
Safely Preventing Unbounded Delays During Bus

Transactions in FPGA-based SoC

Francesco Restuccia

Scuola Superiore Sant’Anna

Pisa, Italy

francesco.restuccia@sssup.it

Alessandro Biondi

Scuola Superiore Sant’Anna

Pisa, Italy

alessandro.biondi@sssup.it

Mauro Marinoni

Scuola Superiore Sant’Anna

Pisa, Italy

mauro.marinoni@sssup.it

Giorgio Buttazzo

Scuola Superiore Sant’Anna

Pisa, Italy

giorgio.buttazzo@sssup.it

Abstract—Advanced eXtensible Interface (AXI) is an open-
standard communication bus interface implemented in most com-
mercial off-the-shelf FPGA System-on-Chips (SoC) to exchange
data within the chip. Unfortunately, the AXI standard does not
mandate any mechanism to detect possible misbehavior of the
connected modules. This work shows that this lack of specification
has a relevant impact on popular implementations of the AXI
bus. In particular, it is shown how it is easily possible to inject
arbitrarily-long delays on modern FPGA system-on-chips under
the presence of misbehaving bus masters. To safely solve this
issue, this paper presents a general timing analysis to bound
the execution of periodically-invoked hardware accelerators in
nominal conditions. This timing analysis is then used to configure
a latency-free hardware module named AXI Stall Monitor
(ASM), also proposed in this paper, capable of detecting and
safely solving possible stalls during AXI bus transactions. The
ASM leaves a quantified flexibility to the hardware accelerators
when deviating from nominal conditions. The contribution is
finally supported by a set of experiments on the Zynq-7000 and
Zynq Ultrascale+ SoCs by Xilinx.

I. INTRODUCTION

System-on-chips (SoCs) that integrate Field-Programmable

Gate Arrays (FPGAs) are becoming very attractive for devel-

oping time-critical embedded systems due to their high com-

putational power, their flexibility, and the possibility to imple-

ment dedicated hardware accelerators on the FPGA available

on the same chip [1]–[3]. Just to name an example of their ca-

pabilities, they allow implementing on-board inference engines

for deep neural networks to increase the intelligence of the

system, which is particularly relevant for autonomous/assisted

driving applications and advanced robotics [4]–[8].

Nevertheless, a big problem in using such platforms in

safety-critical applications is that the interference occurring

in accessing shared resources (such as the memory subsys-

tem) may introduce unbounded and unpredictable delays in

the computational activities, preventing any form of a-priori

timing guarantee, required in such systems for certification

purposes. This is because commercial-off-the-shelf FPGA-

based SoCs are generally designed for high throughput (i.e.,

for best-effort applications), rather than for time predictability.

In these platforms, data exchange mostly occurs through

the AMBA AXI open standard. The AXI standard provides

advanced features that makes it highly flexible for different

applications, but it does not define any mechanism to supervise

the behavior of bus masters. The lack of supervision allows

hardware accelerators to behave (or misbehave) in the system

without any control. This is especially critical when hardware

accelerators are provided as specialized IP blocks developed

from external sources so that it is not possible to accurately

validate them to verify the absence of misbehavior. To further

complicate this issue, in systems using dynamic partial recon-

figuration (DPR) [9]–[11], misbehaving/malicious hardware

accelerators can more likely be programmed on the FPGA. At

last, misbehavior in the execution of hardware accelerators can

also be caused by a fault of the silicon in the FPGA area. Such

misbehaving conditions can compromise the functionality of

the entire system, up to requiring a system reset to restore a

safe condition. This leads to large recovery delays that may

not be acceptable in safety-critical applications and can harm

the quality of service in non-critical systems [12].

A. Contribution

This paper makes the following contributions:

1) It studies the impact of the delays introduced by modules

on the AXI bus. It also shows that a misbehaving device

on the FPGA fabric can easily stall the AXI bus on

modern FPGA SoC platforms for an unbounded amount

of time.

2) It presents an analysis to bound the worst-case response

time of periodic hardware (HW) tasks that share the

bus with other HW-tasks under nominal conditions (no

misbehavior).

3) It presents the AXI Stall Monitor (ASM), a minimal

hardware module to be deployed on the FPGA fabric that

allows monitoring the delays introduced by hardware

modules and shielding the system from misbehaving

HW-tasks that may stall the bus. The ASM allows for

a safe recovery after a misbehavior is detected, keeping

the rest of the system operational (i.e., no reset needed).

The ASM is easy-to-integrate, and does not introduce

any latency.

4) Leveraging the response-time analysis, it presents a

method to compute a safe bound on the maximum

amount of time that a HW-task can stall while guar-

anteeing that no task violates its timing constraints.

This method has also been implemented in a driver that

allows to automatically configure/reconfigure the ASMs

(even at runtime).



II. RELATED WORK

To adopt heterogeneous SoCs in safety-critical applications,

it is crucial to properly address timing predictability issues

related to the contention of shared resources within the chip

(e.g., bus interconnects and the memory subsystem), espe-

cially whenever the behavior of some component cannot be

trusted. In the context of multiprocessors, a lot of efforts

have been spent in improving timing predictability with hard-

ware and software mechanisms [13], [14], and in bounding

contention delays via worst-case timing analysis [15]. While

some of these research efforts also apply to heterogeneous

platforms [16], [17], new challenges have to be addressed to

achieve timing predictability on modern SoCs, especially when

hardware acceleration [18], [19] and mixed-criticality appli-

cations [20] are concerned. Concerning misbehavior during

bus transactions, most FPGA-SoC vendors are generally not

explicitly addressing timing predictability, either declaring that

no guarantee can be provided [21] or designing their solutions

under the assumption that programmable logic always behaves

accordingly to standards [22]. Some efforts have been spent

in implementing components to monitor the bus traffic and

possibly react to critical situations by just performing a system

reset. For instance, the Xilinx AXI Performance monitor [23]

allows monitoring the performance of the bus in multi-master

systems. Also, the research community proposed similar so-

lutions with enriched features to monitor the performance of

the bus [24], [25]. However, all these solutions are passive,

that is, they do not provide any mechanism to preserve the

system operation or to guarantee certain timing constraints in

the presence of misbehavior. Despite these represent valuable

proposals to monitor and profile the performance of a system,

richer solutions are required to adopt FPGA SoCs in safety-

critical systems. To the best of our records, this is the first work

that explicitly addresses timing predictability in the presence

of misbehavior during bus transactions.

