
Timing-aware FPGA Partitioning for Real-Time
Applications Under Dynamic Partial Reconfiguration

Alessandro Biondi and Giorgio Buttazzo
Scuola Superiore Sant’Anna, Pisa, Italy

Email: {alessandro.biondi, giorgio.buttazzo}@santannapisa.it

Abstract—Heterogeneous system-on-chips (SoC) that include
both general-purpose processors and field programmable gate
arrays (FPGAs) are emerging as very promising platforms to
develop modern cyber-physical systems, combining the typical
flexibility enabled by software with the speedup achievable
by custom hardware accelerators. Furthermore, the dynamic
partial reconfiguration (DPR) capabilities of modern FPGAs
make such platforms even more attractive, offering the possibility
of virtualizing the FPGA area to support several hardware
accelerators in time sharing. However, heterogeneous platforms
originate considerable challenges in the design and development
process of applications, especially if timing and energy constraints
are concerned.

The FRED framework has been recently proposed to support
the development of real-time applications upon such platforms,
using a static slotted-based partitioning of the FPGA area to
ensure predictable delays when managing custom hardware
accelerators by DPR.

This paper addresses the problem of designing a suitable
FPGA partitioning to support the execution of a real-time appli-
cation within the FRED framework. The problem is formulated as
a mixed-integer linear program that is in charge of (i) designing
the size of the slots (in terms of FPGA resources), (ii) allocating
hardware tasks to the slots, and (iii) selecting which hardware
tasks must be statically allocated to the FPGA, while ensuring
bounded worst-case response times on the tasks.

I. INTRODUCTION

Heterogeneous platforms including both general-purpose
processors and field programmable gate arrays (FPGAs) are
emerging as a solution for providing high computational
performance with contained power dissipation. Properly dis-
tributing the computation between processors and FPGA, it is
possible to combine the advantages of software flexibility and
reusability with the speedup provided by the hardware acceler-
ation. In addition, the dynamic partial reconfiguration (DPR)
capability offered by modern FPGAs allows the application
developer to reprogram a part of the FPGA area while the other
parts continue to operate without interruption. During the years
reconfiguration times have been progressively decreasing [1],
thus enabling the possibility of virtualizing the FPGA area
to support several hardware modules in time sharing, hence
making these devices even more attractive.

In spite of these attractive features, several problems need
to be solved to make such heterogeneous platforms suitable
for being used in safety-critical real-time applications, such as
space missions, automotive and robotic systems. Some of the
major challenges are briefly listed below.
Predictability. The applications running on such platforms
should be analyzable in terms of timing behavior, in order

to guarantee bounded response times on all real-time compu-
tations carried out in the processors and on the FPGA.
Operating system support. A suitable software layer is needed
in the operating system to simplify the programming of real-
time applications, manage software and hardware tasks, and
support their interaction by proper synchronization and com-
munication mechanisms.
Resource allocation. Given an application consisting of a
number of computations that have to be performed under
a given set of constraints (e.g., periods, deadlines, energy
consumptions, precedence relations), a method is needed to
allocate the activities in such a way that all the constraints are
satisfied and, possibly, some cost function is minimized.
Tools. To make these platforms practically usable by the in-
dustry, all the development phases (design, allocation, analysis,
programming, and test) should be supported by proper tools
that automatize and simplify the involved processes.

Recently, Biondi et al. [1] proposed a programming frame-
work, called FRED, for supporting real-time applications on
heterogeneous platforms consisting of a central processor unit
(CPU) and an FPGA with DPR capability. The application
consists of software tasks (SW-tasks) running on the CPU that
can invoke the execution of hardware accelerators (HW-tasks)
on the FPGA. The FPGA is virtualized so that the total number
of HW-tasks that can run on the FPGA in time sharing is larger
than the number of HW-tasks that could be accommodated
in the same area according to a static allocation. Under the
FRED framework, all the tasks experience bounded delays
and a schedulability analysis has been provided to compute
response times and verify the task set schedulability.

The authors also showed that there are applications guar-
anteed to be feasible when running in time sharing under the
FRED framework, which could not be guaranteed otherwise,
that is, neither when all the tasks are implemented in software
(because response times would be too high), nor when all tasks
are implemented in hardware (because the total FPGA area
required by the application would exceed the available one).

To ensure predictability and a more robust inter-task com-
munication, FRED relies on a static partitioning of the FPGA
area, which is divided into a set of slots of fixed size. Each
slot, however, can be shared by one or more HW-tasks whose
size does not exceed the one of the slot. For this reason, each
HW-task has an affinity value, specifying which slot it can be
programmed into.

In that work, slots and affinities are assumed to be given
and satisfy the area constraints. In practice, however, a design
methodology is required to find a feasible partitioning, which



is not addressed by the authors. This paper fills this gap by
focusing on such a design method.

Paper contributions. This work proposes an approach for
computing a suitable FPGA partitioning to support the execu-
tion of a real-time application under the FRED framework. A
mixed-integer linear program (MILP) formulation is presented
to reach this objective. Given a modeling instance of a real-
time application and a platform, the MILP produces as output
(i) the design of the FPGA slots in terms of number of FPGA
resources, (ii) the affinity of each HW-task, and (iii) the set
of HW-tasks that must be statically allocated on the FPGA.
The output solution ensures the feasibility of the application
in terms of timing constraints and the feasibility of the FPGA
partitioning in terms of resource availability. Both preempt-
able and non-preemptable FPGA reconfiguration interfaces
are considered when accounting for timing constraints. The
scalability and the performance of the proposed approach have
been assessed with an experimental study.

