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ABSTRACT
In the last decade, thanks to its modular hardware and straightforward programming model, the Arduino
ecosystem became a reference for learning the development of embedded systems by various users,
ranging from amateurs and students to makers. However, while the latest released platforms are
equipped with modern microcontrollers, the programming model is still tied to a single-threaded,
legacy approach. This limits the exploitation of the underlying hardware platform and poses limitations
in new application scenarios, such as IoT and UAVs.

This paper presents the Arduino real-time extension (ARTe), which seamlessly extends the Arduino
programming model to enable the concurrent execution of multiple loops at different rates configurable
by the programmer. This is obtained by embedding a low-footprint, real-time operating system
in the Arduino framework. The adherence to the original programming model, together with the
hidden support for managing the inherent complexity of concurrent software, allows expanding the
applicability of the Arduino framework while ensuring a more efficient usage of the computational
resources. Furthermore, the proposed approach allows a finer control of the latencies and the energy
consumption. Experimental results show that such advantages are obtained at the cost of a small
additional overhead and memory footprint. To highlight the benefits introduced by ARTe, the paper
finally presents two case studies, one of such in which ARTe has been leveraged to rapidly prototype a
mechanical ventilator for acute COVID-19 cases. We found that ARTe allowed our ventilator design
to rapidly adapt to changes in the available components and to the evolving needs of Intensive Care
Units (ICU) in the Americas.

1. Introduction
The Arduino project started in the early 2000s with the

goal of providing a simple framework to support people with
very limited programming skills in the development of em-
bedded projects. This purpose was pursued by creating a
user-friendly development environment based on a simple
programming model. Then, the team started a company to
design and produced a simple and low-cost board to create
working prototypes interacting with the physical world. The
growth of the project was fueled by the decision to adopt an
open-source approach that aggregated a community keen on
supporting the development, creating examples and tutorials,
and providing libraries for a wide and expanding range of
features and devices. Over the years, this approach proved
to be successful and pushed the producers to develop more
and more powerful boards, still compatible with the original
programming model, as well as extension boards (namely
shields) to expand hardware features and interoperability.

The programming model requires the application devel-
oper to provide a C file that only defines the setup() func-
tion, executed at the startup to initialize the system, and the
loop() function, which executes endlessly. The simplicity of
this solution significantly alleviates the learning phase and
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motivates the base of the massive number of projects using
Arduino. However, in the last decade target applications be-
came more and more complex, including multiple sensors
and actuators, and required interaction with other systems
through communication devices. These scenarios proved to
be challenging to get along with the Arduino programming
model. For instance, a typical solution adopted by Arduino
users to deal with such a complexity consists in offloading
the communication stack to a shield board that is generally
more powerful than the microcontroller within the Arduino
board. Delegating multi-rate sensors and communication
devices to external boards produces complex solutions that
are also inefficient in terms of cost, weight, and power con-
sumption. This problem is even more evident with modern
Arduino platforms (e.g., the Arduino Due board), where the
main microcontroller remains mostly underutilized.
1.1. Limits of the Arduino programming model

The Arduino programming model works fine for simple
control systems where sensors have to be acquired at the same
frequency, but becomes problematic when the control system
requires actions that need to be triggered at different rates.

Consider, for example, a system equippedwith an infrared
sensor, an inertial sensor, and a communication transceiver,
which need to be acquired with different periods, e.g., dictated
by the sensor dynamics and the computation times required
to process the corresponding data. Suppose that the infrared
sensor has to be sampled every T1 = 10ms, the inertial
sensor every T2 = 25ms, and the communication device
every T3 = 50ms. The solution typically adopted by Arduino
users in these situations is to program themain loop to execute
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Listing 1: Implementation of functions executing at different
rates making use of delay.
int count = 0; // it counts the number of minor cycles

int T1 = 10; // period (ms) for executing function1

int T2 = 25; // period (ms) for executing function2

int T3 = 50; // period (ms) for executing function3

int Tmin; // GCD of the periods (minor cycle)

int Tmaj; // lcm of the periods (major cycle)

int K1; // counter value for triggering function1

int K2; // counter value for triggering function2

int K3; // counter value for triggering function3

Tmin = GCD(T1, T2, T3); // minor cycle

Tmaj = lcm(T1, T2, T3); // major cycle

K1 = T1/Tmin; // number of minor cycles in T1

K2 = T2/Tmin; // number of minor cycles in T2

K3 = T3/Tmin; // number of minor cycles in T3

H = Tmaj/Tmin; // number of minor cycles in Tmaj

while (!end) {

if (count%K1 == 0) function1();

if (count%K2 == 0) function2();

if (count%K3 == 0) function3();

count++;

if (count == H) count = 0;

delay(Tmin); // suspend for a minor cycle

}

with a period Tmin (also called minor cycle) equal to the
greatest common divisor (GCD) of the three periods and
trigger the other activities every Ki executions of the main
loop. In our example, we have:

Tmin = 5ms; K1 =
T1
Tmin

= 2; K2 =
T2
Tmin

= 5; K3 =
T3
Tmin

= 10. (1)
A possible implementation of this approach is to use a

counter that counts the number of minor cycles and calls
the function that has to be executed with period Ti whenthe counter reaches the value Ki = Ti∕Tmin, as shown in
Listing 1.

To avoid the counter overflow, the counter has to be reset
when it reaches the value of the least common multiple (lcm)
of the periods, also called major cycle. This solution works
fine when the execution times of the three functions are negli-
gible with respect to the periods (e.g., for the case of blinking
LEDs). However, when the functions perform more complex
computations and their execution times are comparable with
their periods, this approach does no longer guarantee a regu-
lar activation of the activities, since each function will delay
the next one. Figure 1 illustrates two examples of schedule:
Figure 1a shows the case in which computation times are
negligible, whereas Figure 1b shows the case in which they
are not (namely, C1 = 2.5ms, C2 = 5ms, C3 = 10ms). The
shadowed areas denote the delay at the end of the loop and the
number above each area represents the value of the counter
during that interval.

Note that, even in the case of negligible computation
times, the functions tend to accumulate a delay that, after a

Listing 2: Implementation of functions executing at different
rates making use of millis().
#define N 3 // number of functions

int T[3] = {10, 25, 50}; // function periods (ms)

unsigned long time; // current time (ms)

unsigned long prevtime; // previous time (ms)

int i;

void (*func_ptr[3])() = {function1, function2, function3};

time = millis();

for (i=0; i<N; i++) prevtime[i] = time - T[i];

while (1) {

for (i=0; i<N; i++) {

time = millis();

if (time - prevtime[i] >= T[i]) {

prevtime[i] = time;

(*func_ptr[i])();

}

}

}

number of executions, will cause a period skip. For instance,
function1 skips a period every six instances (see intervals
[50,60] and [110, 120] in Figure 1a).

In the case of non-negligible computation times (Fig-
ure 1b), function1 skips five periods out of eleven, and two
of them are consecutive ([90,100] and [100,110]). Also,
function2 does not execute properly, since only one instance
is executed in the interval [25, 75], equivalent to two full
periods. It is worth observing that such a misbehavior is not
due to an overload (in fact the overall processor utilization is
U = 2.5∕10 + 5∕25 + 10∕50 = 0.65, i.e., the 65%), but it is
due to that specific implementation.

A better solution, sometimes used by Arduino develop-
ers, is to keep track of the activation times by the function
millis(), which returns the number of milliseconds passed
since the program started and activate each activity after a
period is passed. An implementation following this approach
is reported in Listing 2.

The implementation reported in Listing 2 reduces most
of the delays introduced by the previous one, but it still does
provide a general solution to the problem of executing func-
tions at different rates. Figure 2 illustrates two schedules
produced for different computation times. Figure 2a refers
to the case in which computation times are C1 = 2.5ms,
C2 = 5ms, C3 = 10ms, leading to a total processor utiliza-
tion U = 0.65, whereas Figure 2b refers to the case in which
computation times are C1 = 5ms, C2 = 5ms, C3 = 15ms,
leading to a total processor utilization U = 1.0.