III. ESSENTIAL BACKGROUND

A typical FPGA SoC architecture combines a Processing

system (PS) (generally based on one or more processors)

with a Field Programmable Gate Array (FPGA) in a single

device. Both the subsystems access a DRAM controller in

the PS through which they can access a shared DRAM

memory. The de-facto standard interface for interconnections

is AMBA AXI [26]. In AXI, the transactions are started by a

master, which requests to read/write data from/to a slave. The

communication between the FPGA and the PS is allowed by

the PS-FPGA interface and the FPGA-PS interface.

1) Multi-Master architecture: There are conditions in

which multiple master HW-tasks share the same AXI port. In

such conditions, an AXI interconnect is in charge of arbitrat-

ing conflicting requests and routing the corresponding data.

To address the scenario in which contention is maximized,

this paper focuses on the case in which all HW-tasks share

the same AXI port in the FPGA-PS interface. Hence, the

considered architecture is composed of an arbitrary number

N of master HW-tasks HWi, each connected to a slave port

of the interconnect IAXI . The (single) master port of IAXI is

eventually connected to a slave port in the FPGA-PS interface.

IV. MOTIVATIONS

The AXI standard does not mandate any mechanism/policy

to deal with delays during data sampling. To the best of

our knowledge, it is up to the vendor that implements an

AXI-compliant bus to decide (i) whether monitoring the bus

signals to measure delays during data sampling and/or detect

misbehavior, and (ii) how to react to them. As a matter of fact,

according to the AXI standard, a module connected to the bus

is free to introduce arbitrary delays that in turn affect other

modules connected to the bus, even if they do not communicate

with each other. To further complicate this issue, if a module

does not make progress during some phase of the bus protocol,

then the AXI standard leaves room for scenarios in which the

entire system can stall for an unbounded amount of time. This

lack of specifications has a relevant impact on commercial,

AXI-compliant bus implementations, especially when used

to realize time-sensitive systems. Note that, despite some

commercial platforms implement mechanisms for isolating bus

masters (see [27], p. 366) or managing the quality-of-service

of transactions (see [27], p. 375), they unfortunately do not

provide any solution to prevent such unbounded delays.

To showcase the problem, we implemented a test-case on

two popular FPGA-based SoC, namely the Xilinx ZYNQ-7000

and ZYNQ Ultrascale+, considering the AXI SmartConnect,

i.e., the state-of-the-art AXI interconnect for Xilinx platforms.

The official documentation of the AXI SmartConnect [22] does

not explicitly declare any mechanism that allows monitoring

bus transactions and intervene whenever the bus is stalled.

Stimulated by this lack of specifications, we were able to

generate a stall with both read and write bus transactions. The

case of write transactions is discussed next. The one of read

transactions is similar and is omitted due to lack of space.

1) Stall with write transactions: The test-case is composed

of two HW-tasks implemented in the FPGA fabric, HW0

and HW1, which access the memory subsystem in the PS

through the AXI interconnect IAXI . HW0 and HW1 are

custom-developed AXI masters that work as traffic generators

programmed by the PS to issue a given number of AXI

transactions. An integrated logical analyzer (ILA) has been

deployed in the FPGA fabric to monitor the AXI channels of

both the master port (connected to the FPGA-PS interface)

and the slave ports (each connected to a hardware accelerator)

of IAXI . When activated, each HW-task issues a request for

a single write transaction. The waveform diagram in Figure 1

has been extracted from the ILA to study the bus signals during

the execution of the test-case and is described next:

1) HW0 issues an address request for a write transaction

AW0 on its master AW channel. The address request is

sampled by IAXI at the next clock cycle. Same behavior

for HW1, which issues an address request AW1.

2) HW1 starts providing the data W1 to its master W

channel, which are sampled by IAXI . Differently, HW0

does not provide the corresponding data W0 to IAXI .



Fig. 1. Bus signals recorded with the ILA for the test-case. HW0 never provides write data.

3) After a propagation delay, IAXI provides the address

requests (AW0 and AW1) on the AW channel of its

master port. The arbitration phase is won by AW0,

which is propagated before AW1. Even though the data

of AW1 have already been sampled by IAXI , following

the AXI standard specification, IAXI cannot propagate

them to the master port until the data corresponding

to AW0 are propagated. This happens because AXI

forbids the interleaving of write transactions [26]. In

other words, HW1 cannot access the W channel until

the data corresponding to AW0 are provided by HW0.

Consequently, the delay with which HW0 provides the data

directly affects all the other HW-tasks. Unfortunately, such a

delay is not monitored by the interconnect IAXI : indeed, HW0

is free to delay the data provision for an unbounded time, with

the result that the entire system stalls (as it happens in Fig. 1).

This example demonstrates that a single HW-task can inject

arbitrary delays in the system, possibly causing the violation

of the timing constraints of other HW-tasks. This is clearly a

critical issue, especially when the system integrates third-party

untrustworthy HW-tasks or is exposed to partial reconfigura-

tion (a malicious HW-task can be programmed with the end of

stalling the entire bus). Furthermore, also note that incomplete

transactions initiated by a HW-task can trigger unpredictable

behaviors in other bus components, both in the PS and in the

FPGA fabric (e.g., interconnects and buffers), hence requiring

a complete system reset to restore a safe condition.

V. ANALYTICAL SYSTEM MODEL

This section presents an analytical model of the multi-

master architecture introduced in Section III. The model is

later used in Section VI to derive a worst-case timing analysis.