Paper Organization. Section II presents the system model
and summarizes some existing results derived for the FRED
framework. Section III defines the problem addressed in the pa-
per. Section IV presents the proposed solution for performing
the FPGA partitioning. Section V reports some experimental
results to evaluate the scalability and the performance of the
proposed solution. Section VI discusses the related work.
Section VII concludes the paper and illustrates possible future
work.

II. MODELING AND BACKGROUND

This section briefly reviews the FRED framework proposed
in [1], on which this work is based. It considers a heteroge-
neous computing system consisting of (at least) one processor
and an FPGA with DPR capability, both sharing a common
DRAM memory. The FPGA is composed of NRES types of
resources (e.g., configurable logic blocks, flip-flops, DSPs,
etc.), each consisting of Bx units (x = 1, . . . , NRES). For a
compact notation, B denotes the vector of FPGA resources,
where Bx is its generic component.

Two types of computational activities are managed: (i)
software tasks (SW-tasks): they are computational activities
running on the processors; and (ii) hardware tasks (HW-tasks):
they are hardware accelerators implemented in programmable
logic and executed on the FPGA.

SW-tasks can speedup parts of their computation by requesting
the execution of HW-tasks. To ensure predictability during
FPGA reconfigurations and minimize the overhead related to
the allocation of HW-tasks and the instantiation of communi-
cation channels, FRED relies on a static partitioning of the
FPGA area into NS slots. Each slot sk (k = 1, . . . , NS) is
composed of bk resources, with

∑NS

k=1 bk ≤ B. Resource
units are not shared among the slots.

Since the goal of this work is to find a partitioning for
the FPGA, in the following the parameters NS and bk (k =
1, . . . , NS) are assumed to be unknown and will be determined
by the optimization procedure presented in Section IV as a
function of a given real-time application.

Hardware Tasks. Each HW-task has a static affinity to a
single slot and can execute only if it has been programmed

into it. HW-tasks execute in a non-preemptive fashion. Each
slot can be reconfigured at run-time by means of an FPGA
reconfiguration interface (FRI). As for most platforms (e.g.,
[2]), the FRI (i) can reconfigure a slot without affecting the
execution of the HW-tasks currently programmed in other
slots; (ii) is a peripheral device external to the processor (e.g.,
like a DMA) and hence does not consume processor cycles
to reconfigure slots; and (iii) can program at most one slot
at a time. To program a given HW-task τHi into a slot, the
FRI has to program all its resources, independently of the
number bi of resource units required by τHi , because unused
resources have to be disabled to “clean” the previous slot
configuration. The slot hosting a HW-task τHi is denoted as
s(τHi ) and also referred to as affinity. For all HW-tasks with
affinity s(τHi ) = sk, it must be bi ≤ bk.

The FRI is characterized by a minimum throughput ρx for
each type of resource x = 1, . . . , NRES, meaning that at most
rSk =

∑NRES

x=1 b
x
k/ρ

x units of time are needed to program a slot
sk.1 Hence, the reconfiguration time ra needed to program a
HW-task τHa is ra = rSk : s(τHa ) = sk.

Software Tasks. Each SW-task can invoke multiple HW-tasks
by alternating execution phases with suspension phases, where
the SW-task is descheduled to wait for the completion of the
corresponding HW-task. The same HW-task cannot be invoked
by multiple SW-tasks. Every SW-task is activated periodically
(or sporadically), with a period (or minimum interarrival time)
Ti, thus producing a potentially infinite sequence of execution
instances, denoted as jobs. Each SW-task is assigned a relative
deadline Di, meaning that each of its jobs must complete
its execution within Di units of time from its activation.
The pseudo-code of a sample skeleton of a SW-task that
uses two HW-tasks is shown in Listing 1. The blocking
call EXECUTE_HW_TASK is in charge of (i) requesting the
execution of a HW-task and (ii) suspending the execution of
the SW-task until the completion of the requested HW-task.
Figure 1 illustrates a typical schedule generated for the SW-
task reported in Listing 1.

CPU
time

suspended suspended

time

time

FRI

FPGA

delay delay

Figure 1. Typical schedule produced for the SW-task in Listing 1. The
up-arrow and the down-arrow denote the release time and the deadline of
the SW-task, respectively. Each HW-task request incurs in a variable delay,
depending on the contention of the FRI and the FPGA slot availability.

A. Scheduling Infrastructure

To manage the contention of the FRI and the FPGA slots,
FRED defines a scheduling mechanism based on a multi-level
queueing structure represented in Figure 2. It includes np
queues, one for each slot, needed to schedule the HW-tasks

1For the sake of simplicity, the overhead introduced by the header of the
bitstreams is neglected.



1 SW_TASK(example)
2 {
3 << SW-task Initialization >>
4
5 // Initialization of the HW-tasks
6 HW_Task myHW_Task1 = hw_task_init(hw_task_1);
7 HW_Task myHW_Task2 = hw_task_init(hw_task_2);
8
9 // Task body

10 forever
11 {
12 << ... >>
13
14 << prepare input data for hw_task_1 >>
15 EXECUTE_HW_TASK(myHW_Task1);
16 << process output data of hw_task_1 >>
17
18 << ... >>
19
20 << prepare input data for hw_task_2 >>
21 EXECUTE_HW_TASK(myHW_Task2);
22 << process output data of hw_task_2 >>
23
24 << ... >>
25
26 // Wait for the next job
27 suspend_until(next_activation_time);
28 }
29 }

Listing 1. Pseudocode of a SW-task that invokes two HW-tasks.

having affinity with the same slot, and a FRI queue to schedule
the reconfiguration requests. The slot queues are ordered using
a first-in-first-out (FIFO) policy. Every time a SW-task issues
a request R for a HW-task, R is assigned a ticket marked with
the current absolute time. Then, R is inserted in the slot queue
based on the affinity of the HW-task. Requests are inserted in a
slot queue as long as the corresponding slot is used by another
HW-task. The FRI queue is fed by the slot queues and ordered
by increasing ticket time. Under such a scheduling mechanism,
the delays incurred by HW-task requests are bounded and can
be computed using a response-time analysis. Please refer to [1]
for additional details.

