasks

Note that, within the schedules in Figure 3(a) and Figure 3(b), (1) each subtask of τ1 is
executed exactly once, (2) replicated nodes (v1,5 and v1,7) are always executed by the last
sequence that reaches that node, (3) all precedence constraints between nodes of the DAG
are respected, and (4) sequences may suffer release jitter and early-termination but never
suffer self-suspension. These observations will be leveraged in Section 5 in order to derive a
real-time analysis for replication-based scheduling.

4.2 Specification of the allocation algorithms
In the following, we specify the two algorithms that are part of the design phase of replication-
based scheduling; namely, sequence expansion and sequence allocation.

4.2.1 Sequence expansion
The sequence expansion algorithm performs a decomposition of the DAG Gi of each task
τi into sequences corresponding to subpaths in the DAG topology. The purpose of this
algorithm is to generate a set of node sequences that can be executed as sequential sporadic
tasks with release jitter and execution time variation.

A possible approach to perform the sequence expansion step for a given task τi ∈ τ is
described in Algorithm 1, where head(Si,q) and tail(Si,q) represent the first and the last node
in a sequence Si,q, respectively. First, the set Si is initialized with a single sequence Si,1,
initially only including the source node vi,S of Gi (Lines 2-3). Then, the set Si is extended
in an incremental procedure (Lines 6-20). In this procedure, each sequence in Si, starting
with Si,1, is expanded by appending nodes to the sequence, following one path of the DAG
Gi until a sink node of Gi is reached (Lines 7-10). When expanding a sequence Si,q, all
immediate successors of the last node in Si,q that are not added to Si,q initiate new sequences
in Si that are added to Si (Lines 11-17). The sequences in Si are expanded in the order in
which they were created. A pair of indices, q and c, is used to keep track of the sequence
that is currently being explored and of the last sequence added to Si (Lines 4-5), and the
procedure continues until all sequences in Si have been expanded. Whenever a node is added
to sequence, one of the successors isucc(vi,L) of the last node vi,L of Si,q is selected according
to the policy implemented in the SelectSuccessor procedure and is appended to the
sequence Si,q (Lines 8-10); then, for all the other nodes vi,K in isucc(vi,L), an additional
sequence, initially containing vi,K only, is added to Si if no other sequence starting with
node vi,K exists in Si (Lines 11-17).

The selection of the successor to be appended to the sequence Si,q that is being explored
(SelectSuccessor at Line 8) can be performed according to different policies. In the
following, we assume that a static successor selection policy is adopted, meaning that, for
each node vi,a ∈ Vi, the node selected to follow a replica of vi,a must be the same for all
sequences in Si in which vi,a appears. For instance, the immediate successor node vi,r with
smallest index r might be selected to be added as the next element in Si,q. Another option
could be that the next selected node is the node among the candidate successors which
comes first in a fixed topological ordering of the nodes of the DAG Gi. Different policies
may bring to different outcomes of the sequence expansion algorithm in terms of number
and structure of the resulting node sequences. In future work, one may propose a non-static
successor selection policy which, for example, may consist in keeping track of the number
of times each node is visited as a successor of other nodes within the sequence expansion
algorithm, and then selecting the node which was visited the least number of times. Figure 2
shows the sequences resulting from applying Algorithm 1 to the DAG of Figure 1, when
SelectSuccessor selects the immediate successor with smallest index.
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Algorithm 1 Sequence expansion algorithm for a task τi.

1: procedure SequenceExpansion(τi)
2: Si,1 ← ⟨vi,S⟩
3: Si ← {Si,1}
4: q ← 1 ▷ Index of the next sequence to be expanded
5: c← 1 ▷ Index of the last sequence added to Si

6: while q ≤ c do
7: while tail(Si,q) /∈ sink(Gi) do
8: vi,L ← tail(Si,q)
9: vi,A ← SelectSuccessor(Gi, vi,L)

10: Si,q ← Si,q ∥ vi,A ▷ Append vi,A to Si,q

11: for all vi,K ∈ isucc(vi,L) \ vi,A do
12: if ∀Si,p ∈ Si, vi,K ̸= head(Si,p) then
13: c← c + 1
14: Si,c ← ⟨vi,K⟩
15: Si ← Si ∪ Si,c

16: end if
17: end for
18: end while
19: q ← q + 1
20: end while
21: return Si

22: end procedure

4.2.2 Sequence allocation

Following the sequence expansion, each sequence in the set Si for each task τi in τ must be
allocated to a specific processor, on which it is bound to execute at runtime. This procedure
is akin to the partitioning problem for partitioned scheduling of sequential and parallel tasks,
and can be approached with different techniques.

A possible sequence allocation scheme is described in Algorithm 2. Under this approach,
tasks are allocated in order of decreasing utilization (Line 2), and each sequence is allocated
in topological order of the first node of the sequence (Line 3). The choice for the allocation of
each sequence is determined based on the impact on the schedulability of a partial version of
the task set following a tentative allocation of the sequence on each available processor, thus
determining the allocation of each task incrementally. The schedulability can be evaluated
with the response-time analysis that will be presented in Section 5. In Algorithm 2, the choice
for the allocation of each sequence Si,q of a task τi is determined by tentatively allocating Si,q

to each of the processors P1, . . . , Pm, one after the other, followed, for every such allocation,
by applying the schedulability analysis to all the sequences in the partial task set including
the tentatively allocated sequence Si,q and all the other sequences that were already allocated
to a processor (Lines 4-12). Note that, since the allocation of tasks does not follow a priority
order, the schedulability results obtained for tasks that were already allocated cannot be
reused; therefore, the schedulability of the partial task set composed of all the sequences
that were already allocated must be reevaluated for each allocation attempt. In case none
of the allocations produces a schedulable task set, the task set is deemed not schedulable,
and the allocation returns a failure (Lines 13-15). Otherwise, the preferred allocation is
selected according to a specific policy among those that result in a schedulable partial task
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Algorithm 2 Sequence allocation algorithm for a task set τ .

