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Abstract

The Constant Bandwidth Server (CBS) is one of the most used
algorithms for implementing resource reservation upon deadline-
based schedulers. Although many CBS variants are available in
the literature, no proper formalization has been proposed for the
CBS in the context of hard reservations, where it is essential to
guarantee a bounded-delay service across applications. Existing
formulations are affected by a problem that can expose the system
to dangerous deadline misses in the presence of blocking. This
paper analyzes such a problem and presents a comprehensive and
consistent formulation of the CBS for hard reservation scenarios.
An overview of the contexts in which a hard CBS can be applied is
also provided, focusing on the impact that previous formulations
can have on schedulability, when used in conjunction with specific
resource sharing protocols or other scheduling mechanisms that
may cause a server to block.

1. Introduction

In real-time computing systems running multiple concurrent
tasks, a fundamental property that has to be ensured to support
a component-based development is temporal protection, which
prevents unexpected overruns occurring in a task from affecting
the execution of other tasks. Resource Reservation [1] represents
the most powerful scheduling mechanism specifically conceived
to achieve such a property.

The idea behind the notion of Resource Reservation is that
each task (or set of tasks) is assigned a fraction of the CPU, and
is scheduled in such a way that it will never demand more than
its reserved bandwidth. With this abstraction, processor capacity
is viewed as a quantifiable resource that can be reserved, like
physical memory or disk blocks.

The need for temporal isolation arises in many contexts. In
the real-time community, its primary motivation was to inte-
grate hard, soft, and non-real-time tasks. Indeed, many real-time
systems are not characterized by hard timing constraints, as is
the case of multimedia applications, audio/video streaming, etc.
For these applications, missing a deadline has no catastrophic
consequences, but it only leads to performance degradation. When
dealing with hybrid task-sets, composed of hard and soft tasks,
temporal isolation allows protecting hard tasks from overruns
generated by soft tasks.

More in general, achieving temporal isolation is necessary
whenever a timely service has to be ensured in a system

with heterogenous timing requirements and potential overload
conditions. In case of dynamic or unpredictable computational
workload, the system must be able to reconfigure or adapt itself,
without affecting other functionalities. In such circumstances,
each application can be protected from the timing interferences
of other components by using a proper enforcement mechanism
that preserves the temporal isolation.

The resource reservation framework is also effectively em-
ployed for hierarchical systems composed of a set of modular
components, each handling its own application, where a different
scheduling algorithm may be used within each component [2],
[3]. Component-based design is increasingly used as a de facto
approach to design complex embedded systems. In particular,
it gives the possibility to handle the growing complexity of
current industrial software systems and to support the design of
open environments [4], [5], where independently developed real-
time applications need to be validated and executed in isolation.
Resource reservation can be efficiently used in such situations, by
allocating different applications on different virtual processors,
so that each application can execute in isolation, without being
affected by the behavior of the other components.

Resource Reservation is typically implemented by assigning to
each application a dedicated real-time server, called reservation
server. Each server is characterized by a budget Q and period
P, so that it provides to the corresponding application Q units
of service every P time-units. The ratio o = Q/P is called
server bandwidth. If an application A is assigned a reservation
bandwidth ¢, it behaves as it were executing on a dedicated
slower processor, with speed ¢ times the original speed. However,
the reserved budget may be granted with some delay with respect
to a dedicated virtual processor, depending on the particular
implementation of the server.

Definition 1 (Bounded-delay): A server is said to implement
a bounded delay partition if in any time interval of length L the
server provides the corresponding share of budget oL with a delay
of at most A.

The bounded-delay property of a server is influenced by the
budget replenishment policy, i.e., the rule(s) used to recharge the
server budget upon depletion. Depending on the replenishment
rule, it is possible to distinguish between hard and soft reserva-
tions.

Definition 2 (Hard reservation): A server is said to implement
a hard reservation if, when the server budget is depleted, the
server is suspended until the next replenishment time.

Definition 3 (Soft reservation): A server is said to implement



a soft reservation if, when the server budget is depleted, it is
immediately replenished, so that the server remains always active.

In this paper, we will discuss the relation between the bounded-
delay property and the budget replenishment policy for the
most popular dynamic server: the Constant Bandwidth Server
(CBS) [6], [7]. The basic idea behind the classic CBS is that, when
the budget is exhausted, it is immediately recharged to ¢; = Q;,
postponing the server deadline to d; = d; + P;. Since a backlogged
server! remains always active, the classic CBS implements a soft
reservation.