A. Hardware Tasks

The system comprises a set Γ = {HW1, . . . , HWn} of

HW-tasks. Each HW-task HWi accesses a private memory

buffer in the DRAM memory and is periodically executed

every Ti ms. Each periodic instance of HWi (also referred

to as job): (i) issues NR
i ≥ 1 read transactions and NW

i ≥ 1
write transactions, both with burst size Bi; (ii) computes for

Ci clock cycles; and (iii) has a relative deadline equal to the

period Ti (that is, each job must complete before the release

of the next one). The number of outstanding transactions is set

to φi, i.e., at any time, HWi can have at most φi pending (that

is, started but not completed) read transactions and φi pending

write transactions. As long as HW-tasks behave correctly, we

assume that they never stall any AXI channel. This statement

is equivalent to the following assumptions: (i) read data are

immediately sampled by the HW-tasks when provided by the

FPGA-PS interface (i.e., no stall on the R channel); and (ii)

write data are immediately provided to the W channel when

the corresponding address request has been granted (i.e., no

stall on the W channel). These nominal conditions are used

in Section VI to compute the worst-case response times of

HW-tasks when the system behaves correctly.

B. AXI interconnect and bus times

Each HW-task is connected to a corresponding slave input

port of an AXI interconnect IAXI, which in turn has a single

master port connected to the FPGA-PS interface. The conflicts

in address requests of the same type (read or write) and issued

by different HW-tasks are managed by round-robin arbiters in

IAXI. The granularity of the round-robin arbiters is φI , that

is, each HW-task is granted to issue at most φI read requests

and φI write requests for each round-robin turn. Conversely,

since IAXI has a single master port, the traffic coming from

it and directed to the slave ports does not experience any

conflict. The AXI interconnect introduces the following delays

in the propagation of address requests and data: (i) daddr
I is the

maximum latency to traverse IAXI for an address request; (ii)

ddata
I is the maximum latency to traverse IAXI for a word of

data (read or write); and (iii) dbresp
I is the maximum latency to

traverse IAXI for a write response. These propagation delays

can be derived from the specifications of the AXI interconnect

(if available) or by means of experimental profiling.

Address and data occupation times are modeled with the

following delay terms: (i) taddr is the time occupied by the

address request; (ii) tdata is the time occupied by a single data

word; and (iii) tbresp is the time occupied by the write response.

The latter three delays are typically one clock cycle.

C. Processing System and Memory Controller

On many commercial platforms, the documentation of the

internals of the DDR physical core block (located in the PS),

which includes the memory controller, is not publicly available

or not detailed. For these reasons, a fine-grained modeling of

the DDR physical core block goes beyond the scope of this

paper and is hence not addressed here. Therefore, this paper is

based on a coarse-grained modeling by assuming that all the

DDR-related logic in the PS introduces the following latencies,

which refer to the conditions of maximum interference in

accessing the DDR memory: (i) dread
PS is the maximum latency

introduced by the PS on a read transaction. It corresponds to

the maximum time elapsed between the sample at the FPGA-

PS interface of the address read request and the availability



at the FPGA-PS interface of the first word of corresponding

data. (ii) dwrite
PS is the latency introduced by the PS on a

write transaction. It corresponds to the maximum time elapsed

between the sample at the FPGA-PS interface of the last

word of data of a write transaction and the availability of the

corresponding write response at the FPGA-PS interface.

These parameters depend on the internal structure of the

PS and can be quantified from the documentation of the SoC

platform (if available) or by means of experimental profiling.

VI. BOUNDING THE RESPONSE TIME OF HW-TASKS

This section presents a timing analysis to bound the worst-

case response time for each HW-task in the system in nominal

condition (i.e., no delay due to stall in providing/reading the

data is introduced). The worst-case response times are then

used at the end of this section to check the schedulability

of the HW-tasks, i.e., to verify whether the HW-tasks violate

their deadlines, and to configure the ASM modules such that

the schedulability is preserved even in the presence of mis-

behaving HW-tasks (Section VII). The reference architecture

for the analysis is the one described in Section III. Response

times are first bounded by studying the memory access time

of a single transaction. Subsequently, an upper bound on

the maximum number of interfering transactions is derived.

Finally, we combine all together to bound the maximum time

needed to complete a job of each HW-task.

A. Worst-case access time of a single transaction

Note that, due to the parallel channels offered by the AXI

bus, write and read transactions can be studied independently

at the stage of analysis.

1) Read Transactions: A read transaction R issued by a

HW-task under analysis HWua begins by issuing an address

read request Raddr to the AR channel of HWua’s master port,

which is sampled by IAXI. The time needed to issue an address

request is taddr. Request Raddr is then propagated through IAXI

and is sampled by the FPGA-PS interface. At this point, the PS

routes Raddr to the memory controller. The first word of data

is available at the FPGA-PS interface after at most dread
PS time

units. Now, read data cross IAXI in reverse order with respect

to Raddr, until HWua is reached. The propagation time on the

data to cross IAXI is ddata
I . Since data words are sequentially

propagated (i.e., one data word after the other, each occupying

tdata clock cycles), the propagation time ddata
I , and the latency

dread
PS are just paid once on all the data burst. It follows that

the time to propagate a data burst of size Bua words through

IAXI is equal to ddata
I +Bua · tdata. Overall, the memory access

time dRsingle for a single read transaction is given by

d
R
single = taddr + d

addr
I + d

read
PS + d

data
I +Bua · tdata. (1)

2) Write Transactions: A write transaction W issued by a

HW-task under analysis HWua begins by issuing an address

write request Waddr to the AW channel of HWua’s master port,

which is sampled by IAXI. The time for the address request

is taddr. The address request Waddr is then propagated through

IAXI, until reaching the FPGA-PS interface. The written data

Wdata are sequentially propagated with Waddr through IAXI the

very next clock cycle after the sampling of Waddr by IAXI, one

word after the other. As data can be propagated only after the

corresponding address is propagated, the overall propagation

latency introduced by IAXI on Waddr and Wdata is given by

the maximum between daddr
I and ddata

I . After traversing IAXI,

Waddr and Wdata can reach the FPGA-PS interface. In the PS,

Waddr and Wdata are then routed to the memory controller and

a write response Wresp is finally issued after at most dwrite
PS

time units. Finally, Wresp is propagated through IAXI to HWua,

experiencing a latency of dbresp
I . Recall that the data time for

each word of data is denoted by tdata and the burst size is Bua

words (see Sec. V). Overall, it follows that the memory access

time dWsingle for a single write transaction is given by

d
W
single = taddr+max(daddr

I , d
data
I )+bua ·tdata+d

write
PS +tbresp+d

bresp

I . (2)

As a final remark, it is worth noting that the bounds for read

and write transactions proposed in this section do not properly

correspond to the case in which they are served in isolation:

this is because, due to the reasons explained in Section V-C,

the model always considers in dread
PS and dwrite

PS the worst-case

latency at the memory controller, independently of the actual

transactions issued by the HW-tasks.