1: procedure SequenceAllocation(τ)
2: for all τi ∈ τ in decreasing utilization order do
3: for all Si,q ∈ Si in topological order of the first node head(Si,q) do
4: Pi,q ← ∅ ▷ Set of schedulable allocations of Si,q

5: for all Pk ∈ P do
6: P (Si,q)← Pk ▷ Tentatively allocate Si,q to Pk

7: Test the schedulability of Si,q assuming it is allocated to Pk

8: For all Sj,p that have already been allocated, test the schedulability of Sj,p

assuming Si,q is allocated to Pk

9: if P (Si,q) = Pk yields a schedulable task set then
10: Pi,q ← Pk

11: end if
12: end for
13: if Pi,q = ∅ then
14: return Failure (no valid allocation was found)
15: end if
16: P (Si,q)← SelectProcessor(Pi,q) ▷ Select a schedulable allocation
17: end for
18: end for
19: return Success (all sequences were allocated)
20: end procedure

set (SelectProcessor at Line 16). One possible selection strategy is to first determine the
slack Si of the partial version of task τi within the partially allocated task set, computed as
Si = Di −Ri, where Ri is an upper bound on the WCRT of τi (computed with respect to
the sequences that were already allocated), and then apply a Worst Fit, Best Fit, or First
Fit heuristic (or a combination of them) with respect to the available slack to select the
allocation. Specifically, Worst Fit and Best Fit select the allocation producing, respectively,
the largest and the smallest slack Si, while First Fit simply selects the first processor that
fits the sequence.

A variant of this approach is inspired by the dual allocation scheme proposed in federated
scheduling. In this case, tasks are allocated in order of decreasing utilization, where the
sequences of the high-utilization tasks, i.e., those tasks τi with utilization factor Ui ≥ 1, are
allocated as in the above approach. Instead, for sequences of low-utilization tasks, i.e., those
tasks τi with utilization factor Ui < 1, an attempt is first made to allocate the full task to a
processor as a single linearized sequence of τi, corresponding to a topological sorting of the
nodes in Gi, similar to how low-utilization tasks are treated in federated scheduling. If the
attempt fails, the task is allocated as in the above approach leveraging the slack.

4.3 Runtime phase and implementation pattern
The runtime phase of replication-based scheduling decides which replica of each subtask
should be executed at runtime. As discussed in Section 4.1, the executed replica varies
for each job of a task and depends on runtime properties like the actual execution time of
predecessors or the interference suffered by subtasks. In order to realize a runtime mechanism
for replication-based scheduling that is consistent with the requirements for the scheduling
of parallel tasks, the following rules govern the execution of the task sequences.
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Rule 1. Each sequence Si,q ∈ Si of every task τi ∈ τ is scheduled on the assigned
processor P (Si,q) according to a preemptive fixed-priority policy using the priority πi of
the corresponding task τi. If two or more sequences have equal priority, then the one that
was released the earliest is considered as having higher priority.
Rule 2. For all tasks τi ∈ τ and each sequence Si,q ∈ Si, when a job of τi is released, the
sequence Si,q arrives on the corresponding processor, but is released and becomes eligible
for execution only once all the precedence constraints incoming into the first node of the
sequence, head(Si,q), are satisfied.
Rule 3. For all tasks τi ∈ τ and each sequence Si,q ∈ Si, nodes in the sequence Si,q are
executed in the order in which they appear in the sequence.
Rule 4. For all tasks τi ∈ τ and each sequence Si,q ∈ Si, for each pair (vi,a, vi,b) of
consecutive nodes in the sequence Si,q, whenever node vi,a terminates its execution as part
of Si,q and at least one of the precedence constraints incoming into vi,b is not satisfied,
then the execution of the sequence Si,q is terminated (i.e., vi,b and the following nodes
are not executed).
Rule 5. For all tasks τi ∈ τ , for each job of τi, no more than one replica of each node
vi,b ∈ Vi can start its execution across the sequences in Si. In case multiple replicas of
a node vi,b could start executing in different sequences at the same time, one of those
sequences executes vi,b and the other sequences are terminated early, according to an
arbitrary tie-breaking rule.

In the following, we describe a possible implementation pattern for the runtime rules of
replication-based scheduling in a real-time operating system.

Rules 1-3 can be obtained by extending the runtime support for a preemptive fixed-priority
scheduler for uniprocessors to support delaying the release of a sequence with respect to
its arrival and signaling the corresponding events. In particular, Rule 1 is implemented by
executing sequences according to a uniprocessor preemptive fixed-priority scheduling policy
on the processor on which they are assigned. Rule 2 is implemented by delaying the release of
the sequence until all the precedence constraints incoming into the first node in the sequence
are satisfied. Then, Rule 3 is obtained by executing nodes in a sequence in order, one after
the other.