HW-task

affinity

slot 𝑠1

slot 𝑠2

FRI

FPGA area

𝑠1

𝑠2

𝑠4𝑠3

slot 𝑠3

slot 𝑠4

Figure 2. Queuing structure of the FRED framework for scheduling HW-task
requests. The FPGA area is divided into four slots s1, s2, s3 and s4.

B. Communication between SW and HW tasks

Under the FRED framework, SW-tasks and HW-tasks
exchange data using a shared-memory communication mech-
anism. In contrast to other approaches that store the shared
data into private memory areas within the FPGA slots, the

solution adopted in FRED allows decoupling the time a HW-
task must hold a slot from the scheduling delays of SW-tasks.
Moreover, it simplifies the timing analysis, allowing to upper-
bound the suspension delay of a SW-task by the worst-case
execution time of the HW-task plus the slot reconfiguration
delay. Please refer to [1] for further details.

C. Timing Analysis

This section briefly reviews the timing analysis presented
in [1] for preemptable and non-preemptable FPGA recon-
figuration. Under the scheduling infrastructure described in
Section II-A, the following theorem can be proved (as a special
case of Theorem 1 in [1]) to ensure predictable worst-case
delays when requesting the execution of a HW-task under
preemptive FRI management.

Theorem 1 (From [1]): Consider an arbitrary HW-task re-
quest Ra for τHa issued by a SW-task τi. Let sk = s(τHa )
be the slot to which τHa is allocated. Under preemptive FRI
management, the maximum delay incurred by Ra is upper-
bounded by

∆P
a =

∑
τj 6=τi

max
τH
b ∈H(τj)

{
∆slot
b + rb

}
(1)

where

∆slot
b =

{
CHb if s(τHb ) = sk
0 otherwise.

The term ∆slot
b represents the interference experienced by

τHa due to slot contention originated by the execution of τHb .

Under non-preemptive FRI management, a bound ∆P
a on

the delay experienced by a HW-task is provided by Theorem
2 in [1].

Theorem 2 (From [1]): Consider an arbitrary HW-task re-
quest Ra for τHa issued by a SW-task τi. Let sk = s(τHa ) be
the slot to which τHa is allocated. Under non-preemptive FRI
management, the maximum delay incurred by Ra is upper-
bounded by

∆NP
a = ∆P

a +NHmax
k × rmaxk (2)

where

NHmax
k =

∣∣{τHb ∈ ΓH : s(τHb ) = sk}
∣∣

and
rmaxk = max

τH
b ∈ΓH

{rb : s(τHb ) 6= sk}.

The term NHmax
k represents the number of HW-tasks

allocated to slot sk: the FRED scheduling infrastructure en-
sures that each of them can be directly blocked due to non-
preemptable FPGA reconfiguration by at most rmaxk units of
time, representing the largest reconfiguration time of the HW-
tasks allocated on the other slots.

III. PROBLEM DEFINITION

A design methodology for supporting real-time applica-
tions under the FRED framework must take into account
three aspects simultaneously: (i) the timing constraints of the
application, (ii) the constraints given by the resource avail-
ability in the FPGA fabric, and (iii) the geometrical placement



of the computational activities (synthetized as programmable
logic) within the FPGA area. The third aspect originates very
challenging problems due the non-uniform distribution of the
FPGA resources and some limitations (e.g., rectangular areas
only) imposed by commercial FPGA design tools. Given such
difficulties, this work focuses on aspects (i) and (ii), thus
providing a design solution that ensures the timing constraints
of a real-time application while guaranteeing a necessary
condition for a geometrical partitioning of the FPGA area.

To the best of our knowledge, no methodology has been
proposed to date to optimally solve the geometrical placement
under realistic assumptions. A notable exception is due to
Rabozzi et al. [3], who recently proposed a floorplanning
automation based on (i) the enumeration of all possible feasible
placements of the reconfigurable regions and (ii) a collection
of algorithms to identify a valid placement, which includes
custom heuristics, genetic algorithms, and a MILP formulation.

In the present paper, the geometrical placement of the
computational activities is left to the system designer, who can
use the output of the proposed methodology to guide the actual
geometrical partitioning of the FPGA area (usually performed
manually using tools like Vivado by Xilinx) or as an input for
the approach proposed in [3]. The design of a holistic approach
that integrates this work with [3] is left for future work.

The objective of this work can now be precisely stated.
It considers a given heterogeneous platform and a given real-
time application, both modeled as reported in Section II. The
goal is to identify an FPGA partitioning (if there exists one)
such that the considered real-time application is schedulable
(i.e., meets all its deadlines) by adopting the FRED scheduling
infrastructure. More specifically, the identification of an FPGA
partitioning consists in determining:

(i) the number nS of slots and their size in terms of resource
units bk (for each slot sk);

(ii) the affinity of each HW-task in the considered real-time
application;

(iii) the HW-tasks that can be statically allocated to the FPGA
and those that are subject to DPR.