B. Bounding the number of interfering transactions

To bound the contention delay incurred by a HW-task

HWua (under analysis), it is required to bound the number

of transactions issued by other HW-tasks that can interfere

with those issued by HWua. We bound such a number in two

different ways. First, we bound the maximum number of trans-

actions that can interfere with a transaction issued by HWua

at the AXI interconnect: the resulting bound multiplied by the

total number of transactions issued by HWua yields a safe

contention bound for HWua. Second, we bound the number

of transactions that other HW-tasks can issue within HWua’s

period (i.e., the largest time window in which HWua can be

pending without missing its deadline). Both the bounds are

safe but incomparable, and are hence alternative approaches

that we combine to get a tighter bound. Note that the following

results hold for both read and write transactions: therefore, to

simplify the notation, we denote the number of transactions

(either read or write) issued by any HW-task HWi by just Ni

(i.e., removing the superscript).

1) First bound: Consider a HW-task under analysis HWua

that issues a single request for transaction rua. In the worst-

case scenario, the AXI interconnect IAXI grants rua at the

last turn of the round-robin arbitration, i.e., after the requests

for the transaction of the n − 1 interfering HW-tasks HWj

in the system. From the model in Section V-A, the round-

robin arbiters of IAXI grants at most φI requests for transaction

per HW-task for each round-robin cycle. However, still from

the model, each HWj can have at most φj outstanding

transactions. Hence, IAXI grants at most min(φI , φj) requests

for transactions issued by HWj for each round-robin cycle.

Overall, summing up the contribution of all the HWj , the total



number of interfering transactions granted before rua is upper

bounded by
∑

HWj∈Γ\{HWua}
min{φI , φj}. Finally, since the

latter equation holds for any transaction issued by HWua, the

total number of interfering transactions with a job of HWua

is bounded by

Y
(1)
ua =

∑

HWj∈Γ\{HWua}

min {φI , φj} ·Nua. (3)

2) Second bound: Consider a HW-task HWua (under anal-

ysis) and its corresponding period Tua, and assume all jobs

never execute after their deadlines. Without loss of generality,

suppose that a periodic instance of HWua begins at time

0. Clearly, to interfere with HWua, a job of another HW-

task HWj must be released after time −Tj , otherwise it

would be completed when HWua is released. Similarly, an

interfering job of HWj must be released before time Tua,

otherwise HWua would already be completed and hence no

contention can be generated. As a result, the time window of

interest to study the contention generated by HWj to HWua is

(−Tj , Tua] with length Tj + Tua. In this window there are at

most
⌈

Tua+Tj

Tj

⌉

jobs of HWj . As each job of HWj issues

at most Nj transactions, there are at most
⌈

Tua+Tj

Tj

⌉

· Nj

transactions that can interfere with HWua. Summing up the

contribution of all other HW-tasks 6= HWua, the maximum

total number transactions which interfere with a job of HWua

is upper bounded by

Y
(2)
ua =

∑

HWj∈Γ\{HWua}

⌈

Tua + Tj

Tj

⌉

·Nj . (4)

3) Combining the two bounds: As discussed above, the

two bounds are incomparable. Indeed, there are scenarios in

which one can provide better results than the other, and vice-

versa. For instance, the first bound would be quite pessimistic

if HWua is interfered by a HW-task issuing just a few

transactions, then it may be possible that not all HWua’s

transactions incur in contention at the AXI interconnect. On

the other hand, the first bound is very effective when the

other HW-tasks issue a lot of transactions that can overlap

with HWua’s execution, but HWua issues just a very few

transactions. To take the best of the bounds they can be

combined as follows:

Yua = min
{

Y
(1)
ua , Y

(2)
ua

}

. (5)

C. Response-time bounds

This section leverages the results of the two previous sec-

tions to compute an upper bound on the worst-case response

times of HW-tasks. It bears repeating that the bounds in

Equations (3) and (4) hold for both read and write transactions.

Therefore, to ease the presentation of the following formulas,

we denote by Y R
ua and Y W

ua the bound of Equation (5) where

Ni is replaced with NR
i and NW

i (∀HWi ∈ Γ), respectively, in

both Equations (3) and (4). The total delay incurred by a HW-

task HWua (under analysis) in performing read transactions is

given by (i) the time needed to complete its read transactions,

plus (ii) the contention delay suffered by the latter. Following

Section VI-A, the first time is bounded by NR
ua ·d

R
single, whereas

the contribution that each interfering transaction provides to

the contention delay is upper bounded by dRsingle. Hence, the

contention delay is bounded by Y R
ua ·d

R
single. Overall, it follows

that the total delay due to read transactions is bounded by

∆R
ua = (NR

ua + Y
R
ua) · d

R
single. (6)

Following the same reasoning, the total delay incurred by

HWua in performing write transactions is bounded by

∆W
ua = (NW

ua + Y
W
ua ) · d

W
single. (7)

Finally, the response time for each job of HWua is upper

bounded by
RTua = ∆R

ua + Cua +∆W
ua. (8)

A set of HW-tasks Γ is said schedulable if ∀HWua ∈ Γ,

RTua ≤ Tua. As a final note, it is important to remark that

the model presented in Section V-C considers the worst-case

latency introduced on each single transaction in the terms

dread
PS and dwrite

PS . Hence, even if read and write transactions

can experience mutual interference at the memory controller

when issued in parallel [15], the corresponding delay is

already accounted in dread
PS and dwrite

PS . Consequently, with the

respect to the modeling strategy adopted here, the worst-

case response time of HWua occurs when read transactions,

write transactions, and execution phases are serialized (i.e.,

no intra-task parallelism). This also allows obtaining a safe

response-time bound that is general enough to cope with any

possible release order and interleaving of the transactions at

the memory controller. The analysis can be applied to any set

of HW-tasks by setting the parameters of the above formulas,

which have been implemented in an analysis tool within a

driver (see next section). Sec. VIII shows how the analysis is

applied to a case study.