Rules 4 and 5 require implementing an efficient inter-processor synchronization mechanism.
A simple and efficient way to implement this kind of synchronization is to leverage the
availability of atomic instructions (e.g., store-exclusive instructions in Arm architectures) or
higher-level operating system constructs emulating their behavior. These instructions can
be used by the replication-based scheduler to control the contents of a small memory area
dedicated to the scheduling of a specific task, which contains the completion state of each
subtask for the current job of the task, assuming that each task releases at most one job
at a time. In particular, consider a task τi ∈ τ . The scheduler reserves a memory area Bi

for τi that is shared among all processors to which at least one sequence of τi is allocated.
The bits in this shared memory area can be accessed and manipulated as a bitmap using
atomic instructions. The bits in Bi are interpreted as a vector [Bi,1, Bi,2, . . . , Bi,ni ] of ni

consecutive data elements, where each element Bi,a distinguishes the completion status of the
corresponding subtask vi,a in τi for the job which is currently pending among three possible
states, i.e., pending but not started (Bi,a = SP ), started but not completed (Bi,a = SS),
and completed (Bi,a = SC). In particular, when a job of the task is released, the scheduler
sets the state of all nodes in Bi to the state SP . Then, the code that controls the execution
of each sequence Si,q is instrumented such that the following rules are applied.
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Whenever a node vi,a starts executing as part of a sequence of τi, the corresponding state
Bi,a ∈ Bi is set to SS , meaning that the node has started its execution for the current
job but did not complete yet.
Whenever a node vi,a completes its execution as part of a sequence of τi, the corresponding
state Bi,a ∈ Bi is set to SC , meaning that the node has completed its execution for the
current job.
Whenever a node vi,a with precedence constrains incoming from other sequences is the
next subtask to execute in a sequence Si,q, the shared memory area is accessed as a
bitmap by the sequence Si,q to simultaneously check the value of all bits corresponding
to the completion state of the nodes from which the precedence constraints incoming into
vi,a originate. If at least one of those states is not SC , meaning that the corresponding
node has not yet completed in the current job of τi, the sequence Si,q is terminated early
(enforcing Rule 4).
Whenever a node vi,a could start executing in a sequence Si,q, the completion status of
Bi,a is accessed and, if Bi,a ≠ SP , meaning that the corresponding node has already
started executing in the current job of τi, the sequence Si,q is terminated early (enforcing
Rule 5).

Running example. In the schedule in Figure 3(a), node v1,5 cannot execute as part of
sequence S1,3 at time 2 since the completion states of nodes v1,2 and v1,3 are B1,2 = SS and
B1,3 = SS at this time. Therefore, the corresponding sequence S1,3 is terminated at time 2.
Instead, node v1,5 is executed as part of the sequence S1,2 since, at time 4, all of the elements
B1,2, B1,3, and B1,4 corresponding to the set of nodes with precedence constraints towards
v1,5 (i.e., nodes v1,2, v1,3 and v1,4) signal a completion state SC .

The most important advantage with respect to global scheduling is that replication-based
scheduling does not require support for the migration of jobs and subtasks among processors.
Instead, whenever data needs to be transferred from one DAG subtask to one of its successors,
it only requires that such data can be accessed by the replicas of the successor node, which
can be deployed in different sequences assigned to different processors. This can be achieved
by using message passing or shared memory, like in any other partitioned or global scheduler.
All the node replicas must have access to the shared memory or message queue, but only one
will write into it and read from it at each job execution.

4.4 Properties
In the following, we derive a set of properties of replication-based scheduling, also proving
that the requirements presented in Section 2.1 for a correct execution of parallel tasks are
respected with replication-based scheduling.

▶ Lemma 1. For each task τi ∈ τ and each node vi,a ∈ Vi, vi,a is present in at least one
sequence in Si.

Proof. By Algorithm 1, the source node of the DAG of τi is the first node of sequence Si,1
(Line 3). Now, for any node that is in a sequence Si,q ∈ Si, all its immediate successors
are either in the sequence Si,q (Lines 8-10 of Algorithm 1) or are the first node of another
sequence in Si (Lines 11-17 of Algorithm 1). Therefore, by induction starting from the source
node of τi, all nodes of τi are at least in one sequence in Si. ◀

▶ Lemma 2. Replication-based scheduling satisfies Requirement 1; i.e., for each task τi ∈ τ ,
each node in Gi does not start executing before all of its predecessors have completed.
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Proof. Consider a task τi ∈ τ . Consider a replica of a node vi,a ∈ Vi in a sequence Si,q. If
that replica is located at the start of the sequence Si,q, then, by Rule 2, the release of the
sequence, and thus the start of the replica, is delayed until all the precedence constraints
incoming into node vi,a are satisfied. Instead, if that replica is not the first node of the
sequence Si,q, then, by Rule 3, nodes in Si,q are executed in the order in which they appear
in the sequence, and, by Rule 4, the sequence is terminated if at least one of the predecessors
of the replica of vi,a did not yet execute when the replica of vi,a is reached in Si,q. Therefore,
a replica of vi,a may only execute if all precedence constraints are satisfied. ◀

▶ Lemma 3. Replication-based scheduling satisfies Requirement 2; i.e., for each task τi ∈ τ ,
in all jobs of τi, each node in Gi executes exactly once.

Proof. By Rule 5, each node in Gi does not execute more than once in all jobs of τi. It then
remains to prove that each node in Gi executes at least once in all jobs of τi. We prove it
by structural induction on the topology of the DAG Gi. The base case of the structural
induction corresponds to proving that the source node vi,S executes at least once in each
job of τi. This holds by considering that the source node vi,S has no incoming precedence
constraints and a single replica of vi,S is present as the starting node of Si,1 in Si; therefore,
that replica can immediately start executing once the job of the task is released (Rule 2) and
can never be prevented from executing as a result of Rules 4 or 5. For the inductive step,
we prove that, in a generic job of τi, if all the predecessors of any node vi,a ∈ Vi execute
at least once, then vi,a executes at least once. First, by Lemma 1, for each task τi, each
node vi,a ∈ Vi is present in at least one sequence in Si. If at least one replica of vi,a appears
as the first node of a sequence Si,q ∈ Si, then that replica can never be terminated as a
result of Rule 4, and can in fact only be terminated if another replica of vi,a is selected for
execution according to the tie-breaking in Rule 5, therefore vi,a will be executed in Si once
all the precedence constraints incoming into vi,a are satisfied (Rule 2). In the following,
consider the case where vi,a never appears as the first node of a sequence in Si. Consider
the last sequence that executes an immediate predecessor of vi,a. Call that sequence Si,L