Besides the intrinsic complexity of the problem, which is
determined by the underlying similarity with bin-packing, the
timing constraints originate additional complications introduc-
ing several circular dependencies (e.g., note that reconfigura-
tion times depend on the slot size).

IV. DESIGN STRATEGY

This section presents a MILP formulation to solve the
problem stated in the previous section: the design space is
first limited (Sections IV-A and IV-B); then, the variables
used to formulate the MILP are presented (Section IV-C); and,
finally, the constraints of the MILP formulation are reported,
distinguishing them between (i) structural (Section IV-D),
(ii) resource (Section IV-E), and (iii) timing (Section IV-F)
constraints. Structural constraints are related to the character-
istics of the FRED model. Resource constraints describe the
availability of the FPGA resources within each slot and across
the overall FPGA area. Timing constraints encode the delay
bounds guaranteed by the FRED scheduling infrastructure.

The proposed MILP formulation has no objective; that is,
any solution of the optimization problem (corresponding to

a FPGA partitioning) that satisfies the desired constraints is
accepted as a valid solution. However, the formulation can
be extended by including design objectives (e.g., minimizing
the FPGA area used by the application, minimizing energy
consumption metrics, etc.) by introducing additional modeling
layers and matching objective functions.

The formulation is first presented for the case of pre-
emptable FPGA reconfiguration, and the extensions needed
to support non-preemptable reconfigurations are discussed in
Section IV-G.

A. Slack bounds

To enforce timing constraints, the proposed MILP for-
mulation leverages the knowledge of a slack bound Si for
each SW-task τi, i.e., a bound on the maximum time that
each SW-task can wait for the completion of all its HW-tasks
without missing its deadline. The worst-case response time
of SW-task τi is given by the sum of three contributions: (i)
the sum of the worst-case execution times (WCETs) of its
code segments, (ii) the interference caused by high-priority
SW-tasks, and (iii) the maximum time that it is suspended
waiting for the completion of HW-tasks. Once obtained a safe
upper-bound Ri on contributions (i) and (ii), the slack bound
can be easily computed as Si = Di − Ri. The bound Ri
can be obtained with the response-time analysis for real-time
self-suspending tasks proposed by Nelissen et al. [4]. This
analysis uses the response times of the high-priority tasks
to derive their interference, which, however, is not known a
priori as it depends on contribution (iii) that in turn depends
on the FPGA partitioning. Such a circular dependency can
be broken by considering the deadlines as upper bounds on
the response times of the high-priority tasks: the approach is
guaranteed to be safe by the sustainability [5] property of the
adopted response-time analysis. If available, e.g., by forcing
the allocation of some tasks or in the presence of SW-tasks
that do not use HW-tasks, tighter bounds on the response times
can be easily adopted at this stage.

B. Maximum Number of Slots

A trivial, but very useful information can be leveraged to
construct the MILP formulation: in any possible valid FPGA
partitioning, there cannot be more slots than the total number
of HW-tasks in the considered real-time application, otherwise,
there would be at least one slot that is not used. Hence,
an implicit bound on the maximum number of slots can be
computed as NS

max =
∣∣ΓH ∣∣.

C. Optimization Variables

To encode the problem as a MILP formulation, we intro-
duce a mixed set of binary and real variables. The number
of variables depends on the structure of the application (e.g.,
number of HW-tasks) and the constant NS

max identified in the
previous section. The size of the MILP can be improved by
adopting iterative approaches, where NS

max is progressively
increased up to its maximum value or varied using a binary
search.

For each slot sk, with k = 1, . . . , NS
max and for each FPGA

resource-type with index x = 1, . . . , NRx, we define:



• bxk ∈ R≥0, a real variable that specifies the number of
FPGA resources of type x in the k-th slot.

For each HW-task τHa ∈ ΓH , for each slot sk, with k =
1, . . . , NS

max, we define:

• Aa,k ∈ {0, 1}, a binary variable such that Aa,k = 1
iff τHa is allocated to slot sk.

For each HW-task τHa ∈ ΓH we define:

• γa ∈ {0, 1}, a binary variable such that γa = 1 iff τHa
is subject to DPR (i.e., it is not statically allocated to
a slot).

For each possible couple of HW-tasks (τHa , τ
H
b ) ∈ ΓH × ΓH ,

we define:

• ∆slot
a,b ∈ R≥0, a real variable that expresses a bound on

the interference suffered by τHa due to slot contention
originated by τHb .

For each HW-task τHa ∈ ΓH , for each SW-task τi ∈ Γ, we
define

• ∆a,i ∈ R≥0, a real variable that expresses a bound on
the interference suffered by τHa due to HW-tasks used
by τi.

For each HW-task τHa ∈ ΓH , we define

• ra ∈ R≥0, a real variable that expresses the reconfig-
uration time of τHa .

Note that all such variables are positively-defined. There-
fore, any constraint that enforces such variables to be greater
than a negative number has no effect. More specifically, let x
be one of the variables above and let y be a negative term:
any constraint of the form x ≥ y degenerates to x ≥ 0, thus
imposing no bound on x. This simple observation will result
crucial in understanding the following constraints.

D. Structural Constraints

First of all, we impose a basic constraint concerning the
affinity of HW-tasks.

Constraint 1: ∀τHa ∈ ΓH ,
∑NS

max
k=1 Aa,k = 1

Proof: By definition of the model presented in Section II,
each HW-task must be allocated to one and only slot.