VII. AXI STALL MONITOR

This section presents the AXI Stall Monitor (ASM) module,

a solution developed in HDL language to monitor the behavior

of HW-tasks and intervene whenever they introduce dangerous

delays during a bus transaction. The ASM has been exported

as a standard IP module, and is hence easy to integrate in both

existing and ex-novo applications. Each ASM module defines

an AXI master interface and an AXI slave interface, and is

placed between the HW-task (or a slot in a reconfigurable

setting) to be supervised and the AXI interconnect. The ASM

also exports an interrupt signal and a control AXI slave

interface to set the ASM parameters. A sample architecture

Fig. 2. A sample architecture with three AXI Stall Monitor modules.

comprising three ASM modules is shown in Figure 2. The



ASM behavior is based on the notion of stalled clock cycle,

which occurs when at the rising edge of the clock at least

one of the following conditions happens on the AXI channels

monitored by the ASM: (i) there is at least one pending read

transaction from the monitored HW-task, signal RVALID is

high, and signal RREADY is low; (ii) there is at least one

pending write transaction from the monitored HW-task, signal

WREADY is high, and signal WVALID is low; or (iii) there

is at least one pending write transaction from the monitored

HW-task, signal BVALID is high, and signal BREADY is low.

The ASM comprises an internal counting logic to keep track

of stalled clock cycles, a monitoring logic, and a decoupling

logic. A counter is periodically replenished to a given value,

referred to as budget. Both the budget and the replenishment

period are parameters that can be configured by the PS via

memory-mapped registers. All the ASM modules share a

common period: its synchronicity is given by a common

external signal coming from the PS. Conversely, the budget

is individually configured for each ASM. The ASM works

according to two operating modes:
1) Monitor mode: The ASM is completely transparent to

both the supervised HW-task and the AXI interconnect, and

does not introduce any latency on the AXI channels. In this

mode, the ASM supervises the AXI channel and, for each

clock cycle stalled by the supervised HW-task, it decrements

of one unit the internal counter. When the counter reaches

zero (i.e., the budget is depleted), the ASM immediately

switches to the decouple mode by taking the following actions:

(i) raises an interrupt to the PS, signaling a misbehavior

condition related to the supervised HW-task; (ii) decouples

the supervised HW-task from the AXI channel (this shields

the system from any further misbehavior of the monitored

HW-task until the PS reacts to the interrupt); (iii) solves the

eventual stall on read transactions by dropping the pending

data at IAXI directed to the supervised HW-task; (iv) solves the

eventual stall on write transactions by completing the pending

transaction(s) previously-issued by the supervised HW-task

and never completed (according to the burst length of the

stalled transaction(s)). In this case, the data provided by the

ASM are dummy (the PS is notified) and the corresponding

write response(s) are dropped by the ASM. Note that, since

the memory buffers are private, a HW-task can compromise

only the status of its private buffer when misbehaving. In other

words, the misbehavior of a HW-task cannot corrupt the data

of the other HW-tasks.
2) Decouple mode: In this mode, the ASM keeps the super-

vised HW-task physically decoupled from IAXI. In decouple

mode, the periodic replenishment of the counter does not take

effect. The PS can let the ASM return to the monitor mode

by acting on its memory-mapped control registers.

The interrupt signal raised during the monitor-to-decouple

transition also acknowledges the PS that the work performed

by the HW-task is not valid — as the HW-task is decoupled

from the bus, its functional behavior is corrupted. The decision

of whether readmitting the misbehaving HW-task in the system

or not is left to the PS. Once the PS acknowledges the ASM to

return to the monitor mode, the mode switch is delayed until

the next replenishment time of the counter. Leaving the control

to the PS makes the ASM versatile for different applications.

For instance, in case a misbehavior is detected, the PS can

reconfigure the slot hosting the misbehaving HW-task with

another HW-task (possible in a reconfigurable setting), exclude

a portion of the FPGA area (e.g., if the silicon is deemed

bugged), or take other application-dependent actions.

A. Putting all together: configuring the ASM parameters

We present here a method, which leverages the analysis

in section VI, to configure the ASM parameters (period and

budgets) such that (i) the schedulability of all the HW-tasks

is preserved, i.e., deadlines cannot be missed due to stalled

clock cycles, and (ii) leave some flexibility to the HW-tasks

such that they are free to introduce a quantifiable delay in pro-

viding/reading data during transactions. Differently from fixed

timers to monitor stalls, this approach allows intervening only

when a stall can effectively harm the timing constraints of the

HW-tasks. To begin, we note that the delay related to stalled

clock cycles can directly affect the worst-case response times

of HW-tasks. Indeed, it can both increase the contention delay

(when an interfering HW-task introduces some stalling) and

the duration of the transactions of a HW-task under analysis.

The HW-task with the shortest slack Smin, i.e., spare clock

cycles between its worst-case response time and its deadline,

is the one that can tolerate the shortest delay before harming

the system schedulability. Hence, to preserve schedulability,

the total delay due to stalled clock cycles must be lower

than Smin = minHWi∈Γ{Ti −RTi}. Furthermore, it is worth

observing that the impact of such a delay on worst-case

response times is dependent on the replenishment period of the

ASMs, i.e., fixing a budget, the shorter the period, the more

stalled clock cycles can be generated without triggering the

decouple mode. To control the impact of the ASMs on worst-

case response times, we set the ASM period T to the maximum

period among all HW-tasks, i.e., T = maxHWi∈Γ(Ti). In this

way, we are sure that, in the worst-case, at most one budget

replenishment event e overlaps with the period of each HW-

task. Consequently, a HW-task monitored by an ASM that is

configured with a budget β can generate at most 2β stalled

clock cycles within the period of another HW-task under

analysis (β cycles before e and other β cycles afterwards).