and the executed predecessor vi,L. Si,L must exist since, by the induction assumption, all
immediate predecessors of vi,a must execute at least once for each job of τi. By Algorithm 1
(Lines 7-18), all sequences that include an immediate predecessor vi,L of vi,a must have a
replica of vi,a right after vi,L. Thus, Si,L either executes vi,a after vi,L, which would complete
the proof, or Si,L is terminated early after executing vi,L. In the latter case, it means that,
by Rule 4, at least one of the predecessors of vi,a must not have completed its execution
when Si,L completes the execution of vi,L. However, this contradicts the assumptions that
all predecessors of vi,a execute, and that Si,L is the last sequence executing a predecessor of
vi,a. Thus, vi,a certainly executes as part of Si,L. ◀

5 Schedulability analysis

Unlike other scheduling algorithms (e.g., partitioned or global fixed-priority or Earliest
Deadline First scheduling), replication-based scheduling was designed from the ground up
so as to simplify its schedulability analysis and avoid analytical pessimism introduced by a
limited understanding of which schedule may lead to the worst-case response time of each
DAG task. In fact, a task set scheduled with replication-based scheduling may simply be
analyzed as a set of sequential sporadic tasks with release jitter scheduled on single core
platforms.
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The proposed response-time analysis for replication-based scheduling derives a WCRT
upper bound Ri,a for each node vi,a in Vi. Then, the WCRT upper bound Ri of a task τi is
given by the maximum value of Ri,a for any vi,a in Vi, or, equivalently, for any vi,a ∈ sink(Gi).
The task set τ is then deemed schedulable if Ri ≤ Di holds for each task τi. The main
observation behind the analysis is that each sequence of a parallel task τi in τ behaves as a
sporadic task with release jitter and execution time variation.

5.1 Response-time analysis with model transformation
Consider the following properties of replication-based scheduling to support our claim that
each sequence can be modeled as an independent sequential sporadic task with release jitter
and execution time variation executing on a single core platform.

▶ Property 1 (From Rule 3). A sequence Si,q starts by executing its first node head(Si,q),
and all the following nodes will execute sequentially.

▶ Property 2 (From Rule 2). The first node of a sequence Si,q, vi,s = head(Si,q), arrives at
the same time as the job of the task τi, but is released and becomes eligible for execution only
once all the precedence constraints incoming into vi,s have been fulfilled.

▶ Property 3. A sequence Si,q never self-suspends as part of its execution.

Proof. None of the Rules 1-5 allows a sequence Si,q to perform a self-suspension. ◀

▶ Property 4. A sequence Si,q never migrates.

Proof. By Rule 1, Si,q can only execute on the processor P (Si,q) on which it is assigned. ◀

From the above properties, it is evident that the behavior of a sequence Si,q is equivalent
to executing a sequential sporadic task τ ′

i on a single-core platform, subject to a release
jitter J ′

i , where the jitter is given by the largest amount of time by which the precedence
constraints of the first nodes of the sequence are fulfilled, i.e., by the maximum response time
among the immediate predecessors of the first node of Si,q, while the WCET C ′

i is simply
given by the sum of the WCETs of the nodes in Si,q.

Since the above observation holds for every sequence of every task in τ , the WCRT of a
sequence Si,q can be obtained by means of a model transformation of the set of sequences
allocated to the same processor P (Si,q) as Si,q into a set of sporadic tasks with release jitter.

The WCRT R′
i of a task τ ′

i , and thus of a sequence Si,q, in a set τ ′ of sporadic tasks with
release jitter can then be computed with the response-time analysis by Audsley et al. [3].
That is, R′

i = r′
i + J ′

i , where r′
i is the smallest positive solution of the recurrent equation1

r′
i = C ′

i +
∑

τ ′
k

∈{τ ′\τ ′
i
}|πk=πi

C ′
k +

∑
τ ′

j
∈hp(τ ′

i
)

⌈
r′

i + J ′
j

T ′
j

⌉
C ′

j , (1)

where hp(τ ′
i) denotes the set of tasks with priority higher than that of τ ′

i .
Applying the above transformation requires deriving an upper bound on the release jitter

J ′
i of a sequence Si,q, which is a function of the WCRT of the predecessors of the first node

of Si,q. In fact, a sequence Si,q is released only when all nodes with a precedence constraint
towards Si,q have completed their execution. Therefore, for every DAG task τi, the proposed
analysis computes WCRT upper bounds for each node of τi in their topological order in Gi.

1 Note that, since jobs with identical priorities are executed in FIFO order, at most one job of a task
with identical priority to τ ′

i can interfere with a job of τ ′
i , hence the second term of Equation (1).
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Algorithm 3 Derivation of WCRT upper bounds Ri for each task τi in τ .