Another constraint is enforced to decide whether a HW-
task is subject to DPR.

Constraint 2:

∀τHa ∈ ΓH ,∀τHb ∈ ΓH : τHa 6= τHb , ∀k = 1, . . . , NS
max,

γa ≥ Ab,k − (1−Aa,k)

Proof: Consider an arbitrary HW-task τHa and an arbitrary
slot sk. If Aa,k = 0, then τHa is not allocated to slot sk and
the constraint degenerates to γa ≥ 0 (independently of the
value of Ab,k) thus enforcing no bound on γa. Otherwise, if
Aa,k = 1, then τHa is allocated to slot sk: in this case, if there
exists another HW-task τHb 6= τHa that is also allocated to sk,
then Ab,k = 1 and the constraint becomes γa ≥ 1, which
correspondingly enforces that τHa is subject to DPR.

E. Resource Constraints

We begin from a basic constraint to limit the resources used
by all the slots to the total FPGA resources. That is, for each
type of resource, any valid FPGA partitioning cannot include
more resource units than those available in the platform.

Constraint 3: ∀x = 1, . . . , NRES,
∑NS

max
k=1 b

x
k ≤ Bx

Proof: It follows from the preceding discussion.

As stated in Section II, each slot sk must be able to host any
HW-task with affinity to sk. The following constraint enforces
this requirement.

Constraint 4:

∀x = 1, . . . , NRES, ∀k = 1, . . . , NS
max,∀τHa ∈ ΓH ,

bxk ≥ bxa ·Aa,k

Proof: Consider an arbitrary slot sk and an arbitrary HW-
task τHa . If Aa,k = 1, then τHa has affinity to sk and the
constraint becomes bxk ≥ bxa, which imposes that the slot must
be able to include a sufficient number of resources to host
τHa . Otherwise, if Aa,k = 0, τHa is not allocated to Pk and the
constraint degenerates to bxk ≥ 0, thus imposing no constraint
on the number of resources included in sk.

F. Timing Constraints

The objective of the following constraints is to encode the
delay bound of Theorem 1 as part of the MILP formulation.

The first constraint enforces a bound on the reconfiguration
time of HW-tasks, which depends on the size of the slots
to which they are allocated to. The constraint makes use of
a numerical constant M to represent infinity, which can be
formally defined as M =

∑NRES

x=1 {Bx/ρx} + 1 (i.e., the time
needed to reconfigure the entire FPGA area plus one).

Constraint 5: ∀k = 1, . . . , NS
max, ∀τHa ∈ ΓH ,

ra ≥
NRES∑
x=1

1

ρx
· bxk − (1−Aa,k) · M− (1− γa) · M

Proof: Consider an arbitrary HW-task τHa and an arbitrary
slot sk. First of all, note that if τHa is not subject to DPR
(i.e., it is statically allocated to one slot), then γa = 0 and
the constraint degenerates to ra ≥ 0, thus enforcing zero
reconfiguration time. Otherwise, τHa incurs in a reconfiguration
delay and the term (1−γa)·M degenerates to zero. If τHa is not
allocated to sk, then Aa,k = 0 and the constraint degenerates to
ra ≥ 0, thus imposing no constraint to the reconfiguration time
of τHa . Conversely, if τHa is allocated to Pk, then Aa,k = 1.
In this case, the constraint ra ≥

∑NRES

x=1
1
ρx · b

x
k is enforced

for each slot of Pk, thus correctly matching the definition of
reconfiguration time reported in Section II.

The following constraint enforces a bound on the delay
caused by the execution of a HW-task τHb to another HW-task
τHa when they both contend the same slot by means of DPR.

Constraint 6:

∀k = 1, . . . , NS
max, ∀τHa ∈ ΓH , ∀τHb ∈ ΓH : τHa 6= τHb ,

∆slot
a,b ≥ CHb − CHb · (1−Aa,k)− CHb · (1−Ab,k)



Proof: Consider two different and arbitrary HW-tasks τHa
and τHb . If there exists a slot sk to which τHa and τHb are
allocated to, then Aa,k = Ab,k = 1. In this case, both the
terms −CHb · (1−Aa,k) and −CHb · (1−Ab,k) degenerates to
zero and the constraint ∆slot

a,b ≥ CHb is enforced. By looking
at the term ∆slot

b in Theorem 1, the latter is a valid bound on
the delay caused by τHb to τHa .

If there not exists a slot sk to which τHa and τHb are
allocated to, then they cannot interfere each other during their
execution. In this case, for each slot sk, one of the two terms
−CHb · (1−Aa,k) and −CHb · (1−Ab,k) is equal to −CHb and
the constraint degenerates to ∆slot

a,b ≥ 0 accordingly.

With the above constraints in place, it is now possible to
impose a bound on the delay suffered by a HW-task. Likewise
Constraint 5, the following constraint makes use of a numerical
constantM to represent infinity, which can be formally defined
as M = maxτH

b ∈ΓH{CHb }+
∑NRES

x=1 {Bx/ρx}+ 1.

Constraint 7:

∀τHa ∈ ΓH , ∀τi ∈ ΓS : τi 6= τ(τHa ), ∀τHb ∈ H(τi),

∆a,i ≥ ∆slot
a,b + rb − (1− γa) · M

Proof: Consider an arbitrary HW-task τHa . If τHa is not
subject to DPR, then γa = 0 and the constraint degenerates
to ∆a,i ≥ 0, thus correctly enforcing no delay. Otherwise,
the constraint reduces to ∆a,i ≥ ∆slot

a,b + rb: following the
delay bound provided Theorem 1 (specifically, the contribution
related to the maximum operator), the constraint leads to a
valid bound on the delay incurred by τHa due to the HW-tasks
used by τi.