Let βi be the budget of the ASM that protects HW-task

HWi and let HWua be the (or one of the) HW-task(s)

with the shortest slack Smin. In the worst-case, all HW-

tasks can introduce the largest delays due to stalling while

HWua is pending, which corresponds to their ASM budgets.

Therefore, the system schedulability is preserved as long as
∑

HWi∈Γ
2βi ≤ Smin. This implies that any ASM budget

configuration that satisfies the following inequality is safe:
∑

HWi∈Γ

βi ≤ ⌊Smin/2⌋ .

The designer is free to assign the individual budget of each

ASM in an arbitrarily manner as long as the above inequality



Fig. 3. Bus signals recorded with the ILA to show the behavior of the ASM on a write transaction.

is satisfied. The configuration of the ASM parameters can also

be automatically managed via its driver (running in PS), which

computes them by means of the results of Section VI. This also

allows an easy reconfiguration of the ASMs when some HW-

task changes its configuration (e.g., issue more transactions or

change period) or is replaced due to partial reconfiguration.

B. The ASM in action

The test-case discussed in Section IV has been extended by

introducing an ASM module for each HW-task (analogously

as illustrated in Figure 2, with N = 2). Here, the two HW-

tasks HW0 and HW1 are monitored by two ASM modules

ASM0 and ASM1, respectively. The same experimental set-

ting described in Section IV has been used to record the AXI

signals with the ILA and the configuration in which HW0

never provides data has been tested again. The resulting bus

signals are illustrated in Figure 3, which is explained next:

1) HW0 issues an address request for a write transaction

AW0 on its master AW channel. Same behavior for

HW1, which issues an address request AW1.

2) AW0 and AW1 pass through ASM0 and ASM1, respec-

tively, without any latency and are sampled by IAXI.

3) HW1 starts providing the data W1 to its master W

channel, which are propagated through ASM1 (with

no latency) and sampled by IAXI. Differently, HW0

does not provide the corresponding data W0 to ASM0.

Hence, ASM0 starts counting the stalled clock cycles

introduced by HW0.

4) After a propagation delay, IAXI provides AW0 and AW1

to its master port, which are then sampled at the AXI

slave port in the FPGA-PS interface. The arbitration

phase is won by AW0, which is propagated before AW1.

5) HW0 exhausted the budget of ASM0. Therefore,

ASM0 switches to decouple mode and takes the control

of the bus. ASM0 starts providing the W0 (dummy) data

to correctly end the pending write transaction, bringing

back the system to a safe condition. HW0 is now

decoupled from the bus until the PS sets the ASM0

to switch back to monitor mode.

6) W0 data are provided by IAXI to its master port W

channel. Data are sampled by the slave port in the

FPGA-PS interface.

7) The stall on the bus is resolved. The data W1 can finally

be provided by IAXI to its master port (W channel). Data

are hence sampled by the slave port in the FPGA-PS

interface.

8) The write response for AW0 reaches the master port of

IAXI and is propagated to ASM0. Since the transaction

has been aborted, it is dropped by ASM0 (i.e., it is not

propagated to HW0, which is decoupled from the bus).

9) The write response for AW1 reaches the master port of

IAXI and is propagated to HW1, completing the write

transaction (no latency introduced by the ASM).

VIII. EXPERIMENTAL RESULTS

The experiments are focused on a case study in which

temporal guarantees must be provided. The target platforms

are two common off-the-shelf FPGA SoC: the Xilinx Zynq-

7000 (Z-7020) and the Xilinx Zynq Ultrascale+ (ZU9EG).

Since the results on the two SoC are comparable, due to lack of

space we just report the data from the ZYNQ-7000 platform.

A. Experimental setup

The experimental architecture is composed of three com-

mon hardware accelerators IP from the Xilinx IP library:

the AXI Fast Fourier Transform (HWFFT) [28], the AXI

Direct Memory Access (HWDMA) [29], and the AXI Finite

Implulse Response filter (HWFIR) [30]. These hardware ac-

celerators are the considered HW-tasks for this experiment.

The three HW-tasks are monitored by ASM modules named

ASMFFT, ASMDMA and ASMFIR, respectively. The HW-tasks

are connected to a Xilinx AXI SmartConnect [22] (IAXI),

which provides them the access to the PS. The architecture

corresponds to the one reported in Figure 2, with N = 3.

Each HW-task is managed by a periodic software (SW) task

(SWFFT, SWDMA, and SWFIR, respectively), running in the

PS, on top of the FreeRTOS operating system. Each SW-task

is in charge of configuring the corresponding HW-task and

activating it (i.e., triggering a job).

The experimental architecture is completed with a Xilinx

System Integrated Logic Analyzer (ILA) [31], which is used to

profile: (i) the propagation latency of the AXI SmartConnect

(ii) dread
PS and dwrite

PS (due to the lack of detailed information

about the DDR Controller in the documentation [32] [27]);

and (iii) the parameters φ and C (that depend on intrinsic

properties of the Xilinx IPs). Table I reports the configuration

of the HW-tasks for the experiments.1 Note that parameters

NR, NW , and φ are quantified in number of transactions,

1HWFFT transforms four data windows of 64KB each. Hence, CFFT is
obtained by profiling the per-window execution time and multiplying it by
four. CDMA and CFIR have been quantified by profiling the largest time needed
by HWDMA and HWFIR to perform the computation required by one memory
transaction and then multiplying it by the number of per-job transactions.