However, as shown in [8], such a formulation presents a
deadline aging problem. To understand this issue, consider a
system consisting of two tasks 7; and 7, served by servers S; and
S,, respectively. As illustrated in Figure 1, at a certain instant, T
is the only active task in the system and executes without being
preempted. The associated server S| consumes all its budget,
postponing its deadline several times. When task 7, is activated,
server S is assigned a short deadline and, according to EDF
scheduling policy, it is allowed to execute. When the budget of
S, is exhausted, its deadline is postponed. However, since the
deadline of server S is far away, S> has still the earliest deadline
and can continue executing. As shown in the figure, S will need
to wait for a long time, without being able to guarantee Q; units
of execution within P; time units, for multiple server periods.
This problem is called deadline aging, and causes the amount
of execution effectively granted by a server to depend on the
activations and periods of the other servers.

Since it is not possible to provide an upper bound A on
the service delay with which the server provides the reserved
processor share in any time interval, the soft CBS is not a
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Figure 1: The deadline aging problem of CBS.

This issue is particularly negative for multimedia or interactive
systems, because the potentially long service delay might deter-
mine a significant loss of quality of service and responsiveness.
Even more importantly, this problem prevents the soft CBS to
be used for hierarchical systems, where a set of real-time tasks
needs to be guaranteed on each server with a given scheduling
algorithm. If the server does not implement a bounded-delay
partition, it would be difficult to analyze the schedulability of
each task on the given server, because no lower-bound can be
given on the supply provided to each task by the server in any
time interval. For example, if a high priority task arrives at the
beginning of a long black-out period, it would inevitably miss

1. A server is said to be backlogged whenever it has some pending workload
to execute.

2. Note that the server is instead able to guarantee a reserved budget of oL in
an interval of length L starting with a server activation, with a delay of at most
A=2(P-Q).

its deadline. Even if the supply curve of the server since its
initial activation is always within A =2(P — Q) time-units from a
dedicated virtual processor of speed «, there could be long sub-
intervals (longer than A) in which no service is granted. This is
due to the over-provisioning of budget accorded to lower priority
tasks previously scheduled onto the same server. If a high priority
task happens to arrive during such intervals, a deadline is likely
to be missed.

The deadline aging problem has been addressed by introducing
a bounded-delay variant of CBS implementing hard reservations,
denoted as Hard Constant Bandwidth Server (H-CBS). Many
works in the literature refer to the H-CBS algorithm, but none
of them provides a reference with a proper formalization. In this
paper, we intend to close this gap, giving once and for all a
consistent formulation for the H-CBS, and showing that different
existing H-CBS formulations are affected by an algorithmic issue
that can jeopardize the server behavior in critical scenarios.

System model. This paper considers a uniprocessor system, com-
posed of N subsystems Sy € ., k=1,...,N, each implemented
by a reservation server (also denoted as Sj;) characterized by a
budget Q; and a period P;. Each server is also characterized by
a server bandwidth oy = Qi /P, and a worst-case service delay
Ar =2(P — Q).

We assume each subsystem S runs an application I'; consisting
of ny periodic or sporadic preemptive tasks. A local scheduler
is in charge of selecting the running task on each subsystem.
For the sake of simplicity, in this work we consider a two-level
hierarchical system, although our contributions can be extended to
a generic multi-level hierarchical system, using the compositional
real-time scheduling framework proposed by Shin and Lee [3].

All the results presented in this paper also hold in the particular
case in which each server handles one single task, that is when
Vk=1,...,N, n; = 1. This model can be useful to achieve timing
protection among tasks, e.g., as specified by the AUTomotive
Open System ARchitecture (AUTOSAR) [9].

Each task 7; is characterized by a worst-case execution time
(WCET) G;, a period (or minimum interarrival time) 7;, and
a relative deadline D; < T;. Within each subsystem, tasks are
indexed by increasing relative deadlines.

Paper structure. The remainder of the paper is organized as fol-
lows. Section 2 discusses the related work. Section 3 summarizes
the rules of the H-CBS, giving a consistent formulation for such a
scheduling mechanism. Section 4 discusses some problems with
existing formulations under resource sharing and their impact on
the state of the art. Finally, Section 5 states our conclusions.

2. Related work

The classical CBS algorithm [6] has been introduced by Abeni
and Buttazzo with the purpose of providing efficient run-time
support to multimedia applications in a real-time system. They
proposed it as a scheduling methodology based on reserving a
fraction of the processor bandwidth to each task, under the EDF
scheduling algorithm.

Rajkumar et al. in [10] introduced the notion of hard reserva-
tion. They presented an algorithm that suspends the server upon
budget depletion until the next replenishment time. The downside



of this approach is that the algorithm is not work-conserving, so
that the system may remain idle even when there are pending
jobs to execute, significantly reducing the throughput.

To solve the problem of deadline aging present in the original
formulation of CBS, Marzario et al. [8] presented the Idle-time
Reclaiming Improved Server (IRIS), which implements hard
reservations guaranteeing a minimum budget in any time interval,
and ensuring a work-conserving behavior. It presents two main
differences with respect to the original CBS algorithm. The first
difference is that IRIS explicitly sets a recharging time for each
server, to implement hard reservations. Secondly, it introduces a
rule, denoted as time-warping, which allows the idle time to be
reclaimed and distributed among the needing servers. According
to this rule, when an idle time occurs, it is possible to advance the
recharging times of all the servers that are ready to execute but
are waiting for replenishment. As we will show in the following
sections, the hard CBS implementation proposed for IRIS presents
some problem when a server is reactivated after being blocked.

In [11], Abeni et al. present the HGRUB server, which
combines a hard reservation CBS with a reclaiming mechanism
that modifies the CBS accounting and enforcement rules to take
advantage of the bandwidth reserved to inactive servers. Also
HGRUB presents the same problem of IRIS when a server
reactivates after a blocking time.

A CBS extension to support hierarchical scheduling is presented
in [12]. Being based on the original formulation of the CBS
algorithm, it suffers from deadline aging, and does not implement
hard reservations. Moreover, it makes the restrictive assumption
of First-Come-First-Served (FCFS) job scheduling within each
Server.

In [5], Bertogna et al. propose the Bounded-Delay Resource
Open Environment (BROE) server, which extends the CBS to
handle resource sharing in a Hierarchical Scheduling Framework.
To address the budget exhaustion problem when a global lock
is held, BROE performs a budget check before granting access
to each global resource. If the budget is sufficient to complete
the global critical section, the lock is granted. Otherwise, it is
denied, suspending the server until a replenishment time. Beside
this budget-check mechanism, the bounded-delay version of the
CBS implemented by BROE differs from the one adopted for IRIS
and HGRUB in the rules to execute after a server reactivation.
Even if not explicitly mentioned in [5], these rules allow avoiding
a subtle problem upon server reactivation that may lead to a server
deadline miss. As this problem is present in different works in
the literature, we believe it is important to highlight it, bringing
it to the attention of the real-time community.

3. H-CBS rules

In this section, the rules of the Hard Constant Bandwidth Server
(H-CBS) are described in detail. Since the rules of CBS-based
servers are sometimes expressed using the notion of virtual time,
some other times using explicit budget relations, we hereafter
provide both formulations. To simplify the notation, the server
index is omitted in the server parameters.
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2
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Figure 2: State transition diagram.

3.1. Virtual time based rules

The server is characterized by three dynamic variables, which
are updated at runtime:

e a deadline d;
e a virtual time v,
e a reactivation time z.

Moreover, a server S is defined to be backlogged if it has any
active jobs awaiting execution at that instant, and non-backlogged
otherwise.

At each time instant ¢, a server can be in one of five possible
states:

1) Inactive, when it is non-backlogged and v < t;

2) Non-Contending, when it is non-backlogged and v > t;

3) Contending, when it is backlogged and eligible to execute;

4) Executing, when it is backlogged and currently running;

5) Suspended, when it is backlogged and its virtual time has
reached the server deadline (v = d), but the current time
instant is before the reactivation time z of the server (¢ < z).

Note that in the definition of the Inactive and Non-Contending
states, the current time ¢ is compared with the virtual time v. The
relation between ¢ and v gives an indication on the possibility
for the server to execute without violating its bandwidth o.
Intuitively, when v > ¢, the server has executed for all its “fair
share”; the opposite holds when v <t.

The Suspended state has been introduced to ensure a hard
reservation behavior. Indeed, no analog of the Suspended state
is present in the original definition of CBS [6].

Figure 2 illustrates the state transition diagram that describes
the behavior of the server.

Being ¢ the current time, the server variables are updated
according to the following rules.

(i) The server is initially in the Inactive state. It transitions to
Contending state when it wishes to contend for execution.
This transition (label (1) in Figure 2) is accompanied by the



following actions:

d + t+P

vV o<t

(i) Only Contending servers are eligible to execute. When the
earliest deadline Contending server is selected for execution,
it undergoes transition (2) to the Executing state. While
executing, its virtual time is incremented at a rate 1/

dv 1

o
When an Executing server is preempted by a higher priority
one, it undergoes transition (3) back to the Contending state.
When an Executing server has no more pending jobs to
execute, it transits to the Non-Contending state (transition
(4)), and remains there as long as v > ¢.
When v <t, a Non-Contending server transitions to the
Inactive state (transition (5)).
If the virtual time v of an Executing server reaches the server
deadline d, it undergoes transition (6) to the Suspended
state. This transition is accompanied by the following ac-

(iii)

@iv)

v)
(vi)

tions:
Z 4~ v (1)
d + v+P 2)
(vii) A Non-Contending server which desires to contend once

again for execution (note t < v, otherwise it would be in the
Inactive state) transits to the Suspended state (transition (7)).
This transition is accompanied by the same actions (Eq. (1)
and (2)) of transition (6).

A Suspended server transitions back to the Contending state
as soon as the current time ¢ reaches the reactivation time
z (transition (8)).

(viii)

Note that a server may take two transitions instantaneously one
after another. For example, when an Executing server becomes
non-backlogged and v < ¢, transition (5) is taken instantaneously
after transition (4).

The above rules implement a non-work-conserving H-CBS
server. A simple rule can be added to make the server work-
conserving:

o When the processor is idle, every server is reset to the
Inactive state.

This allows implementing a simple reclaiming mechanism that
avoids idling the processor when there are backlogged servers.

3.2. Budget based rules

The rules of a H-CBS server can also be expressed in terms
of period P and maximum budget Q. At any current time ¢, the
server is characterized by an absolute deadline d and a remaining
budget g. When a job executes, ¢ is decreased accordingly.

The budget based rules are summarized below.

1) Initially, g =0 and d = 0.

2) When H-CBS is idle and a job arrives at time #, a replenish-

ment time is computed as t, =d — g/ a:

a) if  <t,, the server is suspended until time #,. At time ¢,,
the server returns active replenishing its budget to Q and
setting d < t,+ P.

b) otherwise the budget is immediately replenished to Q and
d+—t+P;

3) When g = 0, the server is suspended until time d. At time

d, the server budget is replenished to Q and the deadline is

postponed to d < d + P.

According to the previous rules, a server running ahead of its
guaranteed processor utilization may self-suspend when reactivat-
ing after an idle time until the guaranteed processor utilization
is matched (time ¢, = d — q/ ). At time ¢,, the server budget is
replenished to Q and the deadline is set to d < t, + P. When
instead the server consumed less bandwidth than its allowed
share, it will immediately replenish its budget, setting the deadline
tod<+t+P.

The connection between this formulation and the one presented
in Section 3.1 can be obtained considering the relation

V=1I+ @,
o
which links the virtual time v with the current server budget g
and the last server activation time #,.

3.3. Considerations

The above rules implement a bounded-delay version of the
CBS, which provides the corresponding processor share within a
service delay of A=2(P— Q) in any time-interval. The bounded-
delay property is guaranteed by using an additional “Suspended”
state, which allows the reservation to be “hard”, avoiding the
deadline aging problem.

It is important to note that there is no direct transition between
the Non-Contending and the Contending/Executing states. A
server that reactivates after being Non-Contending must first pass
through a Suspended state before being executed again. This
is one of the main differences with existing hard reservation
formulations of the CBS, that instead allow a Non-Contending
server to restart executing immediately after a new job request
arrives, using the original deadline and the remaining budget.
We believe this mechanism to be potentially dangerous in hard
reservation scheduling scenarios, where a server might reactivate
after being blocked by shared resource policies, as shown in the
following section.

Note that a soft CBS that does not meet the bounded-delay
property could still be used in hierarchical environments when
a particular kind of scheduling algorithm is used. For example,
when the scheduler replicates the same job execution order
enforced on a dedicated virtual processor (VP) of speed . In
this case, it is possible to prove that the schedulability analysis is
simplified, as it is sufficient to check whether each job completes
at least A time-units before its deadline on the VP. However,
note that the job execution order enforced by a given scheduler
on a VP may differ from that enforced on a server, because of
the different processor availability. Therefore, replicating the VP
schedule on the server requires a significant amount of additional



runtime complexity?.

A corollary of the above observation concerns the First-Come-
First-Served (FCFS) policy. Note that, by definition, the job
execution order using FCFS is always the same, on a server or
a dedicated VP. As mentioned, this significantly simplifies the
schedulability analysis, explaining why a soft CBS can be used
in [12] for hierarchical environments adopting FCFS as a job
scheduling policy.

If other policies are used instead, like EDF or FP, the schedu-
lability on a soft reservation is much more difficult to check, due
to the difficulties in finding a critical instant situation, i.e., the
job release instance that leads to the worst-case response time of
the tasks handled by the server. Indeed, while the critical instant
on a dedicated VP is found when all tasks are synchronously
released, this is not the case on a soft reservation, where a worse
situation is found when a high priority task arrives after a lower
priority one caused the deadline-aging problem. Besides imposing
a larger schedulability penalty, the latter case makes the analysis
much more complex.

4. H-CBS blocking problem

Beside the interference from higher priority instances, each
server may experience some blocking due to globally shared
resources concurrently accessed by other servers, or due to sus-
pension mechanisms implemented in the system. In this section,
we analyze more in detail how the blocking may jeopardize
the behavior of classic H-CBS formulations, exposing the system
to dangerous deadline misses. Note that the presented problem
is different from (and orthogonal to) another blocking-related
problem analyzed in many different papers, concerning the budget
exhaustion problem of resource sharing servers [5], [13]-[15].
While different techniques are available to limit the blocking due
to servers exhausting their budget while holding a global lock,
most of these techniques do not solve the problem presented in
this section.

As shown in [5], [15], a sufficient schedulability condition to
safely compose multiple reservation servers in the presence of a
generic blocking term can be derived as follows.

Theorem 1: A set of subsystems Sy,...,Sy may be composed
upon a unit-capacity processor without missing any deadline if

B
Vk=1,...,N: Y a+-—-<1,
i:P<P P

3

where By, represents the maximum blocking that can be imposed
over a server S.

To clarify the blocking problem with existing H-CBS formu-
lation, we hereafter show the case of blocking due to globally
shared resources accessed through SRP-G [5], [13], one of the
most popular protocols for arbitrating the access to resources
shared by different servers. A similar problem arises also when
the blocking is due to other scheduling mechanisms.

3. Note that the replicated schedule is non-work-conserving, as it might leave
the server idle even when it has some pending job to execute, in order to enforce
the same job execution order of the VP schedule.

4.1. Resource model

Two types of shared resource can be defined:
o Local resource*:

same subsystem;
e Global resource: a resource shared among tasks belonging

to different subsystems.

a resource shared among tasks within the

In the following, Z; ; denotes the longest critical section of 7;
related to resource R; and §; ; denotes the WCET of Z; ;. From
now on, the notation {x}o denotes {0} U {x}.

Definition 4: The Resource Holding Time Hy j(i) of a global
resource R; accessed by a task 7; € I' is the maximum amount of
budget consumed by S; between the lock and the corresponding
release of R; performed by ;.

Note that, if global resources are accessed by disabling local
preemption, H; ;(i) is equal to &;; of task 7; € I'y. If local
preemption is not disabled, Hy ;(i) takes into account the worst-
case local interference experienced by 7; during the lock of R;
(details on how to compute Hy ;(i) can be found in [5]).

In addition, the maximum Resource Holding Time of a re-
source R; for an application I'y is defined as

Hiej = max{Hy;(i)} )
Finally, the maximum Resource Holding Time for an applica-
tion I'; is defined as

H, = mjax{Hk’j}. (5)

In order to access shared resources, the Stack Resource Policy
(SRP) [16] can be used as it is for local resources, while it has
to be extended for global resources. The global version of SRP
is summarized below [5], [13].

Global SRP (SRP-G). To handle global resources, each server
Sy is assigned a preemption level n,f. Server preemption levels
are ordered in inverse period order, such that 7y > 7} < P, < P.
Each global resource is assigned a global ceiling equal to

CjG =max{7; | 31, € [\ A 7; holds global R;}o.
A global system ceiling is defined as
ne = max{CjG}.
J

A server S; can preempt the currently scheduled server only if
m > TIC.

Note that, when a global resource is locked, the system ceiling
I1° is incremented, potentially causing a number of servers to be
blocked.

According to SRP-G, a server S; can be blocked for a time
By by a server Sy with P, < P,. This happens when S, locks a
resource R, which is used by S, and by a server S, with period
P, < P.. Hence, the global blocking factor B; can be formally
expressed as follows:

B = max{Hg,j | R; used by S, AP, < Pk}(). (6)
Py>Py

4. Please note that local resources are not defined when n; = 1 (i.e., when the
application I’y is composed by a single task).



4.2. Problem description

In the literature, different works [8], [11] proposed a formula-
tion of a hard reservation CBS. Unfortunately, as we are going to
show, all these formulations present a problem arising whenever a
server is blocked upon re-activation. This is for instance the case
when servers may share mutually exclusive global resources, and
the earliest deadline server is waiting for a global lock to be
released by another server. The same problem may however arise
also for other kinds of blocking that a server may experience, as
with suspension-based mechanisms or system sleep intervals.

To present the problem, we here focus on the case of hard
reservation CBS servers that may access globally shared resources
using the SRP-G protocol.

Please consider Rule (vii) of the H-CBS server in Section 3.2.
In existing formulations of hard reservation CBS [8], this rule
is not present, and a Non-Contending server wishing to once
again contend for execution is allowed to directly transition to the
Contending state. Equivalently, in the budget-based formulation,
Rule (2a) in Section 3.2 is replaced by the following rule:

Rule (2a)-OLD: If t < t,, the server maintains its
current budget q and deadline d.
Therefore, a server that reactivates when running ahead of its
guaranteed processor share is not suspended, but may imme-
diately contend for execution using the existing budget and
deadline.

We hereafter show how such a different rule can affect the

server schedulability in presence of blocking.

1 Normal Execution
Critical Section

Sl—‘

ty dj !

01
q1 (tw)

AY)

ts dy

Figure 3: The unbounded blocking bandwidth problem.
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Table 1: Example values for the unbounded blocking bandwidth
problem.

Consider two servers S; and S, sharing a global resource R,
whose parameters are reported in Table 1. As shown in Figure 3,
both servers are released at the same time instant t = 0, with

deadlines d; = P; =24 and d, = P, = 80, respectively. According
to the global EDF policy, S; starts executing at = 0. At time
t; =9, S1 has no more pending jobs to execute, so that S, may
start executing. At some point, S> locks the resource R. Then,
at time #,, = 17, the server S; becomes backlogged again. Using
the budget-based rules, the replenishment time is computed as
tr =d; — q(ty) /o = 18. Since t,, <1, in our formulation of the
H-CBS, the server would be suspended until the reactivation time
t,, when the budget is refilled and the deadline updated. Instead,
those approaches based on the original formulation (using Rule
(2a)-OLD) do not suspend the server, but allow it to contend for
execution with its old budget ¢;(#,) and deadline d,. However,
according to SRP-G, §; is prevented from executing, since R is
currently locked. As shown in Figure 3, the blocking imposed by
Sy causes the original deadline d; to be missed.

In this example, using Theorem 1, it is easy to verify the
schedulability of the system. In particular, fork =1, o; + B /P; =
oy +Hy/Py =22/24 < 1, while for k=2, o) +0p = 12/24+
20/80 = 3/4 < 1. Therefore, despite the schedulability test of
Theorem 1 is passed, the above example shows that, not extending
the deadline of S| upon reactivation, a deadline miss occurs.

4.3. Problem analysis

To understand why the schedulability test of Theorem 1 does
not hold for existing hard reservation CBS servers implementa-
tions, it is necessary to analyze how the blocking impacts the
instances generated by servers re-using the old deadline and
budget upon reactivation.

In Theorem 1, the server blocking introduced by SRP-G is
considered as in the original analysis for SRP, where non-
suspending tasks are addressed. A non-suspending task incurs
only arrival blocking, i.e., it can only be blocked upon its arrival.
Equation (3) considers only this kind of blocking, introducing a
blocking bandwidth term of B/P.

In the case depicted in Figure 3, instead, the server behaves
as a task that is suspended and reactivated, making the existing
analysis unsuitable for such a scenario. When the server is
resumed at time #,,, the blocking time B impacts on a time interval
of dj —t,, units. This leads to a blocking bandwidth of B/(d| —t,),
which is greater than the one considered in Equation (3), being
di —t, < P;. More in general, as t,, may potentially be arbitrarily
close to the server deadline dj, the blocking bandwidth may tend

to infinity, being
. B
lim = oo,
tyw—d] dl - tw

The original hard reservation CBS implementation are therefore
said to suffer from an unbounded blocking bandwidth problem.

4.4. Problem solution

The unbounded blocking bandwidth problem of existing im-
plementations can be solved by ensuring that when a server
reactivates, its deadline will be at least P time-units away.
While this is always the case when the server executed for
less than its allocated budget (executing transition (1) from the
Inactive state, or, equivalently, Rule 2-b), this is not true for



existing implementations when the server is running ahead of
its proportional processor share.

Instead, our H-CBS implementation suspends the server, un-
dergoing transition (7) (or, equivalently, applying Rule (2a) in
Section 3.2). The transition is accompanied by a full budget
replenishment when the reactivation time is reached, postponing
the deadline P time units after the reactivation time. Therefore, a
bounded blocking bandwidth factor of B/P is maintained. In the
example of Figure 3, the server S; would be suspended at time
ty, and reactivated at time ¢, with a deadline d| = ¢, + P, greater
than 1, + P;.

Please also note that the server suspension imposed by
Rule (2a) is crucial to guarantee a maximum service delay of
A =2(P— Q). Omitting such a rule would lead to a maximum
service delay greater than A, as shown in the following example.

b

t

t

ty+0 t+P t* tr+2P

Figure 4: Scenario with a service delay greater than A=2(P— Q).

0 tw

Consider the scenario illustrated in Figure 4, where a server S
starts executing at time ¢ = 0, and then becomes Non-Contending
when it has no more job to execute. At time #,, the server be-
comes backlogged again. Assuming #,, < ¢,, Rule (2a) is applied,
enforcing a full budget replenishment ¢ = Q and shifting the
deadline to d =t + P. Rule (2a) also requires the server be
suspended until time #,. If the server is not suspended, it may
immediately start executing at time #,,, as shown in the figure. The
server may execute until time #, + Q, when the server exhausts
its budget. Applying Rule 3, the server is suspended until its
deadline d =+ P. When t = d, the budget is refilled, postponing
the deadline to d =, + 2P. In the worst-case scenario, the server
restarts executing at the latest possible time that guarantees its
schedulability, that is t* = ¢, +2P — Q. In this case, the maximum
service delay A* can be computed as

A =t"—(t,+ Q).

By replacing t* in the above equation,

A* :tr+2P_Q_ (tvv+Q) = (tr_tvv)+2(P_Q)'
Since A=2(P-0),
A" = (t, — 1) +A.

Since Rule (2a) is applied only when 7, > t,,, it follows (¢, —f,,) >
0, obtaining a service delay A* strictly greater than 2(P— Q).

When instead the server is suspended until time ¢,, it is easy
to see that the worst-case service delay cannot exceed A, as
illustrated in Figure 5.

Normal execution

I

Server suspension

= |

I

tr+Q t+P t* tr+2P

0 tw 1

Figure 5: Scenario with a service delay equal to A=2(P — Q).

The blocking bandwidth is therefore upper bounded by B/P,
and the schedulability test of Theorem 1 can be efficiently used.
This explains why Rule (2a) requires the server to suspend.

4.5. Impact of the problem

This section presents an overview of previously proposed CBS-
based approaches that are affected by the described problem in
presence of blocking.

The IRIS algorithm was originally presented in [8] for isolating
single tasks, and is traditionally seen as a reference implementa-
tion of a hard reservation CBS. It was the first work to highlight
the shortcomings of the original CBS, proposing a solution for
the deadline aging problem. However, IRIS suffers from the
unbounded blocking bandwidth problem presented in this paper
when it is adopted for servers that may experience blocking
conditions. In these scenarios, IRIS formulation needs to be
revised introducing a suspension mechanism equivalent to the one
of our H-CBS implementation. In particular, enhancing IRIS with
Rule (2a) allows avoiding the unbounded blocking bandwidth
problem.

A similar hard cBS formulation suffering from the same prob-
lem has been proposed by Mancina et al. in [17], implementing it
in the context of Minix 3, a highly dependable microkernel-based
OS.

In a hierarchical scheduling context, a hard reservation CBS
server has been used by Lipari and Bini in [2], [18], as a generic
extension of the classic CBS [6]. Although the purpose was to
propose a generic server for a hierarchical scheduling system,
the formulation of such a server reflects very closely the one of
IRIS, and is thus affected by the same issue.

In [19], Kumar et al. proposed an algorithm called R-CBS, to
provide an online reconfiguration mechanism for the CBS server,
both in its soft and hard versions. The hard formulation proposed
in the paper is also prone to the unbounded blocking bandwidth
problem.

Various servers has been specifically conceived to enhance
hard CcBS implementations with different kinds of mechanisms
for the reclaiming of unused bandwidth, like HGRUB [11] and
SHRUB [20]. Since they allow a server that is running ahead
of its reserved bandwidth to reactivate with the existing budget



and deadline, they are all affected by the unbounded blocking
bandwidth problem.

As the presented problem arises in presence of blocking, it
may affect many existing works dealing with resource sharing
in server-based environments. When servers may share global
resources, a well-known problem concerns the possible budget
exhaustion inside a critical section, significantly increasing the
blocking over higher priority servers. Different papers have been
proposed to deal with this budget exhaustion problem [5], [13]-
[15], [21], which, as mentioned, is orthogonal to the unbounded
blocking bandwidth problem highlighted in this paper. We here-
after recall the principal ones.

One of the first solutions is based on budget overrun, i.e., when
a server exhausts its budget while holding a global resource, it
is allowed to consume extra budget until the end of the critical
section. This solution was first proposed by Ghazalie and Baker
in [22], and then used by Abeni and Buttazzo in [6] under the CBS
algorithm. Later, Davis and Burns [13] proposed two versions of
this mechanism: overrun with payback, where the next budget
replenishment is decreased by the overrun value, and overrun
without payback, where no action is taken after the overrun.
Behnam et al. [14] extended this mechanism under EDF.

Another solution has been proposed with the SIRAP protocol
in [15], introducing a budget check before each global lock, so
that a server is granted access to a global resource only if its
budget is sufficient to complete the critical section. Otherwise,
the server must wait until the next budget replenishment.

A similar budget check mechanism has been proposed with
the BROE protocol in [5], using a smarter budget replenishment
mechanism. Whenever the budget is not sufficient to complete
the critical section, a full budget replenishment is planned at the
earliest possible time that preserves both the server bandwidth and
the maximum service delay, suspending the server until the next
budget replenishment. Notably, BROE is the only server we found
in the literature that is not affected by the unbounded blocking
bandwidth problem, as it suspends a server upon reactivation
when it is running ahead of its proportional share.

In all other cases, the unbounded blocking bandwidth problem
may appear every time a hard reservation CBS is used without
the suspension enforced by Rule (2a). Since all mentioned server-
level resource sharing protocols do not prevent a server to block,
a situation similar to the one shown in Figure 3 will always be
possible.

For the same reason, the problem also arises whenever global
contention is arbitrated using other protocols, such as server-
level versions of the Priority Ceiling Protocol (PCP) or Pri-
ority Inheritance Protocol (PIP) [23]. Instead, the Bandwidth
Inheritance Protocol (BWI), proposed by Lamastra et al. in [24]
as an extension of PIP for the CBS algorithm, is not affected
by the same issue. In particular, BWI is able to guarantee the
server schedulability without introducing any blocking bandwidth
factor in the feasibility test. This interesting property however
is achieved by significantly increasing the pessimism in the
schedulability test of each reservation server.

5. Conclusions

This paper presented a comprehensive formalization for the
Hard Constant Bandwidth Server (H-CBS), a variant of the CBS
algorithm which guarantees a hard-reservation scheme for CPU
allocation. In the literature, previous hard reservation formulations
for the CBS have been proposed; however, they are affected by
the unbounded blocking bandwidth effect, which can lead to
dangerous deadline misses. Specifically, we highlighted how such
inconsistent formulations can impact the system schedulability
when resource sharing is considered. More in general, the iden-
tified issue is not strictly related to resource sharing, but it may
emerge whenever a hard reservation CBS is integrated with other
scheduling mechanisms, such as suspension-based protocols or
system sleep intervals, which require the reservation server to
block. This work gives, once and for all, a consistent formulation
for the H-CBS, leaving it as a reference for the real-time research
community.
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