Finally, for each SW-task τi, we impose that the total delay
suffered by its HW-tasks (i.e., those in the set H(τi)) plus their
worst-case execution times and reconfiguration times, cannot
be larger than the slack bound Si. This condition is sufficient
to ensure the system schedulability.

Constraint 8:

∀τi ∈ ΓS ,
∑

τH
a ∈H(τi)

CHa + ra +
∑

τj∈ΓS : τj 6=τi

∆a,j

 ≤ Si
Proof: Follows from the preceding discussion.

G. Handling Non-preemptable Reconfiguration

To account for the additional delay introduced by non-
preemptable reconfiguration, it is necessary to define further
variables with respect to those defined in Section IV-C.

For each possible couple of HW-tasks (τHa , τ
H
b ) ∈ ΓH × ΓH ,

we define:

• ∆NP
a,b ∈ R≥0, a real variable that expresses the de-

lay directly suffered by τHb due to non-preemptable
reconfigurations during a request for τHa .

Such variables are provided to encode the term NHmax
k ×

rmaxk of the delay bound in Theorem 2. This goal is achieved
with the following constraint, which makes use of the same
numerical constant M defined for Constraint 5.

Constraint 9:

∀τHa ∈ ΓH , ∀τHb ∈ ΓH , ∀τHc ∈ ΓH ,∀k = 1, . . . , NS
max

∆NP
a,b ≥ rc − (2−Aa,k −Ab,k) · M−Ac,k · M

−(1− γa) · M− (1− γc) · M

Proof: Consider an arbitrary HW-task τHa . First of all,
note that if τHa is not subject to DPR, then γa = 0 and the
constraint degenerates to ∆NP

a,b ≥ 0, thus correctly enforcing
no delay. Now, suppose that τHa is subject to DPR (γa =
1). Following Theorem 2, each HW-task τHb allocated to the
same slot of τHa (τHa included) contributes to the delay due
to non-preemptive reconfiguration when requesting τHa . Also,
the contribution of each of such HW-tasks is bounded by the
the largest reconfiguration time of HW-tasks τHc that do not
have the same affinity of τHa and τHb .

If there exists a slot sk to which both τHa and τHb are
allocated, then (2 − Aa,k − Ab,k) = 0 and the constraint
becomes ∆NP

a,b ≥ rc − Ac,k · M − (1 − γc) · M. If τHc is
allocated to slot sk (Ac,k = 1), the constraint enforces no
bound, while it becomes ∆NP

a,b ≥ rc − (1 − γc) · M if τHc is
allocated to a slot different than sk. If τHc is subject to DPR
(γc = 1), hence it can generate reconfiguration delay and the
constraint correctly enforces ∆NP

a,b ≥ rc.

Finally, if the slot sk does not exist, then the term
(2 − Aa,k − Ab,k) is always positive and the constraint
correspondingly degenerates to ∆NP

a,b ≥ 0.

Constraint 10 (In place of Constraint 8):

∀τi ∈ ΓS ,

∑
τH
a ∈H(τi)

CHa + ra +
∑
τj∈ΓS

τj 6=τi

∆a,j +
∑

τH
b ∈ΓH

∆NP
a,b

 ≤ Si
Proof: The constraint is analogous to Constraint 8. The

delay bound follows from Theorem 2 given that
∑
τH
b ∈ΓH ∆NP

a,b

is a bound on the delay due to non-preemptive reconfiguration
when requesting τHa .

The above constraints can be further improved by exploit-
ing the serialization of the requests for HW-tasks issued by
the same SW-task: please refer to [1] (Lemma 2) for further
details.

V. EXPERIMENTAL RESULTS

This section reports on the results of an experimental study
that has been conducted to assess the performance and the scal-
ability of the proposed design methodology. The experimental
study considered the Xilinx Zynq 7020 as a reference platform.
The FPGA fabric available in such a platform includes four
resources: 53200 look-up tables (LUTs), 106400 flip-flops
(FFs), 140 block RAMs (BRAMs), and 220 digital signal
processor slices (DSPs) (see [6], page 3). The proposed design
strategy has been evaluated under synthetic workload, which
has been generated as described below.



A. Workload generation

A set of n SW-tasks has been generated, each using a
corresponding HW-task. The n HW-tasks have been configured
for requiring a given amount of FPGA resources, obtained
as bU · Bxc (for each resource x = 1, . . . , 4). The term
U ∈ R≥1 is a parameter that controls the percentage of
additional resources that are needed by the HW-tasks with
respect to the ones that are statically available in the platform.
Note that U > 1 in order to generate scenarios that require
DPR to ensure the feasibility of the application. For each
resource, the available units have been randomly distributed
among the HW-tasks following a uniform distribution using
the UUnifast algorithm [7]). The number of resources used by
each HW-task has been limited to be in the range [Bxmin, bumax ·
Bxc]. The parameters controlling this range have been set
to B1

min = B2
min = 10 (LUTs and FFs), B3

min = B4
min = 0

(BRAMs and DSPs), and umax = 0.7. The WCETs of the
HW-tasks have been randomly generated in the range [5, 500]
ms with uniform distribution. The slack bounds Si have been
randomly generated with uniform distribution in the range
[CHi +α ·∆MAX

i , CHi + ∆MAX
i ], where ∆MAX

i is the maximum
delay that can τHi can incur (with respect to a trivial solution
of the partitioning problem) and α ∈ [0, 1] is a parameter
that controls the tightness of the timing requirements. The
term ∆MAX

i can be computed by applying Theorem 1 to the
case in which all the HW-tasks are allocated to the same slot.
Higher values of α correspond to scenarios with relaxed timing
constraints, while lower values correspond to scenarios that
have tight timing constraints, which hence determine more
difficult instances for the design methodology.