While the schedule in Figure 2a respects all the speci-
fied periods, the one in Figure 2b does not, since only three
instances of function1 are executed out of five (in fact, the
function is not executed in the intervals [10,20], [30, 40],
[60,70], [80, 90], and so on). The problem is that the func-
tions are executed one after the other and cannot be preempted
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(a) Schedule with negligible computiation times.

(b) Schedule with non-negligible computation times.
Figure 1: Schedule obtained for the three functions under the solution illustrated in Listing 1, when their computation times are
negligible (a) and when they are not (b). Triangles below the axes denote activation times and vertical bands represent minor-cycle
suspension intervals (the number on top is the value of the counter).

(a) U = 0.65 ∶ C1 = 2.5ms, C2 = 5ms, C3 = 10ms

(b) U = 1.0 ∶ C1 = 5ms, C2 = 5ms, C3 = 15ms

Figure 2: Schedule obtained for the three functions under the solution illustrated in Listing 2, for different values of the computation
times.

(i.e., temporarily interrupted to be later resumed) during their
execution. For instance, in the schedule of Figure 2b, at time
t = 10 function1 should be reactivated, but it cannot run
since the sketch will call it in the next cycle, after the execu-
tion of function3, which completes at time t = 25, i.e., in the
middle of the third period of function1. This type of problem
can only be solved by handling the functions by a preemptive
scheduler.

The solution presented in this paper extends the Arduino
programming model by allowing the user to specify multiple
loops, each with its own execution period, and by treating
each loop as a concurrent thread scheduled by a preemptive
scheduler provided by a real-time operating system. This

is done by keeping the scheduler and the operating system
transparent to the programmer, so that each loop can be de-
veloped by following the classical Arduino programming
style. The software development of the overall application
is actually simplified, since the user does not have to explic-
itly trigger the functions, as in the previous implementation
shown above.

Listing 3 reports the code that implements the three func-
tions according to the proposed extended programmingmodel.
Paper structure. The rest of the paper is organized as fol-
lows: Section 2 presents an overview of the Arduino frame-
work, the proposed extensions to provide multitasking, and
the Erika Enterprise kernel that is leveraged in the proposed

F. Restuccia et al.: Preprint submitted to Elsevier Page 3 of 18



ARTe: Providing real-time multitasking to Arduino

Listing 3: Implementation of functions executing at different
rates using the ARTe programming model.
void setup() {

<<setup code>>

}

void loop() {

<<background code>>

}

void loop1(10) {

function1();

}

void loop2(25) {

function2();

}

void loop3(50) {

function3();

}

Table 1
Features comparison of popular Arduino boards.

Arduino Processor Arch. Freq. SRAM NV Memory
UNO ATmega328 8 bit 16MHz 2KB 1KB
DUE Cortex M3 32 bit 84MHz 96KB 512KB
Zero Cortex M0+ 32 bit 48MHz 32KB 256KB

approach; Section 3 describes the proposed approach, while
Section 4 highlights relevant implementation details. Ex-
perimental results and use cases are reported in Section 5,
whereas Section 6 states our closing remarks.

2. Background and state of the art
While the user experience for Arduino developers re-

mained mostly unaltered along the years, the internals of
the Arduino framework evolved to include new features and
increase its modularity and portability. This section first
presents the current status of the official Arduino framework
and then provides an overview of some custom extensions
proposed by other authors to support multitasking in Arduino.
Finally, the section illustrates how the work proposed in this
paper advances the state of the art and introduces the main
features of the ERIKA Enterprise [1]1 real-time operating
system (RTOS), which has been leveraged to realize the pro-
posed solution.
2.1. The Arduino framework

Arduino is an open-source project based on easy-to-use
embedded hardware and software. The Arduino ecosystem
consists of a set of single-board microcontrollers and a soft-
ware framework that comes with an integrated development
environment (IDE). Over the years, many Arduino boards
with different computational and I/O capabilities have been

1ERIKA Enterprise project website: https://www.erika-enterprise.

com/

Listing 4: Implementation of an application similar to the
one proposed in Listing 3 using the FreeRTOS-Arduino pro-
gramming model.
#include <Arduino_FreeRTOS.h>

void TaskLoop1(void *pvParameters);

void TaskLoop2(void *pvParameters);

void TaskLoop3(void *pvParameters);

void setup() {

xTaskCreate(TaskLoop1,(const portCHAR *)"loop1",128,NULL,2,

NULL);

xTaskCreate(TaskLoop2,(const portCHAR *)"loop2",128,NULL,2,

NULL);

xTaskCreate(TaskLoop3,(const portCHAR *)"loop3",128,NULL,2,

NULL);

}

void loop(){

<<background code>>

}

void TaskLoop1(void *pvParameters) {

(void) pvParameters;

for(;;){

function1();

}

}

void TaskLoop2(void *pvParameters) {

(void) pvParameters;

for(;;){

function2();

}

}

void TaskLoop3(void *pvParameters) {

(void) pvParameters;

for(;;){

function3();

}

}

released. The first board has been the Arduino UNO, which
is based on a Microchip ATmega microcontroller running at
16 MHz and offers 14 digital I/O pins and six analog input
pins. The original Arduino UNO board has been later updated
with different releases and is still supported nowadays. How-
ever, it offers limited computational capabilities and small
amount of volatile (SRAM) and non-volatile (NV) memory.
To overcome these limitations, the Arduino community re-
leased more advanced boards such as the Arduino DUE and
Arduino Zero based on ARM Cortex microcontrollers. Both
these boards dispose of more powerful computational and
I/O capabilities with respect to Arduino UNO, and are hence
better suited for more complex application scenarios. Table 1
reports a feature comparison of these three Arduino boards.

The software side of the Arduino project consists of a
software framework, initially based on the Wiring project [2],
which includes an IDE in charge of the building process and
the device flashing. A block diagram of the Arduino building
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process performed by the IDE is illustrated in Figure 3. Basi-
cally, the building process can be divided into two phases: a
pre-processing phase and a compilation-and-linking phase.
During the pre-processing phase, the Arduino framework per-
forms a few transformations like adding additional headers
and generating prototypes for all the functions defined in the
application source file, which is denoted by sketch. Then,
the source files are passed to the compiler tool-chain to be
compiled and linked with the Arduino libraries.

.ino file
Arduino 

Pre-processing
Arduino 

compilation and
linking

ELF file

Figure 3: Arduino building flow chart.

2.2. Related work
Several solutions are well known to support multitasking

and provide solutions to simplify the development of applica-
tions on microcontrollers. An example is the work proposed
by Rivas et al. [3], which aims at simplifying the use of the
Ada safety language for the development of applications run-
ning on small microcontroller devices. However, it is not
straightforward to integrate some multitasking support in Ar-
duino while minimizing the impact on its programmingmodel
and ensuring retro-compatibility. The Arduino programming
model is based on the use of only two constructs: the loop()

function and the setup() function. The former contains the
code that is cyclically executed as long as the device is pow-
ered, while the latter is executed at the startup of the device.
This simple programming model allows entry-level users to
develop applications in Arduino without requiring specific
skills in programming a microcontroller. On the other hand,
this model is not suitable for multitasking as the user is lim-
ited to a single, sequential execution flow given by the code
of the loop() function.

Several methods with different degrees of complexity
have been proposed to fill this gap. The most straightforward
ones do not require any third-party library or extension, and
just allow defining the tasks as C functions to be executed in
the standard Arduino loop() function. The scheduling logic
is implemented with ad-hoc conditional statements and delay
functions (such as delay() and millis()) to mimic a periodic
activation of the tasks. In this paper, this basic approach is
adopted as a baseline for comparison purposes: more details
are provided in Section 5.

Other solutions were proposed by relying on the use of
third-party libraries that implement multitasking in a way
that is similar to the one just discussed, but offering a more
friendly interface to the developer. Some examples of such
libraries are the following:

• The Scheduler library [4] allows registering multiple
loops in the setup function that will cyclically be ex-
ecuted at run-time. There is no control in terms of
periods and timing still relies on explicit delays, like in

the original Arduino paradigm. In order to reduce the
impact of loops with significant execution times, the
library provides a yield function that the application
programmer can explicitly use.

• SoftTimer [5] library enables multitasking by defining
each task as a C++ object. The constructor of such
objects takes as arguments the period of the task and a
pointer to a callback function. The callback functions
are meant to be executed in a periodic non-preemptable
fashion according to the task period. Tasks are reg-
istered in the Arduino setup() function. This library
originally prevented the use of the standard loop() func-
tion, hence breaking the original Arduino program-
ming model. This limitation has been removed only
recently.

• ArduinoThreads [6] works similarly to the Scheduler li-
brary discussed above but implements a more complex
set of constructs to manage the execution of tasks in a
periodic fashion. This approach allows more flexibility
but requires a significant impact in terms of knowledge
and resulting application code.

Such a class of solutions suffer from the following draw-
backs:

• The programming model becomes more complex with
respect to the original one. Also, most of such exten-
sions (with the exception of SoftTimer) do not provide
explicit support for periodic activities. The user must
explicitly specify initialization procedures and possible
preemption points, with the result that code modifica-
tions are required to support multitasking.

• Tasks are executed cooperatively. Under this multi-
tasking approach, the context switch is triggered by the
running task, which voluntarily yields the processor to
other tasks. This increases the latency variability and
the complexity in guaranteeing response-time bounds
for the tasks.

• No protection against task overruns. When a task in-
stance runs longer than its period, the entire schedule
can experience a domino effect, jeopardizing the whole
application.

Many of such issues are originated by the fact that no
operating system is adopted, hence forcing the user to imple-
ment some form of scheduling in the loop() function. This
approach can be particularly error-prone, especially for users
that are not familiar with scheduling techniques and concur-
rent programming.

FreeRTOS-Arduino [7] has been proposed to address
these issues. It is based on a porting of the FreeRTOS kernel
as an Arduino library and provides fixed-priority preemptive
scheduling. Despite being a powerful solution, FreeRTOS-
Arduino introduces several complications at the level of the
programming model, as it requires the user to be confident
with both the FreeRTOS API and concurrent programming,
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which are skills that typically exceed those of the general
user of Arduino. A sample application developed following
the Arduino-FreeRTOS programming model is reported in
Listing 4.

Furthermore, FreeRTOS is not a static operating system,
i.e., not all kernel code and data structures can be tailored to
the application at compile time. Therefore, it is characterized
by a larger footprint 2, and memory and run-time overhead
with respect to those that would be actually required to handle
a certain set of tasks. This waste of resources can be a se-
vere issue on resource-constrained platforms such as Arduino
UNO and Arduino Zero.

Another solution based on an RTOS is Qduino [8], which
extends the Arduino framework with a custom API to al-
low implementing concurrent loops with support for mutual
exclusion on shared resources. As for FreeRTOS-Arduino,
Arduino users are required to acquire additional knowledge on
real-time concurrent programming and the specific Qduino
API. In addition, Qduino only supports Arduino platforms
based on Intel x86 processors (e.g., Galileo, Arduino 101).
Therefore, this solution is not compatible with the majority
of Arduino boards.

Note also that the Arduino framework comes with a rich
set of libraries that have been developed to work under single-
tasking, i.e., their internal state can be left inconsistent when-
ever they are suspended to execute other computational activ-
ities. Both FreeRTOS-Arduino and Qduino require explicitly
managing mutual exclusion when using these libraries, hence
complicating the programming model even for simple and
typical operations that are present in many Arduino example
sketches.

Like FreeRTOS-Arduino and Qduino, also ARTe [9] re-
lies on an RTOS to support multitasking, but differently from
such previous approaches, it preserves the simplicity of the
Arduino programming model. ARTe is characterized by a
minimal impact in terms of footprint and run-time overhead.
This was possible by building ARTe upon the ERIKA En-
terprise [1] RTOS that, among other choices (e.g., FreeR-
TOS [10] and NuttX [11]), resulted in an excellent candidate
to efficiently use the scarce computational resources of Ar-
duino platforms thanks to its static configuration at compile
time. The preliminary version of ARTe presented in [9] did
not provide support to handle shared variables and mutual
exclusion. Furthermore, the work in [9] was conceived for
older versions of the Arduino IDE, which were designed in
a monolithic way; thus, it was not possible to customize the
building process without modifying the IDE source code.
Consequently, [9] was based on a customized version of the
IDE, extensively modified to integrate a custom parser and
a modified build process to support the RTOS. However,
this approach originates considerable limitations in terms
of portability and extensibility, as any new release of the
Arduino IDE requires a porting of the extension presented
in [9] while major updates of the IDE codebase may totally
break compatibility. Thankfully, the most recent versions of

2For instance, the footprint of a simple blink application with FreeRTOS
on Arduino UNO is 8264 bytes (25% of the available memory).

the Arduino IDE include a more flexible build mechanism
that allows developers and board manufacturers to customize
the entire building process [12]. The mechanism works by
exporting to the developer a set of hooks (i.e., code injection
points) for each step of the building process.
2.3. This work

This paper presents a new version of ARTe (officially
called ARTe v2 and referred to as just ARTe in the follow-
ing) that introduces novel features to support multitasking
and a radically different way to integrate multitasking in the
novel Arduino IDE. In particular, such a new version of ARTe
includes an automatic protection mechanism for global vari-
ables and a fine-grained mechanism that allows extending
current Arduino libraries for thread safety. Both mechanisms
are crucial for enabling the seamless integration of the large
Arduino codebase within the ARTe multi-threaded environ-
ment. Furthermore, ARTe supports the most common Ar-
duino platforms, i.e., Arduino UNO and Arduino Due.

Differently from [9], thanks to a new development avail-
able in recent versions of the Arduino IDE, ARTe does not
require any modification to the official source code of the IDE
and can easily be updated and maintained as a third-party
plug-in module.

To keep the paper self-contained, a brief description of
ERIKA Enterprise is reported next.
2.4. ERIKA Enterprise

ERIKA Enterprise [1] is an RTOS that offers a real-time
scheduler and resourcemanagers suited for developing highly-
predictable applications on microcontrollers. ERIKA is char-
acterized by a very small run-time overhead (in the order
of a few microseconds) and a tiny memory footprint (a few
kilobytes). ERIKA has been certified to conform to the OS-
EK/VDX [13] standard and implements the OSEK/VDXAPI.
Following the OSEK/VDX standard, all objects provided by
ERIKA, such as tasks, alarms, and semaphores, must be stat-
ically defined alongside the application. That is, the RTOS
configuration and all application objects must be known at
compile-time and cannot be changed at run-time.

This approach is crucial for ensuring a small run-time
overhead and contain the memory footprint, as it allows pro-
ducing tailored images of the RTOS that are optimized for
a specific application. While designing an application, the
programmer can define the RTOS objects and the kernel
configuration by using the OSEK Implementation Language
(OIL). OIL files are translated by RT-Druid, a tool included
in the ERIKA developing environment, into a set of C source
files that define the kernel configuration. Once the kernel con-
figuration files are generated, the customized ERIKA kernel
can be compiled together with the application code.

Aside from the standard OSEK/VDX features, ERIKA
also provides additional conformance classes, such as fixed-
priority scheduling with preemption thresholds [14], Earliest
Deadline First (EDF) scheduling algorithm [15], resource
reservations [16], and hierarchical scheduling [17, 18].

ERIKA provides two types of interrupt service routines
(ISRs) for handling interrupts: (i) fast interrupts, called Type
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ERIKA RTOS

ARTe Arduino
Libraries

setup loop_1 loop_n

Arduino PlatformsHardware

     ARTe 
Framework

     User 
Application

Arduino + ARTe

Shared
resources
protection

loop

Figure 4: General architecture of the ARTe framework.

1 ISRs, and (ii) lower-priority interrupts, called Type 2 ISRs.
Type 1 ISRs are meant to be used for short and urgent I/O
operations, returning to the application without calling kernel
services (e.g., the scheduler). On the other hand, Type 2
ISRs can call selected kernel primitives and interact with
the scheduler (e.g., activating a task), but introduce a larger
latency than Type 1 ISRs.

3. Proposed approach
This section presents a general overview of the approach

proposed in this paper, with a particular focus on the exten-
sions to the original Arduino programming model and the
integration within its toolchain.
3.1. General architecture

The general architecture of the ARTe framework is illus-
trated in Figure 4. ARTe is designed to keep its programming
model as similar as possible to the standard Arduino one,
meaning that it supports the setup and loop functions with
minimal modifications to their original behaviors.

The key difference with respect to the standard Arduino
programming model is that ARTe allows the user to exe-
cute concurrent tasks (such as loop_1, loop_2,⋯ , loop_n in
Figure 4), whose definitions are substantially similar to the
standard Arduino loop function. Each task (i.e., each loop) is
executed in a periodic fashion and its period can be specified
as an argument of the corresponding function. The ARTe
programming model is detailed in Section 3.2.

Since the original Arduino programming model has not
been originally designed to support multitasking, this feature
may originate race conditions in accessing shared resources,
such as global variables, or shared peripheral devices. To
address this issue and safely support multitasking, ARTe
comes with two protection mechanisms for shielding shared
resources. These mechanisms can then be leveraged by con-
current tasks to synchronize with each other, e.g., to avoid
leaving inconsistent a global data structure or the internal
state of a device in the presence of a task preemption. In
particular, to avoid requiring the user to explicitly synchro-

nize the access to global variables under multitasking, ARTe
comes with a transparent protection that automatically takes
care of possible race conditions. This is accomplished by
employing static code analysis and a form of wait-free syn-
chronization: further details are provided in Section 3.4.

ARTe also allows tasks to use Arduino libraries (both
the official ones and those provided by third-party contrib-
utors). However, as Arduino libraries are typically not de-
signed to support multitasking, some modifications to them
are required. To this purpose, ARTe offers a simple locking
interface for shared resources protection, which is discussed
in details in Section 3.5. A set of popular and essential Ar-
duino libraries have already been modified and are distributed
with the ARTe package.

Under the hood, ARTe adopts the ERIKA Enterprise
RTOS. All the RTOS services and their configuration are
completely masked to the ARTe user. ARTe already supports
the Arduino UNO and Arduino DUE platforms3. The sup-
port for Arduino Zero is currently under development (no
significant differences in the implementation are expected).
Thanks to the modular implementation and the flexibility of
ERIKA, limited efforts are envisaged to support other popular
Arduino platforms.
3.2. ARTe programming model

As already mentioned in Section 2, the key design prin-
ciple of ARTe is to preserve the simplicity of the Arduino
programming model. As a first step towards matching this
principle, both the setup and loop functions are preserved in
ARTe. However, while the setup function maintains the orig-
inal functionality, in ARTe the loop function hosts code that
is executed in background, i.e., whenever there are no tasks
ready to execute. Multitasking is supported by extending the
semantic of the loop function. In ARTe, the user can define
an arbitrary number of tasks, each specified by a function of
the following format:
void loop<name>(int period) {

// Here goes the task code

}

Specifically, all C functions whose name begin with the
keyword loop and ends with other characters are interpreted
as tasks. Examples of suitable names for such functions are
loopi, loop_42, loopfoo. To maintain the simple and intuitive
approach of Arduino, such functions have been designed to
take one and only one argument that denotes the period, in
milliseconds, with which the corresponding task must be
executed. For instance, the following code defines a task in
ARTe that prints “Hello World" in the serial console every
100 milliseconds:
void loop_example(100) {

Serial.println("Hello world");

}

3For Arduino UNO the newest version 3 of ERIKA is used, while for
Arduino DUE ERIKA version 2 is adopted since Erika v3 does not still
support the corresponding Cortex-M microcontrollers
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Listing 5: Example of periodic activities using standard Ar-
duino programming model.
void setup() {

« setup code »

}

void loop() {

static int ticks = 0;

const int interval = 10;

if (ticks % 10 == 0)

activity1();

if (ticks % 30 == 0)

activity2();

if (ticks % 70 == 0)

activity3();

ticks += interval;

if (ticks == 210)

ticks = 0;

delay(interval);

}

More complex examples are presented in the following
sections.
3.3. Example of an ARTe application

With the traditional Arduino programming paradigm, ap-
plications consisting of concurrent periodic activities can be
programmed using the (so-called) loop scheduling technique.
Listing 5 shows a sample application that comprises three
periodic tasks: activity1, activity2, and activity3, having
periods of T1 = 10ms, T2 = 30ms, and T3 = 70ms, respec-
tively. The delay value at the end of the Arduino loop defines
the granularity of the periodic activations. The optimal de-
lay value corresponds to the greatest common divisor of the
tasks’ periods (10 in this example). A time counter (ticks
in the example) is used to detect when the tasks need to be
activated. Note that the time counter can be reset only after
the time at which the schedule repeats itself (known as the
hyperperiod). The hyperperiod is equal to the least common
multiple of the tasks’ periods, which equals to 210 in the
presented example.

As anticipated in the introduction of this paper, this ap-
proach works reasonably well when the application consists
of tasks that have very short computation times, e.g., tasks
for blinking a set of LEDs, but is unsuitable for complex
applications that include tasks with short computation times
and short periods along with tasks with long computation
times and long periods.

ARTe solves these issues by relying on the multitasking
support offered by ERIKA, which implements fixed-priority
preemptive scheduling. Listing 6 shows how the application
of Listing 5 can be implemented under ARTe. As it can be
observed from the listing, compared to the baseline solution

Listing 6: Example of periodic activities using ARTe pro-
gramming model.
void setup() {

« setup code »

}

void loop() {

« background code »

}

void loop1(10) {

activity1();

}

void loop2(30) {

activity2();

}

void loop3(70) {

activity3();

}

discussed above, ARTe provides a simpler, more concise, and
less error-prone programming paradigm.

Listing 7 shows an excerpt of the OIL configuration file
generated by the ARTe builder for the sample application
reported in Listing 6, while Listing 8 presents the extended
setup function. ARTe creates a variable of type COUNTER
named TaskCounter, which is incremented by the ISR han-
dling the hardware timer. The counter can be connected
with multiple alarms (e.g., Alarmloop1), each one in charge
of activating a task when the desired value (a multiple of
the hardware timer period) is reached. This configuration is
static and specified in the OIL file shown in Listing 7. Instead,
the current value for each period can be varied; hence the
periods are configured injecting the needed code in the setup

function, as shown in Listing 8.
3.4. Sharing data among tasks

Global variables are one of themost practical solutions for
implementing communications channels among concurrent
tasks in a shared-memory environment. Furthermore, global
variables are a natural choice for preserving the simplicity of
the Arduino framework being in line with the intuitiveness of
the typical programming style of Arduino users. However, in
a concurrent environment, global variables must be accessed
in mutual exclusion to avoid race conditions and preserve
the program correctness. In a more traditional programming
environment, a professional programmer is responsible for
implementing a proper access to global data by employing
adequate primitive objects, like mutexes or monitors. In the
domain of real-time operating systems, several resource ac-
cess protocols, such as the Priority Inheritance Protocol (PIP),
the Priority Ceiling Protocol (PCP), and the Stack Resource
Policy (SRP) have been designed to bound the blocking delays
caused by concurrent resource accesses. However, correctly
using these mechanisms requires expertise in concurrent pro-
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Listing 7: OIL configuration for the periodic activities exam-
ples.
CPU m3 {

« ERIKA OS settings »

TASK loop1 {

PRIORITY = 3;

«Task settings»

};

ALARM Alarmloop1 {

COUNTER = TaskCounter;

ACTION = ACTIVATETASK { TASK = loop1;};

};

TASK loop2 {

PRIORITY = 2;

«Task settings»

};

ALARM Alarmloop2 {

COUNTER = TaskCounter;

ACTION = ACTIVATETASK { TASK = loop2;};

};

TASK loop3 {

PRIORITY = 1;

«Task settings»

};

ALARM Alarmloop3 {

COUNTER = TaskCounter;

ACTION = ACTIVATETASK { TASK = loop3;};

};

};

Listing 8: Generated setup function for the periodic activities
examples.
void setup() {

« setup code »

SetRelAlarm(Alarmloop1, ARTE_TASK_INIT_OFFSET, 10);

SetRelAlarm(Alarmloop2, ARTE_TASK_INIT_OFFSET, 30);

SetRelAlarm(Alarmloop3, ARTE_TASK_INIT_OFFSET, 70);

}

gramming, which may be beyond the typical Arduino user
background. Therefore, to preserve the accessibility of the
original Arduino framework, ARTe automatizes the handling
of shared global variables. This approach enforces correct-
ness and prevents errors originating from race conditions,
which are notoriously challenging to be spotted.

The simplest way for implementing an automatic protec-
tion mechanism for global variables would be to protect all
of them with a centralized lock that is taken at the begin-
ning of each task and released at the end of the task. Unfor-
tunately, such a simple approach reduces concurrency and
may introduce unnecessary and long blocking times in high-

priority tasks, which is undesirable for systems with timing
constraints. ARTe protects global variables by utilizing a
more evolved technique based on local proxy variables. Dur-
ing the compilation process, the ARTe parser, a component
of ARTe that transforms the ARTe program into intermediate
files that are used afterwards in the compilation (see Figure 5),
creates a table listing all global variables and then analyzes
all tasks to detect the statements in which such global vari-
ables are accessed. If more than one task accesses a global
variable, the builder defines a Mutex object associated with
that global variable. Then, on each task that accesses that
variable, the builder (i) replaces the global variable with a lo-
cal proxy variable, and (ii) injects code fragments at the head
and at the tail of the task’s code to synchronize the local proxy
with the global variable. Such code fragments are referred
to as synchronization prologue and epilogue, respectively.
In practice, the synchronization prologue locks the mutex
associated with the global variable, performs a copy of the
global variable on the local proxy, and then releases the mu-
tex. The synchronization epilogue locks the global variable
mutex, copies back the value of the local proxy variable into
the global variable, and then releases the mutex. If a task
performs read-only access on a global variable, the ARTe
builder injects only the head snippet. The builder ignores
global constants. It is worth noting that this mechanism is
entirely transparent to the user, it does not require changes
to the programming paradigm, and is fully compatible with
existing code. The approach is applied to all global variables
to maintain a consistent behavior across different platforms
(hardware-dependent optimizations for atomic variables are
possible but currently not supported).

While this approach is simple and effective, it also has
some limitations. Indeed, to synchronize a global variable
with its local proxy, it is necessary to know the size of the
variable at compile time. Therefore, the ARTe protection
mechanism does not support dynamically allocated mem-
ory and data types accessed through pointers (e.g., linked
lists). In fact, the ARTe protection mechanism is limited to
standard C++ primitive data types and user-defined C-like
passive data structures (PDS). However, since typical Ar-
duino sketches do not make use of pointers and user-defined
types, this limitation is expected to have a minimal impact.
Please note that the scope of the ARTe protection mechanism
is limited to the Sketch code. On the contrary, libraries devel-
opers are responsible for protecting library code against race
conditions using the mutual exclusion support mechanism
described in Section 3.5. Finally, it is worth remarking that
the ARTe protection mechanism is not semantically equiva-
lent to mutual exclusion. Indeed, the protection mechanism
is intended to provide easy-to-use deadlock-free communi-
cation channels between tasks based on local proxy copies.
Such local copies are initialized at the beginning of the task
with the value of the corresponding global variable. Then,
global variables are updated back at the end of the task with
the values of local copies. Hence, whenever multiple tasks
access the same global variable, the updates made by one
task are not visible to the other tasks until it completes and
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the other tasks begin a new job. For this reason, it is recom-
mended to use only one writer task for each global variable,
i.e., each global variable implements a 1-to-N channel.
3.5. Adapting libraries for concurrent execution

The Arduino framework owes part of its popularity to
the large codebase of proprietary and third-party libraries
that relieve the programmer from the need of knowing the
low-level details of each hardware peripheral. However, as
stated before, the majority of such libraries are not thread-
safe and thus cannot be directly integrated into ARTe. A
simple solution for adapting existing Arduino libraries to
the ARTe multi-threaded environment would be to execute
each library call as a non-preemptive section. However, this
approach would be unsuitable for real-time applications since
some libraries include long busy waits that may jeopardize
the timing performance of the entire application, as no other
task would be capable of making progress in its execution
during such busy waits.

To address this issue while preserving the simplicity of
the Arduino framework, ARTe provides a fine-grained sup-
port mechanism that allows developers to extend libraries
for a multi-threaded environment. The support mechanism
provides the developers with a set of primitives, summarized
in Listing 9, which can be used to define critical sections.
The arteLockRes() and arteUnlockRes() primitives allow the
programmer to define critical sections for protecting specific
hardware resources. From the programmer perspective, these
resources are available using an enumerated type as visible
from Listing 10. On the ERIKA side, mutual exclusion is
implemented using a predefined set of OSEK RESOURCE ob-
jects representing the basic set of I/O devices available on
Arduino boards. Additional or custom peripheral devices that
are not included in the set of predefined resources reported in
Listing 10 can be protected using the global arteLock() and
arteUnlock() primitives. These functions implement mutual
exclusion with a global lock related to a special resource,
named RES_SCHEDULER, which is part of the OSEK standard.
When the calling task acquires such a resource, it becomes
non-preemptive until it releases the resource. To avoid un-
bounded priority inversions, ERIKA makes use of the Imme-
diate Priority Ceiling protocol (also known as Highest Locker
Priority) [19] while accessing these resources. Listing 11
shows how an existing library can be extended to support
multitasking in ARTe by including critical sections using the
primitives mentioned above.

Since ARTe follows a programming model based on peri-
odic activities, there is no need to explicitly introduce delays
in the code using functions such as millis(), micros(), delay(),
and delayMicroseconds(). More importantly, the use of such
functions is discouraged, since they could introduce delays
longer than expected due to preemptions, depending on their
internal implementation.

Finally, the support library provides a set of auxiliary
functions that can be used by the developer for debugging
and testing purposes.
The arteLockNestingLevel() and arteLockNestingLevelRes()

Listing 9: ARTe locking primitives.
void arteLock(void);

void arteUnlock(void);

void arteLockRes(enum arteRes resource);

void arteUnlockRes(enum arteRes resource);

/* For testing purposes */

uint8_t arteEnabled(void);

uint8_t arteNestingLevel(void);

uint8_t arteNestingLevelRes(enum arteRes resource);

Listing 10: ARTe resources declaration.
enum arteRes {

arteIO,

arteADC,

arteDAC,

arteSPI,

arteI2C,

arteTIMER,

arteUSART,

arteSTREAM

};

Listing 11: Example of an Arduino library function extended
using ARTe locking primitives.
int TwoWire::read(void) {

int retval;

/* *** ARTe - begin critical section *** */

arteLockRes(arteI2C);

if (rxBufferIndex < rxBufferLength)

retval = rxBuffer[rxBufferIndex++];

else

retval = -1;

/* *** ARTe - end critical section *** */

arteUnlockRes(arteI2C);

return retval;

}

functions return the nesting level of the critical section. The
arteEnabled() function returns true if the ARTe framework is
enabled or false if ARTe is disabled and the code is compiled
using the regular Arduino environment.

4. ARTe implementation
This section describes the entire process employed by

ARTe to produce the final (binary) executable of the appli-
cation to be programmed on the platform starting from the
application code. To avoid discussing several aspects of the
Arduino framework that do not pertain to the contribution
of this work, the presentation is mainly focused on the modi-
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fications that have been performed to the Arduino building
process. Particular attention is taken at the code parsing stage
provided by the ARTe parser.

The starting point for the ARTe building procedure re-
mains the sketch file written by the user. ARTe just requires
sketches written according to the programming model pre-
sented in the previous section with at least one periodic task
defined. The trivial case composed only of the classic Ar-
duino loop() is not handled by ARTe, since it would add the
cost due to the ERIKA kernel to perform the same activities
already provided by Arduino itself.
4.1. ARTe build chain

.ino file

Arduino 
Pre-processing

ARTe Parser

Arduino 
Build Process

RT-DRUID

.cpp file

ERIKA 
config files

ERIKA 
Build Process

ERIKA 
binary files

ARTe parsed
.cpp file

Arduino 
binary filesLINK

ELF file

.oil file

ARTe Builder

eecfg.c.o

Figure 5: Flow chart of the ARTe building process.

Figure 5 shows the build flow for an ARTe application,
which starts with the standard Arduino pre-processor that
generates a C++ source file from the sketch (.ino file). A
parsing stage (i.e., the ARTe parser) is first employed to
process the C++ source file for the purpose of producing two
outputs: another Arduino-compatible C++ source file and

an OIL configuration file for the ERIKA kernel. These two
files are then processed in parallel by the following stages
(see Figure 5). One branch involves the regular Arduino
building process, whose documentation is available on the
official Arduino website [20]. The other branch, called ARTe
Builder and invoked through a pre-build hook recipe, is in
charge of managing all the stages to obtain an instance of the
ERIKA kernel tailored to the application under compilation.
The main stages of the build flow are discussed in details
next.

Arduino pre-processing. This is the first stage invoked
by the Arduino Builder and is in charge of creating a unified
C++ file that includes all the Arduino-related header files
and the user code present in the sketch. Since the Arduino
IDE gives no access to the sketch, ARTe has been designed
to process the C++ file generated by this stage.

ARTe parser. This is the core component of ARTe. It
has been developed in the Java programming language to
simplify extensibility and relies on Doxygen [21] as a pars-
ing engine. The ARTe parser inputs the C++ file produced
by the Arduino pre-processing stage and provides two out-
puts. The first one is the configuration file for the ERIKA
RTOS (OIL file), which specifies a number of parameters
such as the number of tasks and their setting (e.g., priorities),
the number of shared resources and their affinity with the
tasks, the timer to periodically activate the tasks, etc. This
file is created starting from a template OIL file that contains
the configuration parameters of ERIKA that pertain to the
hardware platform. Finally, the OIL file is provided to the
RT-DRUID configuration tool (distributed with the ERIKA
RTOS) to generate tailored version of the RTOS as a linkable
library. The second file is a processed version of the origi-
nal sketch code augmented with the necessary calls to the
ERIKA kernel. These system calls will be later resolved at
linking time while combining the sketch object file with the
ERIKA library. In this way, the ERIKA core and the Arduino
code can be compiled through different compilation flows
and combined together only in the end during the linking
phase. This approach allows for maintaining a higher level
of modularity, facilitating maintainability. Figure 6 details
the internal behavior of ARTe parser.

ArduinoBuild Process. In this stage, theArduinoBuilder
proceeds by compiling all the Arduino-related files needed
by the application and produces a library. At the end of the
build process, the Arduino binary files are provided to the
linker together with ERIKA binary files.

RT-DRUID. When this stage is executed, the ERIKA
configuration file produced by ARTe is ready to be analyzed
by the RT-DRUID tool, which generates C code to configure
ERIKA and a makefile to build the RTOS.

ERIKAbuild process. After the execution of RT-DRUID,
it is possible to perform the compilation of ERIKA. This
building process produces in output two libraries. The first
one contains the architecture-independent code of the ERIKA
kernel, while the second one includes the code needed to in-
stantiate it on the specific platform and is different for each
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Figure 6: Flow chart that describes the interval behavior of the ARTe parser.

available platform.
Linking stage. The linking stage is realized by extending

the standard linking procedure performed by Arduino, which
has been modified to merge the ERIKA kernel produced by
ARTe with the object files of the application. The result is
an ELF binary file ready to be downloaded on the board via
the standard Arduino tools.
4.2. Internals of the ARTe parser

This section details the internal steps performed by the
ARTe parser.

C++ file split. The C++ file produced by the Arduino
pre-processing stage contains a long inclusion of Arduino-
related header files. ARTe does not need to analyze the code
in these header files (and performing such an activity would
slow down the build process). Therefore, as a preliminary
step, ARTe extracts the user source code from the C++ file in
input. The user code is saved in a temporary file and utilized
as the input for the static analysis performed by Doxygen.
The ARTe parser works on this temporary file and finally
publishes the changes it applies in the original C++ file,
hence replacing the user code generated by the Arduino pre-
processing stage.

Doxygen Analysis. Doxygen analyzes the user code and
provides an XML file that models the code structure and
allows identifying all the functions and all the global variables.
This XML file is imported in the Java environment using the
Java Element interface [22] to keep track of functions and
global variables in proper data structures.

ERIKA task creation. All the ARTe loops are converted
into ERIKA tasks, like in the example reported in Listings 12
and 13. All other functions defined in the sketch are not
modified by ARTe. The background loop is executed as back-
ground activity, i.e., a task running with the lowest priority
in the system.

ERIKA alarms, which control the periodic activation of
tasks, are configured at the end of the Arduino setup function
by injecting calls to the corresponding ERIKA primitives. In
this way, tasks can start executing only after the user code in
the setup function has completed its execution. The defini-
tions of some ERIKA functions are also injected at the top
of the temporary C++ file. Furthermore, some header files
are included to access the ERIKA and ARTe API.

Global variables protection. Thanks to the Doxygen
analysis, the ARTe parser is capable of detecting which global
variables are accessed by more than one task. Such global
variables are then protected with the mechanism discussed
in Section 3.4, which also requires defining an ERIKA re-
source for each global variable in the OIL configuration of
the RTOS. As stated in Section 3.4, the protection mecha-
nism is restricted to primitive types and C-like passive data
structures.

The functions of the ERIKA API that are used to imple-
ment mutual exclusion are:

• void GetResource(ResourceType ResID), to lock the re-
source specified as a parameter; and

• void ReleaseResource(ResourceType ResID), to unlock
the resource specified as parameter.
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Listing 12: Example of a sketch containing two ARTe loops
sharing a global variable.

int global_var;

void loop_1(100)

{

int local_var;

local_var = global_var;

}

void loop_2(100)

{

global_var++;

}

More specifically, the protection of a global variable var

requires performing the following actions:
1. The name of the global variable is changed from var

to __ARTE_GLOBAL_var__;
2. A local variable var is defined in the local scope of each

ARTe task that uses the global variable of interest;
3. A short critical section is placed at the beginning of

the task body to safely perform the copy of the value of
the global variable __ARTE_GLOBAL_var__ into the local
variable var;

4. If the task performs some modifications on the global
variable, which can be detected via the Doxygen anal-
ysis, another short critical section is placed at the end of
task body to update the global variable __ARTE_GLOBAL_var__
with the content of the local variable var. Such an ap-
proach ensures that the updated value is correctly saved
on the global variable when the task terminates the ex-
ecution, hence publicizing the output produced by the
task.

Oil file creation. The last step is the generation of the
OIL configuration file, which follows the OSEK standard
to configure the ERIKA RTOS. This step makes use of a
template file, which is chosen by the ARTe builder within a
library of templates as a function of the Arduino board se-
lected by the user. The template contains all the architecture-
dependent configurations and parameters. The final OIL file
produced by this stage includes the declarations of all the
global resources and tasks. Each task is assigned a priority
based on the Rate Monotonic algorithm, i.e., the shorter the
task period the higher the priority. ERIKA alarms are used
to periodically activate the tasks. They are set together with
the corresponding action to take when the alarm fires (i.e.,
the task to be executed). An example of how a task and the
relative alarm are declared in the file is reported in Listing 8.

5. Experimental Evaluation
This section presents a practical evaluation conducted to

assess the performance of the ARTe framework.

Listing 13: Corresponding code generated by the ARTe
builder.
TASK (loop_1)

{

//--------------------------------

int global_var;

GetResource(__ARTE_MUTEX_global_var__);

memcpy(&global_var,&__ARTE_GLOBAL_global_var__,sizeof(int));

ReleaseResource(__ARTE_MUTEX_global_var__);

//--------------------------------

int local_var;

local_var = global_var;

}

TASK (loop_2)

{

//--------------------------------

int global_var;

GetResource(__ARTE_MUTEX_global_var__);

memcpy(&global_var,&__ARTE_GLOBAL_global_var__,sizeof(int));

ReleaseResource(__ARTE_MUTEX_global_var__);

//--------------------------------

global_var++;

//--------------------------------

GetResource(__ARTE_MUTEX_global_var__);

memcpy(&__ARTE_GLOBAL_global_var,&global_var__,sizeof(int));

ReleaseResource(__ARTE_MUTEX_global_var__);

//--------------------------------

}

As a first step, the scalability of ARTe with respect to the
traditional approach is evaluated by comparing the memory
footprint of the runtime support as a function of the number
of loops. Following, two complete case-study applications
have been developed to test the ARTe framework in a realistic
scenario where multiple peripherals devices on the Arduino
board are used under multitasking.
5.1. Memory footprint

Arduino boards are typically memory-constrained em-
bedded platforms. Therefore, to assess the sustainability of
the ARTe framework, it is worth evaluating the impact of
the runtime support in terms of memory consumption. To
this end, a simple modular application consisting of up to 16
tasks (each performing a single GPIO operation only) has
been programmed with both the standard Arduino frame-
work using the loop scheduling technique, and then with the
ARTe framework. Table 2 reports and compares the memory
footprint of both implementations while varying the number
of loops (in bytes and as percentage of the total amount of
resources available on the board). These measurements have
been collected when building an application for the Arduino
Due platform.

The results obtained for the case of a single task show
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Table 2
Evaluation of the memory footprint of ARTe vs. the standard
Arduino programming model on an Arduino Due platform.

Number
of loops

Footprint (bytes)
Arduino ARTe

1 10708 (2.042 %) 12556 (2.395%)
2 10732 (2.047 %) 12608 (2.405%)
4 10788 (2.058 %) 12696 (2.422%)
8 10900 (2.079 %) 12880 (2.457%)
16 11124 (2.122 %) 13248 (2.527%)
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Figure 7: Arduino and ARTe footprints on the Arduino Due
platform with respect to the number of tasks.

Table 3
Evaluation of ARTe memory footprints on the Arduino UNO
platform. Since the Arduino UNO toolchain differentiates
between Program storage space (first addend in sum) and
Global variables dynamic memory (second addend in sum), this
distinction is preserved in the table.

Number
of loops

Footprint (bytes)
Arduino ARTe

1 964 + 11 (2.98 % + 0.54 %) 5494 + 791 (17.03 % + 38.62%)
2 958 + 11 (2.96 % + 0.54 %) 5552 + 853 (17.21 % + 41.65%)
4 1006 + 11 (3.11 % + 0.54 %) 5668 + 977 (17.57 % + 47.70%)
8 1080 + 11 (3.4 % + 0.54 %) 5900 + 1225 (18.29 % + 59.81%)
16 1204 + 11 (3.73 % + 0.54 %) 6364 + 1721 (19.73 % + 84.03%)

that the ARTe runtime support, i.e., the ERIKA RTOS plus
the support libraries for mutual exclusion, requires only 1848
bytes of additional memory in the worst case, corresponding
to less than 0.4 % of the available memory on an Arduino Due.
It is also worth noting that the memory footprint scales almost
linearly with the number of tasks with a rate of fewer than 50
bytes per task. Figure 7 shows a graphical representation of
this trend where the first value of the curve labeled Arduino
is the size of the standard Arduino sketch, including only the
loop() function.

The same experimental evaluation has been performed
by using the Arduino UNO platform, and the results are re-
ported in Table 3. In this setting, the ARTe runtime support
demands about 8 KB with 16 periodic tasks (considering
both program storage space and dynamic memory), while
ARTe for Arduino Due demands 13 KB. This is caused by
the different architectures and the implementations of the
hardware-specific code. Also, remember that the two plat-
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Figure 8: Arduino and ARTe footprints on the Arduino UNO
platform with respect to the number of tasks.

forms rely on different versions of the ERIKA kernel (ERIKA
v2 for Arduino Due and ERIKA v3 for Arduino UNO).

As illustrated in Figure 8 and detailed in Table 3, the
footprint of an application increases with the number of tasks
(i.e., ARTe loops). The test application is the same as the
one considered in Figure 7). Overall, ARTe tasks require a
linearly increasing amount of memory, which is only slightly
larger than the one required by the stock Arduino framework.
5.2. Case-study application 1

This section presents a case study developed as a test-bed
to assess the effectiveness of the ARTe framework in a real-
istic application scenario. The hardware setup for the case
study consists of an Arduino Due board equipped with an Eth-
ernet shield, and connected to an inertial measurement unit
(IMU) and a servo motor to realize radio-controlled applica-
tions. The Ethernet shield communicates with the Arduino
board through the SPI bus while the IMU is connected to the
board using the I2C bus. The servo motor is connected to a
general-purpose output pin and is managed using a control
signal generated by an MCU internal timer. The application
cyclically (i) reads the angular displacement from the IMU
sensor; (ii) filters the incoming displacement data using a
FIR filter; (iii) actuates the servo motor to replicate the dis-
placement angle; and (iv) updates a hosted web page that
shows a graphical representation of the displacement angle.

Each of these activities is implemented as an ARTe loop.
The software stack of the case study, which includes both the
ARTe loops and the runtime support, is illustrated in Figure 9.

The IMU loop periodically reads the displacement an-
gle from the IMU using a software stack comprising the
MPU6050 6-axis accelerometer/gyroscope, I2Cdev, andWire
libraries, and writes the acquired value to a global variable.
The FIR loop reads such a variable and processes the samples
coming from the IMU loop using a 40-tap low-pass filter,
storing the result into another global variable. The servo
loop reads such a variable, maps the displacement angle into
the servo motor configuration space, and finally generates
the control signal using the Servo library. The same vari-
able is used by the webserver loop (WS loop) to notify the
displacement of the IMU to the connected clients.
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The webserver loop is a complex activity supporting up to
four concurrent web clients. Internally, the webserver is built
on top of the Ethernet library and uses the Server-Sent Events
(SSE) technology, which is standardized as part of HTML5,
to push updates to the clients using lightweight messages.
Each iteration of the webserver loop (i) checks if a new client
is available and then (ii) updates already connected clients
using SSE messages. When a new connection request from
a client is detected, the webserver replies by sending a web
page that contains the JavaScript (JS) code used by the client
to initiate the SSE data stream (through the EventSource JS
interface) and visualize the data using an HTML5 Canvas
element. Next, once the client sends the SSE events stream
initialization request, the webserver registers the client as
connected and acknowledges the request by starting sending
SSE events.

The case-study application also includes three additional
loops, each blinking a LED at a different rate, presenting to
the user visual feedback of the running application. These
loops also serve as overload indicators since they will be
preempted by other tasks in case of overload, thus freezing
the LEDs blinking activity.

SPI

ERIKA RTOS

Arduino + ARTe

Ethernet

Wire

I2Cdev

MPU6050

Servo

IMU loop FIR loop Servo loop

WS loop

LED1 loop LED2 loop LED3 loop

Arduino DUE

ETH shield MPU-6050 Servo

Figure 9: Software stack for the case study application.

The memory footprint of the Arduino native implemen-
tation is 52.8 kB bytes, while the memory footprint of the
ARTe implementation is 55.2 kB bytes, corresponding to
about 10% of the total flash memory in both cases. Table 4
describes the loops (tasks) that constitute the case study ap-
plication and compares the longest response times (pWCRT)

Table 4
Comparison of the worst-case profiled response times (pWCRT)
for Arduino native and ARTe implementations of the case study
application.

Loop Period (ms) pWCRT (ms)
ARTe Loop sched

IMU 20 6.603 6.689
FIR 40 0.148 6.529
Servo 50 0.008 6.532
Web server 100 11.253 20.993
LED-1 1000 0.010 13.990
LED-2 2000 0.010 11.000
LED-3 3000 0.010 11.002

profiled for two different implementations. The first imple-
mentation has been built using the Arduino native approach
described in Section 3.3, while the second implementation
has been built using ARTe. In both cases, the response times
have been measured during a 30-minute run with two clients
connected to the webserver. It is worth observing how the
preemptive scheduling available on ARTe can significantly
improve the response times of high-priority loops, such as
the FIR task. On the contrary, with the Arduino native ap-
proach, high-priority tasks (shorter period) can significantly
be delayed by low-priority tasks (larger period).
5.3. Case-study application 2

This section presents a demonstration application of ARTe
as part of a RMVS001 compliant makeshift ventilator plat-
form. The platform was developed as treatment of last resort
and has not been used to administer life support therapy.

During the COVID-SARS-2 pandemic of 2020, the global
healthcare system has been under immense strain. Mechani-
cal ventilators, which are used to treat acute COVID-19 cases,
have been in short supply globally. Ventilating a COVID-
19 patient requires safety-critical control of a sophisticated
pneumatic system that drives the breathing cycle of a sedated
patient using feedback from an array of pressure and airflow
sensors. Existing designs have proven too costly for many
healthcare systems or require parts that are not available lo-
cally where needed. This has created an urgent demand for
the rapid development of safety-critical embedded systems
adaptable for locally available sensors that can meet the per-
formance requirements for life-saving ventilation treatments.

Depending on vendor supplies, a wide range of suitable
I/O peripherals could be integrated into a ventilator plat-
form. However, it is difficult to adapt to available parts using
conventional RTOS software stacks. Slow RTOS develop-
ment cycles can become a bottleneck to meeting the needs of
healthcare systems experiencing a crisis. Specialized driver
software must be developed for each peripherals combination,
limiting the possible configurations. By contrast, ARTe is
particularly suited for the rapid development of ventilators.
Community provided software drivers are readily available
for every peripheral or are simple to add using templates and
their companion tutorials [23]. By exploiting ARTe, it is
possible to dramatically reduce the time needed to adapt to
part shortages and create a hardware configuration that meets
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Table 5
Ventilator IO Hardware used in the case study. ARTe was used to test all IO peripherals,
with the optimal configuration highlighted

Part ID Part Function Quantity Interface Vendor Part Serial
AF1 Airflow sensor 2 I2C Honeywell HAFUNH0300L4AXT
PS1 Pressure sensor 3 ADC (onboard) Honeywell 150PAAB5
PS2 Pressure sensor 0/2 ADC (onboard) Honeywell 015PAAB5
O21 O2 Sensor 0/2 ADC (external) Maxtec Max-23
O22 O2 Sensor 2 ADC (external) Maxtec Max-12C
O23 O2 Sensor 0/2 ADC (external) Maxtec Max-250ESF
PV1 Proportional Valve 0/2/4 PWM (12V drive) Yong Chuang YCLT21-35-1GBV-5B61B
PV2 Proportional Valve 0/2/4 PWM (12V drive) Yong Chuang YCLT21-2C-1GBV-5B61B
PV3 Proportional Valve 4 PWM (12V drive) IQ valves Tesla iQ
OI1 O2 Sensor IO 1 I2C Texas Instruments ADS1115
CM1 Control Modem 1 ADC (onboard) C-19 Crisis Tech TVCV19 Univ Controller
VD1 Valve driver 4 PWM (onboard) C-19 Crisis Tech TVCV19 AJak Controller
VD2 Valve driver 0/2/4 PWM (onboard) Infineon Technologies IRFZ44NPBF

Figure 10: Software stack for the example devices configuration
of the ventilator.

performance requirements and safety specifications [24].
Implementation details are presented for one of the possi-

ble ventilator designs whose custom set of I/O peripheral can
quickly be modified according to hardware availability. The
selected example configuration is highlighted in the table of
ventilator parts evaluated using ARTe, shown in Table 5.

A block diagram of the example ventilator software stack
is shown in Figure 10.

Implementing ventilator I/O requires the coordination and
scheduling of many peripheral management tasks. A high-

level pseudo-code of the proposed ventilator application is
given in Listing 14, illustrating how ARTe has been lever-
aged to achieve the goals of rapid development and timing
predictability, crucial for patient safety. The application has
two high-level activities to manage: the ventilation itself and
a user interface to adjust the ventilation therapy. The mechan-
ical ventilation is implemented as a PID closed control loop,
whereby ARTe is used to set the discrete integration time step
as precisely as possible to 20 ms (50Hz). Our user interface
is mostly offloaded to a secondary device and only a minimal
set of PID variable setting and monitoring functionalities
are implemented on the ARTe host board. The synchronous
user interface task is implemented as an ARTe loop, called
loop_UI, with a period of 50 ms for the most responsive user
experience. The footprint of the application is 7.7 KB, which
correspond to 24% of the program storage space of an Ar-
duino UNO platform. A description of the functionalities of
the application reported in Listing 14 follows.

• void setup(), calls all transducer peripheral boot strap-
ping functions such that they read (monitor) or write
(maintain) global data structures, where:

⋆ void init_modem() configures an analog modem
peripheral used for remote control of the ventila-
tor, including configuring an ISR triggered by the
modem to allow for asynchronous remote control.

⋆ void init_adc0-1() maps two ADC channels on
a TWI ADC peripheral to a Oxygen level reading
library that maintains the adcs buffer.

⋆ void init_pwm0-4() initializes four on board PWM
channels provided by the Arduino library and
maps them to a gas valve control library that mon-
itors the pwms buffer.

⋆ void init_af0-1() maps two TWI bus mounted
airflow sensors to an air flow reading library that
maintains the afs buffer.

⋆ void init_ps1-4 initializes four on board ADC
channels provided by the Arduino library and
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maps them to a gas pressure reading library that
maintains the pss buffer.

• void loop(), polls the modem control library for venti-
lator commands. Commands are used to set parameters
to the Proportional Integral Derivative (PID) respira-
tory control function and to interrogate the PID status
to update the user on how the ventilator is performing.
⋆ modem.tx() and modem.rx() calls a modem library

function that sends data to and receives data from
an external remote control software that updates
the user interface displaying data.

• void loop_pwm(), maintains ventilator gas valve aper-
ture settings as specified by the PID. This safety critical
task uses an ARTe loop to guarantee that the valve aper-
ture is maintained at a timely interval.

• void loop_adc(), monitors the O2 gas concentration
reading at a fixed interval for PID. This timing critical
task uses an ARTe loop to ensure stability of the PID
integral that consumes this data.

The pseudo code illustrates how ARTe has provided the
required benefit of timing predictability, shared task memory
management, and task management along with the rapid de-
velopment capability of the Arduino ecosystem. Specifically,
Timing predictability leveraged in loop_pwm and loop_adcwere
essential for accurate respiratory control in the PID loop.

6. Conclusions
The Arduino framework has become a reference solu-

tion to learn the basic principles to program small embedded
systems, quickly develop software interacting with real hard-
ware, and fast prototype application to assess their advan-
tages. However, the standard Arduino approach is limited to
a single loop, thus limiting the exploitation of modern hard-
ware platforms and the applicability to more complex fields,
such as IoT. This paper presented ARTe, an extension to the
Arduino framework able to seamlessly provide concurrent
programming to the developer. ARTe is designed to handle
transparently most of the issues arising from concurrency,
leaving the application developer with a solution almost un-
altered with respect to the original one. The internals of the
extension has been explained to show the solutions applied to
the various issues and its extensibility. A set of experiments
has also been presented to show the simplicity and usability
of the framework, evaluate the limited cost in terms of foot-
print, and show its applicability to a real-world use case. In
particular, the mechanical ventilator use case highlights the
rapid prototyping and extensibility advantages of the ARTe
framework.
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Listing 14: Pseudo-code of the ventilator application.

struct raw_data <t> {

<< ... >>

};

raw_data adcs;

raw_data pwms;

raw_data afs;

raw_data pss;

void setup() {

init_adc0-1();

init_modem();

init_pwm0-4();

init_af0-1();

init_ps1-4();

}

void loop() {

command = modem.rx();

switch (command) {

case read_sensor:

modem.tx(JSON_buffer);

break;

case write_valves:

pwms = modem.rx();

break;

<< ... >>

}

}

loop_pwm(20) {

pwm.set(pwms);

}

loop_adc(20) {

adcs = adc.read();

}

loop_UI(50) {

JSON_buffer = data_to_JSON(adcs, pwms, afs, pss);

}

// Other tasks follow the same pattern

<< ... >>

first version of the ARTe framework.
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