TABLE I
CONFIGURATION OF THE HW-TASKS

NR NW C φ B T

HWFFT 4096 4096 4 · 201 6 16 50

HWDMA 256 256 256 · 101 6 16 20

HWFIR 8192 8192 8192 · 103 6 16 30

parameters C and B in clock cycles, and parameters T in

milliseconds. Table II reports the profiled value of φI and

the maximum propagation latency measured on the platform.

Finally, table III reports the resource consumption of an ASM

module IP on the two platforms considered in this work,

compared against the total amount of available resources.

TABLE II
PROFILED VALUE FOR AXI SMARTCONNECT AND PS.

φI daddr
I

ddata
I

d
bresp

I
dread
PS

dwrite
PS

1 12 9 9 50 40

B. Finding the ASM overall budget and period

This section describes the steps performed by the driver to

configure the ASM parameters by leveraging the analysis in

Section VI and the considerations made in Section VII-A. By

Equation (5), the maximum number of interfering transactions

for each HW-task are Y R
FFT = 5120, Y W

FFT = 5120, Y R
DMA =

512, Y W
DMA = 512, Y R

FIR = 8960, and Y W
FIR = 8960. Hence,

according to Section VI, the upper bound on the response time

of each HW-task are RTFFT = 12.6ms, RTDMA = 1.3ms, and

RTFIR = 24.2ms. Since RTFFT < TFFT, RTDMA < TDMA, and

RTFIR < TFIR, the set of HW-tasks is deemed schedulable.

Now, according to Section VII, the safe overall stall budget is

equal to the minimum between the slacks SFFT/2, SDMA/2,

and SFIR/2, and hence equal to 17.4/2 = 8.7ms. The

replenishment period of the ASMs is the maximum period

of the HW-tasks in the system, i.e., 50ms.

C. Spreading the ASM overall budget

Two strategies for assigning the ASM budgets were tested:

(a) linearly spreading the overall stall budget as a function

of the HW-tasks’ periods (the higher the HW-task period, the

higher the assigned ASM budget) and (b) spreading the overall

budget according to the criticality of the HW-tasks, giving 90%

of the overall budget to HWDMA (here assumed to be the most

critical) while linearly splitting the remaining 10% between

HWFFT and HWFIR, according to the length of their period.

The experiments have been conducted at first in nominal

conditions, i.e., all the HW-tasks well-behave and the ASM

modules are turned off (experiment (i)). Then, keeping the

ASMs off, HWDMA is made misbehaving (experiment (ii)). In

this condition, HWDMA issues requests for write transactions

and never provides the corresponding data. Subsequently, the

ASM modules are switched on and the case in which all

the HW-tasks in the system well-behave (experiment (iii))

and the case in which HWDMA misbehaves (experiment (iv))

are tested. The results are reported in Figures 4(a) and 4(b),

TABLE III
RESOURCE UTILIZATION OF AN ASM.

SoC
Resources

LUT FF BRAM/DSP

Z-7020 185/53200 (0.35%) 203/106400 (0.19%) 0

ZU9EG 183/274080 (0.07%) 203/548160 (0.04%) 0

respectively, also compared against the theoretical bounds

derived in Section VIII-B (note that the y-axis is in log scale).

In experiment (ii), as expected (see Section IV), the misbehav-

ior of HWDMA stall the entire system, letting all the other HW-

tasks experiencing an unbounded delay in the response time.

Similarly, in experiment (iv), HWDMA misbehaves and thus

does not complete its execution. Hence, no data are reported

in Figure 4 for exp. (ii) and for HWDMA in exp. (iv).

The measured response times in experiments (i) and (iii) for

all the HW-tasks are equivalent. This confirms that the ASMs

do not introduce latency. In experiment (iv), the misbehavior

of HWDMA increases the response times of both HWFFT and

HWFIR. The measured response times in experiment (iv) for

both HWFFT and HWFIR are larger in Figure 4(b) than in

Figure 4(a). This is because in configuration (b) HWDMA

disposes of a larger stall budget and hence is free to delay

the bus for more time with respect to configuration (a).

However, in both the configurations, thanks to ASMDMA,

the schedulability of HWFFT and HWFIR is not endangered:

indeed, they can both complete within their corresponding

deadlines, regardless of the HWDMA’s misbehavior.

FFT DMA FIR

10
−1

10
0

10
1

R
es

p
.

ti
m

es
(m

s)

(a) ASM overall budget linearly split according to periods

FFT DMA FIR

10
−1

10
0

10
1

R
es

p
.

ti
m

es
(m

s)

(b) ASM overall budget split according to criticality

Exp. (i) Exp. (iii) Exp. (iv) Theoretical upper-bounds

Fig. 4. Maximum measured response times.

IX. CONCLUSIONS

Modern FPGA-based SoCs rely on the AXI open standard,

which has been conceived under the assumption that all the

modules connected to the bus behave correctly. This paper

showed how this assumption can lead to unpredictable delays

or even to starvation. To address this issue, a timing analysis is

proposed to bound the worst-case response time of HW-tasks.

The analysis is then implemented in a driver that configures the

AXI Stall Monitor (ASM) modules to control delays during

bus transactions while preserving the system schedulability.

Experimental results demonstrated the practical applicability

and the effectiveness of the ASM on real platforms.



REFERENCES

[1] J. Fowers, G. Brown, P. Cooke, and G. Stitt, “A performance and energy
comparison of FPGAs, GPUs, and multicores for sliding-window appli-
cations,” in Proceedings of the ACM/SIGDA international symposium

on Field Programmable Gate Arrays. ACM, 2012, pp. 47–56.
[2] T. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V. Kindratenko, and

D. Buell, “The promise of high-performance reconfigurable computing,”
Computer, vol. 41, no. 2, pp. 69–76, 2008.

[3] S. R. Faraji, M. H. Najafi, B. Li, D. J. Lilja, and K. Bazargan, “Energy-
efficient convolutional neural networks with deterministic bit-stream
processing,” in 2019 Design, Automation & Test in Europe Conference

& Exhibition (DATE). IEEE, 2019, pp. 1757–1762.
[4] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,

and K. Vissers, “Finn: A framework for fast, scalable binarized neural
network inference,” in Proceedings of the 2017 ACM/SIGDA Interna-

tional Symposium on Field-Programmable Gate Arrays. ACM, 2017,
pp. 65–74.

[5] C. Ding, S. Wang, N. Liu, K. Xu, Y. Wang, and Y. Liang, “REQ-YOLO:
A resource-aware, efficient quantization framework for object detection
on FPGAs,” in Proceedings of the 2019 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, ser. FPGA ’19. New
York, NY, USA: Association for Computing Machinery, 2019, p.
33–42. [Online]. Available: https://doi.org/10.1145/3289602.3293904

[6] Q. Gautier, A. Althoff, and R. Kastner, “Fpga architectures for real-
time dense slam,” in 2019 IEEE 30th International Conference on

Application-specific Systems, Architectures and Processors (ASAP), vol.
2160. IEEE, 2019, pp. 83–90.

[7] G. G. Lemieux, J. Edwards, J. Vandergriendt, A. Severance, R. De Iaco,
A. Raouf, H. Osman, T. Watzka, and S. Singh, “TinBiNN: Tiny binarized
neural network overlay in about 5,000 4-LUTs and 5mw,” arXiv preprint

arXiv:1903.06630, 2019.
[8] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava,

R. Gupta, and Z. Zhang, “Accelerating binarized convolutional neural
networks with software-programmable FPGAs,” in Proceedings of the

2017 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays. ACM, 2017, pp. 15–24.
[9] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. But-

tazzo, “A framework for supporting real-time applications on dynamic
reconfigurable FPGAs,” in Real-Time Systems Symposium (RTSS), 2016

IEEE. IEEE, 2016, pp. 1–12.
[10] S. Banerjee, E. Bozorgzadeh, and N. D. Dutt, “Integrating physical

constraints in hw-sw partitioning for architectures with partial dynamic
reconfiguration,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 14, no. 11, pp. 1189–1202, 2006.
[11] T. Dörr, T. Sandmann, F. Schade, F. K. Bapp, and J. Becker, “Leveraging

the partial reconfiguration capability of FPGAs for processor-based fail-
operational systems,” in International Symposium on Applied Reconfig-

urable Computing. Springer, 2019, pp. 96–111.
[12] A. M. Johnson Jr and M. Malek, “Survey of software tools for evaluating

reliability, availability, and serviceability,” ACM Computing Surveys

(CSUR), vol. 20, no. 4, pp. 227–269, 1988.

[13] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory
bandwidth management for efficient performance isolation in multi-core
platforms,” IEEE Transactions on Computers, vol. 65, no. 2, pp. 562–
576, 2015.

[14] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni, “PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore
platforms,” in 2014 IEEE 19th Real-Time and Embedded Technology

and Applications Symposium (RTAS). IEEE, 2014, pp. 155–166.
[15] M. Hassan and R. Pellizzoni, “Bounding DRAM interference in COTS

heterogeneous MPSoCs for mixed criticality systems,” IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 37, no. 11, pp. 2323–2336, 2018.

[16] B. Forsberg, A. Marongiu, and L. Benini, “GPUguard: Towards sup-
porting a predictable execution model for heterogeneous SoC,” in
Proceedings of the Conference on Design, Automation & Test in Europe.
European Design and Automation Association, 2017, pp. 318–321.

[17] T. Garg, S. Wasly, R. Pellizzoni, and N. Kapre, “Hoplitebuf: FPGA nocs
with provably stall-free FIFOs,” in Proceedings of the 2019 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays. ACM,
2019, pp. 222–231.

[18] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo,
“Is your bus arbiter really fair? restoring fairness in AXI interconnects
for FPGA SoCs,” ACM Transactions on Embedded Computing Systems

(TECS), vol. 18, no. 5s, pp. 1–22, 2019.
[19] J. Alglave, M. Batty, A. F. Donaldson, G. Gopalakrishnan, J. Ketema,

D. Poetzl, T. Sorensen, and J. Wickerson, “GPU concurrency: Weak
behaviours and programming assumptions,” in ACM SIGPLAN Notices,
vol. 50, no. 4. ACM, 2015, pp. 577–591.

[20] R. Pellizzoni, P. Meredith, M.-Y. Nam, M. Sun, M. Caccamo, and
L. Sha, “Handling mixed-criticality in SoC-based real-time embedded
systems,” in Proceedings of the seventh ACM international conference

on Embedded software. ACM, 2009, pp. 235–244.
[21] Avalon Interface Specifications, Intel FPGA, 2018, mNL-AVABUSREF.
[22] SmartConnect, LogiCORE IP Product Guide, Xilinx, 2018, pG247.
[23] AXI Performance Monitor v5.0, Xilinx, 2017, pG037.
[24] H.-m. Kyung, G.-h. Park, J. W. Kwak, T.-j. Kim, and S.-B. Park, “Design

and implementation of performance analysis unit (pau) for axi-based
multi-core system on chip (soc),” microprocessors and microsystems,
vol. 34, no. 2-4, pp. 102–116, 2010.

[25] A. Moro, F. Federici, G. Valente, L. Pomante, M. Faccio, and V. Muttillo,
“Hardware performance sniffers for embedded systems profiling,” in
2015 12th International Workshop on Intelligent Solutions in Embedded

Systems (WISES). IEEE, 2015, pp. 29–34.
[26] AMBA AXI and ACE Protocol Specification, ARM, 2012.
[27] Zynq UltraScale+ Device - Reference Manual, Xilinx, 12 2017, uG1085.
[28] Fast Fourier Transform, LogiCORE IP Product Guide, Xilinx, 2018,

pG109.
[29] AXI Central Direct Memory Access, LogiCORE IP Product Guide,

Xilinx, 2018, pG034.
[30] FIR Compiler, LogiCORE IP Product Guide, Xilinx, 2018, pG149.
[31] System Integrated Logic Analyzer v1.0, Xilinx, 2017, pG261.
[32] Zynq-7000 - Reference Manual, Xilinx, 9 2016, uG585.