B. Experiments

The design strategy has been evaluated with a multidimen-
sional exploration of the parameters that control the workload
generation. The parameter α (controlling the slacks) has been
varied from 0.1 to 1.0 with step 0.1. The number n of tasks has
been varied from 3 to 20 with step 1. The parameter U has been
set to 2. For each combination of such parameters, 500 problem
instances have been generated and each of them has been tested
under both preemptable and non-preemptable reconfiguration,
for a total of 180,000 instances. The experiments have been
performed on a machine equipped with 24 cores Intel Xeon
E3-12 @ 2.7 GHz and 16 GB of RAM. The GUROBI solver
has been used to solve the MILP formulations.

Figure 3 reports the maximum and the average running
times needed to solve the MILP formulations, for three repre-
sentative configurations (α ∈ {0.2, 0.3, 0.5}), as a function of
the number n of tasks. As it can be noted from the graphs, the
running times decrease as α increases, which is compatible
with the rationale that under relaxed timing constraints the
problem is easier to be solved. For α = 0.2, the maximum
running time under non-preemptive reconfiguration achieves
large values for n ∈ {14, 15, 16} tasks, while the average
running times are in the order of one minute. Scenarios
with non-preemptive reconfiguration tend to require larger
solving times due to the additional variables introduced in
Section IV-G. Note that the results are not monotonic with n.
For a small number of tasks, the size (in terms of variables) of
the MILP formulation is small, leading to short running times.
When the number of tasks is high, since the total demand
of FPGA area is fixed, the area consumption of each HW-task

tends to decrease, so facilitating their partitioning. Overall, the
results show that the proposed approach is affordable in most
of the tested cases, resulting compatible with the time-frame
of design activities.

Figure 4 reports the ratio of successfully solved instances,
under other three representative configurations, as a function of
the parameter α. As expected, the success ratio increases as α
increases (corresponding to scenarios with more relaxed timing
constraints). Being the overall area consumption of the HW-
tasks fixed (U = 2), instances with a few tasks resulted difficult
to partition; this is also due to a disruptive contention for the
limited number of available slots (with very large area). For
larger number of tasks (n > 12), the approach is able to find
a valid partitioning for more than 50% of the tested instances,
even in the presence of extremely stringent timing constraints
(α = 0.1). As also observed in [1], the difference between
preemptable and non-preemptable reconfiguration is limited,
since the contention for the slots tends to be the dominant
contribution to the overall delay.

VI. RELATED WORK

The problem of partitioning the FPGA area has been exten-
sively studied from different perspectives and under multiple
assumptions. A detailed discussion of all the works proposed
in the literature is too vast to fit in the space available in this
paper, therefore, the discussion is limited to the works that are
more closely related to the present paper.

In the context of real-time systems, Di Natale and Bini [8]
proposed an optimization method to partition the area of an
FPGA into slots to be allocated to HW-tasks and softcores to
execute SW-tasks. Given the high computational complexity of
the method, their approach can only be used off-line to obtain
a static task allocation. Furthermore, their approach did not
consider dynamic partial reconfiguration, nor synchronization
issues between software and hardware tasks, and it was limited
to homogeneous FPGA areas. One of the first attempts to sup-
port DPR-enabled FPGAs in the context of real-time systems
is due to Pellizzoni, and Caccamo [9]. Their work includes
an allocation scheme and an admission test to provide real-
time guarantees for applications that consists of both SW- and
HW-tasks. However, reconfiguration is performed only when
the task set is modified, (i.e., in the presence of mode-changes)
and not for virtualizing the FPGA area, as done in the FRED
framework. In addition, their analysis does not consider any
delay introduced by the reconfiguration interface and assumes
a homogeneous type of FPGA resource.

Outside the context of real-time systems, several ap-
proaches have been proposed for allocating HW-tasks within
an FPGA area, both considering static and dynamic allocation
by means of DPR. The work more related to the present
paper is the one by Rabozzi et al. [3] (already discussed
in Section III) and Beckhoff et al. [10], which proposed
a technique based on optimization methods to perform the
floorplanning of reconfigurable areas starting from an initial
solution provided by tools distributed by Xilinx. A thorough
state-of-the-art analysis of this research area is available in [3].
Deiana et al. [11] proposed a MILP formulation for com-
puting a static schedule for a set of computational activities
with precedence constraints. Their work is mostly focused on
average-case performance and does not cope with recurrent
activities in multitasking. Later, Purgato et al. [12] proposed a



4 6 8 10 12 14 16 18 20
10−3

10−1

101

103

105

n

R
un

ni
ng

tim
e

(s
ec

s)

(a) α = 0.2

4 6 8 10 12 14 16 18 20
10−3

10−1

101

103

105

n

R
un

ni
ng

tim
e

(s
ec

s)

(b) α = 0.3

4 6 8 10 12 14 16 18 20
10−3

10−1

101

103

105

n

R
un

ni
ng

tim
e

(s
ec

s)

(c) α = 0.5

MAX (preemptive FRI) AVG (preemptive FRI) MAX (non-preemptive FRI) AVG (non-preemptive FRI)

Figure 3. Running times needed to solve the MILP formulation for three representative configurations as a function of the number n of tasks.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

α

Su
cc

es
s

ra
tio

(a) n = 7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

α

Su
cc

es
s

ra
tio

(b) n = 9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

α

Su
cc

es
s

ra
tio

(c) n = 12

Preemptive FRI Non-preemptive FRI

Figure 4. Ratio of successfully solved instances under three representative configurations.

set of heuristics that improved the approach of [11] in terms of
running time and maximum makespan of the static schedule.