1: procedure ComputeWCRTUpperBounds(τ)
2: for all τi ∈ τ in decreasing priority order do
3: for all vi,a ∈ Vi in topological order do
4: for all Si,q ∈ Si | vi,a ∈ Si,q do
5: τ ′ ← Transformation(τ, (i, a, q))
6: Ri,a,q ← RTA(τ ′, (i, a))
7: end for
8: Ri,a ← max

{
Ri,a,q | vi,a ∈ Si,q ∧ Si,q ∈ Si

}
9: end for

10: Ri ← max
{

Ri,a | vi,a ∈ Vi

}
11: end for
12: end procedure

More specifically, as detailed in Algorithm 3, tasks in τ are analyzed in decreasing priority
order, and the subtasks of each task τi are analyzed in topological order. A WCRT upper
bound Ri,a is derived for each subtask vi,a, by taking the maximum value of the WCRT
bounds of all replicas of that node across all sequences of τi (Lines 3-10). The WCRT upper
bound Ri of τi is then given by the response time of the node of τi with the largest response
time (Line 10). At Line 5, the WCRT bound Ri,a,q for the replica of a node vi,a in a sequence
Si,q is calculated by transforming τi and all higher-priority and equal-priority tasks into a
set of equivalent sporadic tasks τ ′ using Algorithm 4, detailed later in this section. The
WCRT upper bound of vi,a in a sequence Si,q is then obtained by applying the response-time
analysis by Audsley et al. [3] presented above to the equivalent sporadic task τ ′

i,a ∈ τ ′ (RTA
at Line 6).

The model transformation procedure (Transformation at Line 5) is detailed in Al-
gorithm 4. The procedure constructs a set τ ′ of sporadic tasks with release jitter. For the
analysis of a replica of node vi,a of τi in sequence Si,q, Algorithm 4 creates one sporadic
task for each node of every task with priority higher than or equal to that of τi that has a
replica assigned to the same processor as Si,q. The procedure is based on the following three
lemmas.

▶ Lemma 4. The interference generated by a sequence Sh,p with release jitter Jh,p and WCET∑
vh,k∈Sh,p

Ch,k in an interval of length ∆ is upper bounded by the sum of the interference
generated by each of its nodes vh,k modeled as sporadic tasks with release jitter Jh,p and
WCET Ch,k.

Proof. Since Sh,p behaves as a sporadic sequential task, the interference generated by Sh,p dur-
ing an interval ∆ is upper bounded by

⌈
∆+Jh,p

Th

⌉
×

∑
vh,k∈Sh,p

Ch,k =
∑

vh,k∈Sh,p

⌈
∆+Jh,p

Th

⌉
×

Ch,k, which is equivalent to the interference generated by a set of sporadic tasks made of one
task per node vh,k ∈ Sh,p with release jitter Jh,p and execution time Ch,k. ◀

▶ Lemma 5. Maximizing the release jitter of a node vh,k maximizes the interference it
generates.

Proof. Equation (1) is monotonically non-decreasing with respect to the release jitter of
each task. ◀

▶ Lemma 6. Let vi,b be a node of τi that is not in sequence Si,q and has a precedence
constraint towards the first node of Si,q. The node vi,b cannot interfere with Si,q.
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Algorithm 4 Model transformation algorithm.

1: procedure Transformation(τ, (i, a, q))
2: τ ′ ← ∅ ▷ Transformed task set

▷ For all sequences of higher or equal priority assigned to the same processor as Si,q

3: for all τh ∈ hep(τi) do
4: for all Sh,p ∈ Sh | P (Sh,p) = P (Si,q) do
5: Jh,p ← max

{
0, maxvh,b∈ipred(head(Sh,p))

{
Rh,b

}}
▷ Release jitter of Sh,p

6: end for
▷ For all nodes of τh with a replica assigned to the same processor as Si,q

7: for all vh,k ∈ Vh | ∃Sh,p ∈ Sh, vh,k ∈ Sh,p ∧ P (Sh,p) = P (Si,q) do
8: J ′

h,k ← maxSh,p|vh,k∈Sh,p∧P (Sh,p)=P (Si,q){Jh,p} ▷ Max. release jitter of vh,k

9: τ ′
h,k ← Create a sporadic task with release jitter J ′

h,k and WCET Ch,k

10: τ ′ ← τ ′ ∪ τ ′
h,k

11: end for
12: end for

▷ For all nodes of τi assigned to the same processor as Si,q

13: for all vi,b ∈ {Vi \ vi,a} | ∃Si,p ∈ Si, vi,b ∈ Si,p ∧ P (Si,p) = P (Si,q) do
14: if vi,b is independent from head(Si,q) in Gi then
15: τ ′

i,b ← Create a sporadic task with WCET Ci,b and release jitter J ′
i,b = 0

16: τ ′ ← τ ′ ∪ τ ′
i,b

17: end if
18: end for
19: S⋆

i,q ← The sequence obtained by removing all nodes after vi,a in Si,q

20: J ′
i,q ← max

{
0, maxvi,b∈ipred(head(Si,q))

{
Ri,b

}}
▷ Max. release jitter of Si,q

21: τ ′
i,a ← Create a sporadic task with WCET

∑
vi,j∈S⋆

i,q
Ci,j and release jitter J ′

i,q

22: τ ′ ← τ ′ ∪ τ ′
i,a

23: return τ ′

24: end procedure

Proof. Let head(Si,q) be the first node of Si,q. The node vi,b is either a predecessor or a
successor of head(Si,q). In case vi,b is a predecessor of head(Si,q), then vi,b must be completed
when Si,q is released. Therefore, vi,b does not interfere with Si,q. In case vi,b is a successor
of head(Si,q), then a job of vi,b can only be released after Si,q. Since jobs with equal priority
execute in FIFO order, vi,b executes after Si,q, and thus does not interfere with Si,q. ◀

Following the result in Lemma 4, Algorithm 4 creates one sporadic task τ ′
h,k per node vh,k

of each sequence of every higher-priority or equal-priority task different from τi (i.e., of every
task in the set hep(τi)) assigned to the same core as the sequence Si,q under analysis (Lines 3-
12), in order to upper bound the interference generated by those sequences. According to
Lemma 3, for each job released by a task, each of its nodes executes at most once, irrespective
of its number of replicas. Therefore, Algorithm 4 only generates one sporadic task per node
instead of one sporadic task per replica. The WCET of the generated task τ ′

h,k is then equal
to the WCET of the node vh,k, and its release jitter is the maximum release jitter of all the
sequences in which vh,k appears (Line 8), so as to maximize the interference it generates (see
Lemma 5). The minimum inter-arrival time and the priority of the generated task τ ′

h,k are
inherited from the corresponding task τh.

After generating equivalent sporadic tasks for all the tasks in hep(τi), Algorithm 4
generates sporadic tasks to model the self-interference of nodes of τi on the sequence Si,q

under analysis (Lines 13-18). One such task is generated for each node of τi, except vi,a
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itself, that is independent from the first node in Si,q and has a replica assigned to P (Si,q)
(in accordance with Lemma 6). Note that, according to Equation (1), since the sporadic
tasks modeling the self-interference of nodes of τi have the same priority as Si,q, their release
jitter does not influence the WCRT of the sequence under analysis. Therefore, Algorithm 4
arbitrarily sets their release jitter to 0.

Finally, since we aim at computing the WCRT of node vi,a in sequence Si,q, Algorithm 4
models the partial sequence S⋆

i,q ⊆ Si,q ending at vi,a as a sporadic task τ ′
i,a, with WCET

equal to the sum of the execution time of its nodes and release jitter equal to the maximum
WCRT upper bound of the predecessors of the first node of Si,q (Lines 19-22).

5.2 Analysis improvements
Although the analysis presented in Section 5.1 is an efficient approach to test the schedulability
of a set of parallel tasks executing under replication-based scheduling, the analysis might
yield pessimistic WCRT upper bounds in some cases.

In order to identify a potential source of such analytical pessimism, consider a replica of
the node under analysis vi,a in sequence Si,q and a replica of another node vi,b in Si,p that
triggers the release of Si,q (i.e., it is an immediate predecessor of head(Si,q) that causes the
release jitter on Si,q). According to the analysis in Section 5.1, the WCRT of vi,a in Si,q is
upper bounded by the WCRT upper bound of vi,b added to the solution to Equation (1) for
vi,a. Assume that there is a node vh of a higher-priority task with replicas assigned to the
processors where Si,q and Si,p execute. Then, vh interferes with both vi,a and vi,b. Since the
analysis in Section 5.1 analyses the WCRT of vi,a and vi,b independently from each other, it
may account for the same jobs of vh as interfering with both vi,a and vi,b, thus overestimating
the overall interference those jobs may generate.

The following lemma provides a lower bound on the redundant interference caused by
the higher-priority node vh in the computation of Ri,a,q, with reference to the replicas of vi,a

in Si,q and of vi,b in Si,p.

▶ Lemma 7. Let ri,a,q and ri,b,p represent the solutions to Equation (1) for, respectively,
vi,a in Si,q and vi,b in Si,p. Assume that the release jitter of Si,q is equal to the WCRT upper
bound Ri,b,p of the replica of vi,b in Si,p. The redundant interference caused by vh on both
the replica of va in Si,q and the replica of vb in Si,p, i.e., the amount of interference caused
by vh included in the computation of both ri,a,q and ri,b,p, is lower bounded by(⌈

ri,b,p + J ′
h

Th

⌉
+

⌈
ri,a,q + J ′

h

Th

⌉
−

⌈
ri,b,p + ri,a,q + J ′

h

Th

⌉)
· C ′

h. (2)

Proof. Let J ′
h and Th be the release jitter and minimum inter-arrival time of node vh. The

number of jobs of vh considered as causing direct interference on the replica of vi,a in Si,q

as part of ri,a,q is given by
⌈

ri,a,q+J′
h

Th

⌉
(from Equation (1)). Similarly, the number of jobs

of vh considered as causing interference on the replica of vi,b in Si,p is given by
⌈

ri,b,p+J′
h

Th

⌉
.

Since the analysis in Section 5.1 adds the WCRT upper bound of vi,b (as part of the release
jitter of vi,a) to ri,a,q to calculate the WCRT upper bound of vi,a, it considers that, in
total,

⌈
ri,a,q+J′

h

Th

⌉
+

⌈
ri,b,p+J′

h

Th

⌉
jobs of vh participate to the WCRT upper bound of vi,a.

However, since vi,b in Si,p triggers the release of Si,q, the time between the release of vi,b

in Si,p and the completion of vi,a in Si,q is upper bounded by ri,b,p + ri,a,q. Therefore, the
number of jobs of vh released between the release time of vi,b and the completion of vi,a

cannot be larger than
⌈

ri,b,p+ri,a,q+J′
h

Th

⌉
. Thus, the analysis in Section 5.1 considers at least
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Algorithm 5 Analysis improvements for the derivation of the WCRT of a node vi,a in sequence
Si,q of a task τi ∈ τ .

1: procedure ReduceJitter(τ, (i, a, q))
2: ri,a,q ← The solution to Equation (1) for vi,a in Si,q

3: Ji,a,q ← 0 ▷ Jitter of vi,a in Si,q

4: vi,s ← head(Si,q)
5: for all vi,b ∈ ipred(vi,s) do
6: for all Si,p ∈ Si | vi,b ∈ Si,p do
7: ri,b,p ← The solution to Equation (1) for vi,b in Si,p

8: Vh ← The set of all nodes with higher priority than τi with replicas assigned
to both P (Si,q) and P (Si,p)

9: for all vh ∈ Vh do
10: J ′

h ← The maximum release jitter of vh as an interfering sequential task
11: C ′

h ← The WCET of node vh

12: Iredundant
h ←

(⌈
ri,b,p+J′

h

Th

⌉
+

⌈
ri,a,q+J′

h

Th

⌉
−

⌈
ri,b,p+ri,a,q+J′

h

Th

⌉)
· C ′

h

13: end for
14: J⋆

i,a,q ← Ri,b,p −
∑

vh∈Vh
Iredundant

h

15: Ji,a,q ← max{Ji,a,q, J⋆
i,a,q}

16: end for
17: end for
18: Ri,a,q ← Ji,a,q + ri,a,q

19: return Ri,a,q

20: end procedure

⌈
ri,b,p+J′

h

Th

⌉
+

⌈
ri,a,q+J′

h

Th

⌉
−

⌈
ri,b,p+ri,a,q+J′

h

Th

⌉
too many jobs of vh as contributing to the WCRT

of vi,a in Si,q. Every such job of vh has a WCET of C ′
h. Therefore, Equation (2) is a lower

bound on the redundant interference caused by vh on both the replica of vi,a in Si,q and the
replica of vi,b in Si,p. ◀

We use Lemma 7 to improve the analysis in Section 5.1. We introduce an additional step
in Algorithm 3 right after the WCRT upper bound Ri,a,q for a node vi,a within a sequence
Si,q is obtained (i.e., right after Line 6). The additional analysis step computes a reduced
value for the release jitter of the sporadic task modeling the sequence Si,q in the analysis
of vi,a by discounting redundant interference caused by higher-priority nodes that interfere
both with immediate predecessors of head(Si,q), whose WCRT upper bounds determine the
release jitter of Si,q, and with Si,q itself.

Algorithm 5 details how the WCRT upper bound Ri,a,q is updated for the node vi,a within
the sequence Si,q, by computing a reduced release jitter Ji,a,q for Si,q. In the algorithm,
the jitter Ji,a,q is initially set to 0 (Line 3). Then, at Lines 4-17, the procedure examines
each immediate predecessor of head(Si,q) to determine which predecessors may generate
the largest release jitter Ji,a,q for Si,q. For every predecessor vi,b of head(Si,q), and for
every sequence Si,p in Si containing a replica of vi,b, a candidate value J⋆

i,a,q for the release
jitter is obtained by subtracting redundant interference from the WCRT upper bound Ri,b,p

(Lines 5-16). Specifically, the total redundant interference on vi,a in Si,q and vi,b in Si,p to
be subtracted from Ri,b,p is derived by first identifying all nodes with higher priority than
τi that have at least one replica assigned to processor P (Si,q) and one replica assigned to
processor P (Si,p), meaning that they contribute interference in the computation of both
ri,a,q and ri,b,p. For every such higher-priority node vh, we use Equation (2) to compute
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the redundant interference and discount it from Ri,b,p to obtain J⋆
i,a,q. The value of Ji,a,q

is then set to the maximum between J⋆
i,a,q and the current value of Ji,a,q. Thus, the final

value of Ji,a,q is given by the maximum release jitter candidate among those computed for
all replicas of every immediate predecessor of head(Si,q). As a result, the replicas of the
immediate predecessor of head(Si,q) that produced a candidate release jitter value equal
to the final value of Ji,a,q satisfy the assumption in Lemma 7. Finally, given the resulting
value of Ji,a,q, the WCRT upper bound of vi,a within the sequence Si,q is recomputed as
Ri,a,q = Ji,a,q + ri,a,q (Line 18).

6 Experimental results

This section presents the results of an experimental evaluation of the proposed replication-
based scheduling approach, including a comparison with state-of-the-art variants of federated
scheduling [23] and partitioned scheduling [2].

6.1 Experimental setup
The experimental campaign is based on the analysis of randomly generated task sets. The
task set generation procedure works as follows. The number of tasks n composing each
task set τ is a generation parameter which is fixed for each experiment. For each parallel
task τi, the topology of the DAG Gi is generated according to the technique by Melani et
al. [24]. This approach generates a series-parallel graph with multiple levels of nested parallel
branches in a recursive approach which starts from an initial graph composed of two nodes
and then recursively expands non-terminal nodes to either terminal nodes or additional
parallel subgraphs, until a maximum recursion depth is reached. The maximum recursion
depth is modeled as a generation parameter nrec, and another generation parameter ppar is
used to represent the probability with which a non-terminal node is expanded to a parallel
subgraph within the recursion. The level of parallelism of the parallel subgraph is controlled
with an additional parameter, npar. In particular, the number of branches to which a node
is expanded is selected from the discrete uniform distribution [2, npar].

Given the value of the system utilization U , the UUniFast algorithm by Bini and
Buttazzo [10] was used to generate the utilization Ui for each task τi ∈ τ . In particular,
UUniFast is used to uniformly select n real values Ûi ∈ [0, 1] such that

∑n
i=1 Ûi = 1; then,

the utilization Ui of each task τi is set to Ui = U · Ûi. Once the DAG topology Gi of a task
τi is generated, the minimum inter-arrival time Ti of τi is selected from a discrete uniform
distribution with range [Tmin, Tmax], where Tmin and Tmax are generation parameters. The
deadline of each task τi is set to Di = Ti (implicit deadlines). The cumulative WCET Ci

of τi is set to Ci = Ui · Ti; then, the WCET Ci,a of each node vi,a ∈ Vi is generated using
the UUniFast algorithm by distributing the WCET Ci among the nodes of Gi in such a way
that

∑
vi,a∈Vi

Ci,a = Ci. In particular, UUniFast is used to uniformly select ni real values
Ĉi,a ∈ [0, 1] such that

∑
vi,a∈Vi

Ĉi,a = 1; then, the WCET Ci,a of each node vi,a ∈ Vi is set to
Ci,a = Ci · Ĉi,a. Finally, the priority level πi of each task τi is assigned according to the Rate
Monotonic algorithm, which assigns higher priority levels to tasks with smaller minimum
inter-arrival time Ti.

In order to limit the amount of non-feasible task sets generated for the experiments,
the generation procedure for each task τi is repeated (up to 5000 times) in case either (i)
Ci,a > Di holds for some node vi,a ∈ Vi; or (ii)

∑
vi,a∈V (λ) Ci,a > Di holds for some path

λ ∈ path(Gi).
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In each experiment, the number of processors m in the platform was fixed to a specific
value, and the system utilization U was varied between 0 and m in increments of 0.5. For
each value of U , 100 task sets were generated and analyzed using the replication-based,
federated, and partitioned scheduling approaches. The performance metric considered in the
experiments is the schedulability ratio with respect to the system utilization U , computed as
the ratio between the number of task sets deemed schedulable by a given analysis approach
and the total number of task sets evaluated for the utilization point U .

The following scheduling approaches and respective analyses were tested: (RBS-WBF)
replication-based scheduling, testing all the available heuristics (Worst Fit, Best Fit, First
Fit) and applying the analysis in Section 5.1; (RBS-WBF-I) like RBS-WBF, but leveraging
the improved analysis in Section 5.2; (RBS-DUAL) replication-based scheduling using the
variant allocation approach which treats high-utilization and low-utilization tasks differently,
testing the Worst Fit heuristic and applying the analysis in Section 5.1; (RBS-DUAL-I)
like RBS-DUAL, but leveraging the improved analysis in Section 5.2; (RBS-OR) logic OR
combination of RBS-WBF and RBS-DUAL, which deems a task set schedulable if it is deemed
schedulable by at least one of RBS-WBF and RBS-DUAL; (RBS-OR-I) logic OR combina-
tion of RBS-WBF-I and RBS-DUAL-I; (FED-WBF) federated scheduling [23], allocating
low-utilization tasks by decreasing utilization order and testing all the standard Worst Fit,
Best Fit, and First Fit heuristics; and (PART-EDD) partitioned scheduling, analyzed using
an approach leveraging mixed-integer linear programming following a transformation to the
event-driven delay-induced task model, and with allocation determined according to the
best performing variant of the pseudo-federated approach, which treats high-utilization and
low-utilization tasks similarly to federated scheduling and distributes nodes of low-utilization
tasks on underutilized dedicated processors of high-utilization tasks [2].

6.2 Experimental results
Figure 4 reports the results of the experiments. For all system configurations, the values of
nrec, ppar, Tmin, and Tmax were set to nrec = 2, ppar = 0.8, Tmin = 100, and Tmax = 1000,
while the other parameters (m, n, npar) were varied among the experiments, and their value
for each experiment is reported above the corresponding graph. The PAR-FEAS curve
represents the ratio of task sets which satisfy both feasibility conditions in the generation, i.e.,
Ci,a ≤ Di for all nodes vi,a ∈ Vi, and

∑
vi,a∈V (λ) Ci,a ≤ Di for all paths λ ∈ path(Gi). This

curve represents an upper bound on the attainable performance of the evaluated scheduling
and analysis approaches.

The results for npar = 3 (Figures 4(a-c)) share a common overall trend, with replication-
based scheduling outperforming both federated and partitioned scheduling by a significant
margin. For what concerns replication-based scheduling, the most significant performance
loss occurs at utilization values U that are above 50% of the available system utilization m

across all processors, with the overall performance decline starting at around 37.5% of m.
Partitioned scheduling follows with an intermediate level of performance, while federated
scheduling exhibits the worst performance among the evaluated approaches. The same
general pattern is observed in the experiments in which a larger number of nodes is generated
for each task, i.e., when npar = 5 (Figures 4(d-f)). In this case, the drop-off for replication-
based scheduling with respect to U occurs again at around 37.5% of m, but with a sharper
performance loss after that point. Partitioned scheduling suffers a similar loss in performance,
whereas federated scheduling exhibits robust performance with respect to the previous case.
Across all experiments, the two tested allocation approaches for replication-based scheduling,
RBS-WBF and RBS-DUAL, show comparable performance, with the combined approach
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Figure 4 Schedulability ratio with respect to the system utilization U obtained for different
system configurations.

RBS-OR granting an additional edge in performance, meaning that neither of the methods
dominates the other. Finally, in all the tested scenarios, the RBS-WBF-I, RBS-DUAL-I,
and RBS-OR-I approaches utilizing the improved analysis in Section 5.2 provided slightly
improved performance with respect to the corresponding RBS-WBF, RBS-DUAL, and
RBS-OR approaches adopting the analysis in Section 5.1.

Overall, the experiments show that replication-based scheduling can outperform both
partitioned and federated scheduling by a large margin across several system configurations.

7 Conclusions and future work

This paper presented replication-based scheduling, a specialized scheduling approach for
parallel real-time tasks executing on a multiprocessor platform which leverages the internal
topology of the DAG of each task to provide enhanced schedulability performance with limited
expected runtime overhead and analysis complexity. In addition to the overall scheduling
paradigm, design-time allocation strategies were discussed, and a response-time analysis for
the case of fixed-priority preemptive scheduling was provided. Experimental results showed
that replication-based scheduling significantly outperforms state-of-the-art variations of both
federated and partitioned scheduling. Future work includes implementing replication-based
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scheduling in a real-time operating system, investigating further improvements to the provided
analysis, and exploring variants of replication-based scheduling supporting Earliest Deadline
First scheduling and non-preemptive execution of nodes. Finally, given the flexibility of the
proposed scheduling framework, future work should also evaluate further variations to the
design-time allocation algorithms.
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