Other authors addressed the problem of supporting DPR-
enabled in real-time operating systems. Iturbe et al. [13]
implemented R3TOS, an operating system that allows a fully-
dynamic HW-tasks allocation, which is achieved by avoiding
the use of slots and static communication channels. This
flexibility comes at the cost of using the reconfiguration
interface for implementing communication channels between
tasks. Their work is not supported by a worst-case timing anal-
ysis and only considers HW-tasks. Lubbers and Platzner [14]
developed ReconOS, an operating system that extends the
multi-thread paradigm to HW-tasks. ReconOS has been ex-
tended to support reconfigurable FPGAs by using cooperative
multitasking to handle the contention of predetermined FPGA
slots [15]. To the best of our records, no solutions have been
proposed for partitioning the FPGA area under ReconOS while
matching real-time constraints.

VII. CONCLUSION AND FUTURE WORK

This paper presented a design methodology for partition-
ing the FPGA area under FRED, a programming framework
that has been proposed to support the development of real-
time applications upon DPR-enabled heterogeneous system-
on-chips. The design is accomplished by means of a mixed-
integer linear program that is in charge of (i) sizing a set
of slots realized into the FPGA area, (ii) allocating hardware
tasks to such slots, and (iii) selecting which hardware tasks
can be statically allocated to the FPGA. All such objectives
are reached while ensuring predictable worst-case response
times of the tasks. The running time of the proposed technique
has been shown to be compatible with the time-frame of off-
line design activities. Future work includes the development
of a holistic methodology that accounts for the geometrical
placement of the FPGA slots and the inclusion of the synthesis
of configurations for communication infrastructures.

REFERENCES
[1] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. But-

tazzo, “A framework for supporting real-time applications on dynamic
reconfigurable FPGAs,” in Proceedings of the IEEE Real-Time Systems
Symposium (RTSS), December 2016.

[2] Vivado Design Suite User Guide: Partial Reconfiguration, Xilinx,
November 2015, v2015.4.

[3] M. Rabozzi, G. C. Durelli, A. Miele, J. Lillis, and M. D. Santanbrogio,
“Floorplanning automation for partial-reconfigurable FPGAs via fea-
sible placements generation,” IEEE Transactions on Very large Scale
Integration (VLSI) Systems, vol. 25, no. 1, January 2017.

[4] G. Nelissen, J. Fonseca, G. Raravi, and V. Nelis, “Timing analysis of
fixed priority self-suspending sporadic tasks,” in Proceedings of the
Euromicro Conference on Real-Time Systems (ECRTS), July 2015.

[5] A. Burns and S. Baruah, “Sustainability in real-time scheduling,”
Journal of Computing Science and Engineering, vol. 2, no. 1, pp. 74–97,
2008.

[6] Xilinx zynq-7000 all programmable SoC overview. [Online].
Available: https://www.xilinx.com/support/documentation/data sheets/
ds190-Zynq-7000-Overview.pdf

[7] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, 2005.

[8] M. D. Natale and E. Bini, “Optimizing the FPGA implementation of
HRT systems,” in Proceedings of the 13th IEEE Real Time and Em-
bedded Technology and Applications Symposium (RTAS), April 2007.

[9] R. Pellizzoni and M. Caccamo, “Real-time management of hardware
and software tasks for FPGA-based embedded systems,” IEEE Trans-
actions on Computers, vol. 56, no. 12, pp. 1666–1680, December 2007.

[10] C. Beckhoff, D. Koch, and J. Torres, “Automatic floorplanning and
interface synthesis of island style reconfigurable systems with goa-
head,” in Proc. of the 26th International Conference on Architecture
of Computing Systems (ARCS), June 2013.

[11] E. A. Deiana, M. Rabozzi, R. Cattaneo, and M. D. Santambrogio, “A
multiobjective reconfiguration-aware scheduler for FPGA-based hetero-
geneous architectures,” in Proc. of the International Conference on
ReConFigurable Computing and FPGAs (ReConFig), December 2015.

[12] A. Purgato, D. Tantillo, M. Rabozzi, D. Sciuto, and M. D. San-
tambrogio, “Resource-efficient scheduling for partially-reconfigurable
FPGA-based systems,” in Proc. of the IEEE International Parallel and
Distributed Processing Symposium Workshops, May 2016.

[13] X. Iturbe, K. Benkrid, C. Hong, A. Ebrahim, R. Torrego, and T. Arslan,
“Microkernel architecture and hardware abstraction layer of a reliable
reconfigurable real-time operating system (R3TOS),” ACM Transactions
on Reconfigurable Technology and Systems, vol. 8, no. 1, pp. 5:1–5:35,
March 2015.

[14] E. Lübbers and M. Platzner, “ReconOS: Multithreaded programming for
reconfigurable computers,” ACM Transactions on Embedded Computing
Systems, vol. 9, no. 1, pp. 8:1–8:33, October 2009.

[15] ——, “Cooperative multithreading in dynamically reconfigurable sys-
tems.” in Proceedings of the International Conference on Field Pro-
grammable Logic and Applications (FPL), August 2009.

https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf

