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Abstract Component-based software development established as an effective
technique to cope with the increasing complexity of modern computing sys-
tems. In the context of real-time systems, the M-BROE framework has been
recently proposed to efficiently support component-based development of real-
time applications on multiprocessor platforms in the presence of shared re-
sources. The framework relies on a two-stage approach where software com-
ponents are first partitioned upon a virtual multiprocessor platform and are
later integrated upon the physical platform by means of component interfaces
that abstract from the internal details of the applications.

This work presents a complete design flow for the M-BROE framework.
Starting from a model of software components, a first method is proposed to
partition applications to virtual processors and perform a synthesis of mul-
tiple component interfaces. Then, a second method is proposed to support
the integration of the components by allocating virtual processors to physical
processors. Both methods take resource sharing into account. Experimental
results are also presented to evaluate the proposed methodology.

1 Introduction

The increasing need of adding new software functions in customer products
is pushing software companies towards a hierarchical design approach, where
multiple applications, initially executed on dedicated hardware units, are be-
ing integrated on the same hardware platform. For instance, in automotive
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systems such a hierarchical approach is motivated to contain the total number
of electronic control units (ECUs) installed in a car, which implies a significant
reduction of used space, weight, energy, and cost [26].

On the other hand, when multiple applications share the same hardware
platform, new problems must be solved to make the hierarchical approach
effective and predictable. One of them is caused by the reciprocal interference
among concurrent software activities, which may introduce unbounded delays
and cause unpredictable performance degradation [27].

An effective approach for containing the interference among concurrently
running applications is the resource reservation mechanism [1, 25]. According
to this approach, each application is executed within a dedicated processor
partition, implemented by a reservation server. A reservation server Sk is a
time provisioning mechanism that allocates a budget Qk for the application
every period Pk. In this case, the bandwidth reserved to an application results
to be αk = Qk/Pk. The reservation mechanism must guarantee that the served
application receives a given fraction of the processor bandwidth, but at the
same time it cannot consume more than the allocated amount, thus protecting
the other applications from possible overruns (temporal isolation).

In the case in which application tasks make use of mutually exclusive re-
sources shared between reservations (such as I/O devices or global memory
buffers) the isolation property could be broken when the server budget expires
within a critical section. In this case, in fact, an extra delay would be added
to the tasks blocked on the same resource to wait not only for the release of
the lock, but also for the next budget replenishment.

To solve this problem, various approaches have been proposed in the lit-
erature [8,9,11,20]. Among them, thanks to an improved schedulability anal-
ysis [16], the BROE protocol [11] proposed by Bertogna, Fisher and Baruah
has been found to perform best.

The BROE protocol, originally developed for uniprocessor systems, has
been recently extended by Biondi et al. [15] into M-BROE to support the devel-
opment of component-based hierarchial systems on multiprocessor platforms
in the presence of shared resources. In the M-BROE framework (reviewed in
Section 2), the tasks of a software component are statically allocated to virtual
processors (implemented via reservation servers), which are in turn allocated
to the physical processors at component-integration time. The resulting in-
frastructure relies on partitioned hierarchical scheduling and non-preemptive
FIFO spin locks to regulate the access to shared resources.

Although the authors fully characterized the M-BROE protocol and pro-
vided the schedulability analysis of components on given reservation servers,
the problems of partitioning applications on virtual processors and defining
reservation parameters were not addressed in [15].

Other authors solved task partitioning in multicore systems using Integer

Linear Program (ILP) formulations [5,7], but without considering reservations,
nor resource sharing. Buttazzo et al. [19] addressed the problem of partition-
ing parallel applications upon reservation servers for platform virtualization
and Khalilzad et al. [23] studied the problem allocating component interfaces
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in multiprocessor systems under partitioned EDF scheduling, but in both the
works no resource sharing has been considered. Wieder and Brandenburg [29]
presented an optimal ILP-based partitioning strategy for fixed priority schedul-
ing with shared resources and Al-Bayati et al. [2] addressed the same problem
using heuristic approaches.

However, none of these works addressed partitioning methodologies under
reservation servers while taking resource sharing into account. Resource shar-
ing further complicates task partitioning problems (an example will be shown
in Section 5), determining the need for ad-hoc approaches that explicitly take
into account blocking times.

Contributions. This paper fills this gap by proposing the following contribu-
tions.

– A methodology based on a Mixed-Integer Linear Program (MILP) formu-
lation is proposed for partitioning applications on virtual processors taking
shared resources into account. Once an allocation is found, the synthesis of
component interfaces is performed to find the optimal reservation param-
eters that guarantee the schedulability of the task set.

– Another MILP formulation is presented for allocating virtual processors to
physical processors depending on the component interfaces. This formu-
lation is able to find the optimal allocation with respect to the adopted
schedulability analysis.

The combination of these two contributions provides a complete design flow
for supporting component-based software development within the M-BROE
framework.

Paper structure. The rest of the paper is organized as follows. Section 2
presents the system model and the M-BROE framework. Section 3 summarizes
the schedulability results derived for the M-BROE framework. Section 4 defines
the problem of partitioning the tasks and designing the virtual processors
for the considered framework, while Section 5 presents a solution for such a
problem based on MILP. Section 6 reports an MILP formulation for integrating
the virtual processors of all components upon the physical platform. Section 7
presents some experimental results for evaluating the proposed methodology.
Finally, Section 8 concludes the paper.

This paper extends a preliminary version of this work [14] published in RTNS
2016 by (i) considering an extended component interface that includes bounds
on holding times of shared resources, (ii) presenting a new approach for per-
forming component integration, which copes with the extended interface and
allows handling two interfaces for each component (Section 6), (iii) reporting
new experimental results based on a strengthen experimentation (Section 7),
and (iv) presenting a simplified MILP formulation for task partitioning (Sec-
tion 5).
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2 Framework and Modeling

2.1 System model

We consider a system composed of N software components Γ1, Γ2, . . . , ΓN , also
referred to as applications. Each software component Γk consists of a set Tk of
nk real-time periodic or sporadic tasks. Each task τi ∈ Tk is characterized by
a worst-case execution time (WCET) Ci, a period (or minimum interarrival
time) Ti, and a relative deadline Di.

The system runs on a multiprocessor platform consisting of M identical
processors, each denoted as Pm, with m = 1, . . . ,M . Each component Γk

is statically partitioned over M virtual processors Sk
j , j = 1, . . . ,M, each

implemented by a reservation server characterized by a budgetQk
j and a period

P k
j . The ratio αk

j = Qk
j /P

k
j is referred to as the reservation bandwidth. The

virtual processor at which a task τi ∈ Tk is assigned is denoted as S(τi). The
set of tasks allocated to Sk

j is denoted as Γ (Sk
j ).

Each component exports a component interface (defined below). Basing
on component interfaces, a component integrator is responsible for admitting
or rejecting applications and statically assigning each reservation server to a
specific physical processor. Whenever we need to discuss a specific component
allocation, the processor on which server Sk

j is assigned is denoted as P(Sk
j ).

For the sake of simplicity, this paper assumes that M = M . The framework
described above is illustrated in Figure 1 for a platform of 4 processors.

Tasks can share resources through mutually exclusive critical sections. At
a component level, we distinguish between component resources, accessed only
by tasks belonging to the same component and system resources, accessed by
tasks belonging to different components. When needed, we denote with RC

and RS the sets of component and system resources, respectively.

For each resource Rℓ, δi,ℓ denotes the length of the longest critical section
of task τi related to Rℓ, while ηi,ℓ denotes the number of critical sections used
by τi on Rℓ. We assume to have ηi,ℓ = 0 if a task τi does not access resource
Rℓ.

For a resource Rℓ accessed by a task τi, the resource holding time Hi,ℓ

is defined as the maximum budget consumed from the lock of Rℓ until its
unlock in the τi’s code. Note that if a resource is accessed non preemptively,
its resource holding time is equal to the critical section length (i.e., Hi,ℓ = δi,ℓ),
otherwise it must include all possible preemption delays occurring within the
critical section [10]. A component Γk can only be admitted in the system if all
its tasks have a resource holding time bounded by H, that is, if

∀τi ∈ Tk, ∀Rℓ, Hi,ℓ ≤ H, (1)

For component resources Rq accessed by tasks allocated to different virtual
processors, the sum of the maximum resource holding times of Rq from each
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Fig. 1 Overview of the proposed hierarchical framework. Tasks can access component re-
sources (shared within the same component) and system resources (accessible by all the
components). The tasks of the components are allocated to virtual platforms, which are in
turn allocated to the physical platform at component integration time depending on their
corresponding interfaces.

virtual processor must be bounded by MH. Formally, we require that

∀Γk, ∀Rq ∈ Rk,

M
∑

j=1

max{Hi,q | S(τi) = Sk
j } ≤ MH, (2)

where Rk denotes the set of component resources accessed by tasks executing
on different virtual processors, formally defined as

Rk =
{

Rq ∈ RC | ∃τ1, τ2 using Rq ∧ S(τ1) 6= S(τ2)
}

. (3)

2.2 Component Interface

Each component Γk is abstracted through a component interface that consists
of M triples (Qk

j , P
k
j ,H

k
j ), with j = 1, . . . ,M, where

– Qk
j is the budget of the jth reservation server of component Γk;

– P k
j is the period of the jth reservation server of component Γk;
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– Hk
j = {Hk

j,ℓ1
, . . . , Hk

j,ℓNR
, Hk

j,Vk
} is a vector of resource holding times, where

Rℓ, . . . , RℓNR
are system resources and RVk

is a virtual component resource
used to abstract all the component resources used in Γk.
The values in the vector of resource holding times are defined as follows:

Hk
j,ℓ is the maximum resource holding times for system resource Rℓ across all

the tasks allocated to the jth reservation server of component Γk, that is

Hk
j,ℓ = max

τi
{δi,ℓ | S(τi) = Sk

j };

while Hk
j,Vk

is the maximum resource holding times across all the compo-
nent resources that are (i) accessed by more than one reservation server and
(ii) accessed by tasks allocated to the jth reservation server of component Γk,
that is

Hk
j,Vk

= max
Rq,τi

{δi,q | S(τi) = Sk
j ∧Rq ∈ Rk}.

The abstraction of virtual component resources is provided to not export de-
tails related to each component resource at the component integration stage,
thus hiding the internal usage of shared resources performed by each compo-
nent. Note that this abstraction does not consider component resources that
are only accessed by a single reservation server, as the contention for such
resources is confined within a server and hence is meaningless for component
integration purposes.

2.3 Scheduling infrastructure

Tasks allocated to a virtual processor are handled by a local scheduler, which
can be any fixed-priority (FP) algorithm or earliest-deadline first (EDF) [24].
Tasks may include non-preemptive regions in which preemption is disabled
for the local scheduler. Each virtual processor is implemented by an M-BROE
server [15] and the various M-BROE servers are scheduled under partitioned

EDF (P-EDF) scheduling on the M processors.
Once reservation servers are mapped to physical processors, three types of

shared resources can be distinguished: Local resources, shared only by tasks
handled by the same server; Processor-local resources, shared only by tasks
executing on the same processor, but on different servers; Global resources,
shared by tasks executing on different processors.

Local resources are accessed through the SRP [3] protocol, while processor-
local resources are accessed by the H-SRP [20] protocol in conjunction with M-
BROE, in a local non-preemptive manner. Finally, global resources are accessed
by the MSRP [22] protocol in conjunction with M-BROE.

3 Summary of schedulability results

To make this work self consistent, this section summarizes the schedulability
results derived for the M-BROE framework. In particular, after recalling how
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to derive blocking factors, we summarize the schedulability tests used for lo-
cal (tasks guarantee upon virtual processors) and global (virtual processors
guarantee upon the physical platform) analysis. Please refer to [15] for further
details.

3.1 Resource sharing

Under the M-BROE framework, global resources are protected by non-preemptive
FIFO spinlocks. If a task τi wants to use a global resource locked from a
task on another processor, τi starts spinning non-preemptively until the re-
source is granted. Critical sections on global resources are also executed non-
preemptively and simultaneous requests from different processors are served
in FIFO order.

To analyze blocking times related to spinlocks we rely on the MSRP [22]
analysis: please note that although an improved analysis for spinlocks has been
proposed in [28], it cannot be directly used for the M-BROE framework for
several reasons as explained in [15] (page 4). According to the MSRP analysis,
a bound on the maximum spinning time, denoted as remote blocking, is com-
puted for each global resource Rℓ accessed from a given processor and used to
inflate the WCET of the tasks using Rℓ. Also, non-preemptive spinning and
non-preemptive access to global resources introduce a non-preemptive blocking

factor that must be accounted for each task. The access to local and proces-

sor local resources is regulated by the SRP [3] and the H-SRP [17] protocols,
generating local blocking and additional non-preemptive blocking, respectively.

In the following, we first provide an upper-bound for the spinning time and
then report the expressions for computing remote blocking, non-preemptive

blocking and local blocking.
Upper-bound for the spinning time. According to Lemma 1 in [15], a safe
upper bound on the spinning time ξℓ,j related to system resources Rℓ is given
by ξℓ,j ≤ (M − 1)H.

When analyzing a given component, critical section lengths of component
resources are known, since they belong to tasks of the same component. How-
ever, when tasks are assigned to different virtual processors, it is not possible
to infer the physical processor on which they will be executed (since it depends
on the allocation performed at the stage of component integration). For this
reason, a safe bound on the spinning time can be computed by assuming that
all virtual processors of a component will be assigned to different physical pro-
cessors. In this case, an upper bound on the spinning time ξℓ,j for a component

resource Rℓ in Γk can be computed as

ξℓ,j ≤
∑

Sk
j
6=Sk

m

max{δi,ℓ | S(τi) = Sk
m}. (4)

This fact imposes also that processor-local resources have to be always ac-
counted as global resources to capture the worst-case in the local analysis.
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Remote blocking. An upper-bound ξi on the remote blocking for task τi
is computed by accounting for the maximum spinning time on each critical
section of τi, with P(S(τi)) = Pj , that is:

ξi =
∑

Rℓ

{ηi,ℓ · ξℓ,j | Rℓ used by τi}. (5)

Non-preemptive blocking. Such a blocking is bounded by the longest non-
preemptive section that cause arrival blocking. A non-preemptive section oc-
curs when a task accesses a global resource and comprises (i) a potential
non-preemptive spinning phase, which is originated by remote blocking, and
(ii) the non-preemptive execution of critical sections for global resources. Note
that, during the non-preemptive spinning phase, remote blocking is transitively
transformed into arrival blocking: therefore, such phenomenon is also referred
to as transitive arrival blocking.

Under local EDF scheduling, assuming that tasks τk and τi execute on
processor Pj , it can be computed as

BNP
i = max

k,Rℓ

{ξℓ,j + δk,ℓ | Rℓ used by τk ∧Dk > Di}. (6)

Local blocking. The SRP blocking factor for task τi due to local resources
is denoted by BL

i and is given by critical sections of resources that are locked
by tasks τL with deadlines greater than Di and shared with tasks τH with
deadlines less than or equal to Di. Formally,

BL
i = max {δL,ℓ | DH ≤ Di < DL ∧ τL and τH use Rℓ} . (7)

Since non-preemptive blocking and local blocking occur at the task’s release,
the resulting blocking is called arrival blocking and can be computed as

Bi = max{BNP
i , BL

i }. (8)

3.2 Local analysis

Using the processor demand criterion extended to include resource sharing [4],
a task set Tk is schedulable by EDF under the M-BROE server if:

∀t > 0 B(t) + dbf(t) ≤ sbf(t) (9)

where

dbf(t) =
∑

τi∈Tk

(⌊

t−Di

Ti

⌋

+ 1

)

0

(Ci + ξi), (10)

B(t) = max{Bi | Di ≤ t}, (11)

and sbf(t) is the supply bound function for the M-BROE server reported in [15]
and (x)0 denotes max(0, x). Note that the dbf(t) in Equation (10) takes into
account the computation time inflation ξi due to remote blocking.
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TheM-BROE framework also supports local fixed-priority scheduling; how-
ever, to date an analysis under local fixed-priority is not yet available in the
published literature, hence this paper focuses on local EDF scheduling only.
Besides this limitation, the authors are confident that the approach proposed
in the following sections can also be applied under fixed-priority scheduling.

3.3 Component integration analysis

The component integrator has to ensure the schedulability of the reservation
servers assigned to each processor. Each component provides a set of reserva-
tion servers to the component integrator according to the specified interface;
such reservation servers will be scheduled under partitioned EDF scheduling
on the M physical processors.

Under the M-BROE framework, also the reservations exported by the com-
ponents can incur in arrival blocking, e.g., a server Sk

j may be blocked when-

ever there is a task executing on another server Sl
r that is non-preemptively

spinning for accessing a global resource. Such blocking times must hence be
taken into account in the schedulability analysis performed at the component
integration stage, and can be bounded in an analogous manner as reported in
Section 3.1 by considering the servers in place of the tasks (i.e., replacing the
terms δi,ℓ with Hk

j,ℓ). The blocking incurred by M-BROE servers is analogous
to the one incurred by tasks under P-EDF scheduling in conjunction to the
MSRP [22]: please refer to [15, 22] for the detailed blocking analysis.

The schedulability test for guaranteeing the execution of virtual processors
upon physical processors is reported in the following equation [15]:

∀Sk
j : P(Sk

j ) = Pm,
∑

r,l:P l
r≤Pk

j

∧
P(Sl

r)=Pm

Ql
r

P l
r

+
Bk

j

P k
j

≤ 1, (12)

where Bk
j is a bound on the arrival blocking incurred by server Sk

j .

3.4 Table of symbols

In order to improve the paper readability, the main notation introduced in the
system model is summarized in Table 1.

4 Partitioning and server design: problem definition

This section addresses the problem of partitioning application tasks on a set
of virtual processors implemented by M-BROE reservation servers, and deter-
mining their configuration parameters in terms of budgets and periods.
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Table 1 Main notation introduced in the system model.

Symbol Description

Γk k-th software component

Tk task set of the k-th software component

τi i-th task

Ci worst-case execution time of task τi

Ti period (or minimum inter-arrival time) of task τi

Di relative deadline of task τi

Pm m-th physical processor

M number of physical processors

Sk
j j-th virtual processor of component Γk

Qk
j budget of Sk

j

Pk
j reservation period of Sk

j

S(τi) virtual processor to which τi is assigned

Γ (Sk
j ) set of tasks allocated to Sk

j

Rℓ ℓ-th resource

RC set of component resources

RS set of system resources

δi,l length of the longest critical section of τi for resource Rℓ

ηi,ℓ number of critical sections of τi for resource Rℓ

Hk
j vector of resource holding times for Sk

j

H upper bound for the resource holding times of all the resources

A partitioning methodology for the M-BROE framework must take into
account three aspects simultaneously: (i) the computational demand of the
application; (ii) the parameters (budget and period) of the reservation servers;
and (iii) the blocking times related to resource sharing (also including the effect
of spinlocks). In particular, the dependency of partitioning on resource sharing
is better illustrated by the following example.

Example. Consider a component composed of 3 tasks with periods T1 = 10,
T2 = 20 and T3 = 50 ms and implicit deadlines, to be executed on a platform
composed of two processors. Tasks τ1 and τ3 share a component resource R.
If tasks τ1 and τ3 are assigned to different processors, then the access to R
will be regulated by a spinlock. This solution penalizes the schedulability by
generating non-preemptive blocking and increasing the execution times of τ1
and τ3 due to spinning time. Conversely, if the two tasks are allocated on
the same processor, the blocking factor related to R is smaller (due to only
uniprocessor SRP blocking). While it seems convenient allocating tasks on the
same processor, it is easy to see that allocating τ2 together with the other tasks
may not be appropriate, due to the local blocking experienced by τ2 (because
D1 < D2 < D3, from Equation (7)). If τ2 is allocated to the other processor, it
will experience no blocking. Note however, that τ2 can experience a different
blocking if it has a different period (e.g., T2 = 5 ms).

The simple example presented above shows that resource sharing further
complicates partitioning (which is intrinsically hard, being similar to a bin-
packing problem), and must be taken into account to identify a “good” task
allocation.
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In this paper, task partitioning is formulated as an optimization problem.
Unfortunately, however, given any performance objective (e.g., minimizing the
overall bandwidth for the reservation servers), searching for an optimal solu-
tion is practically intractable for the following reasons:

– The exact EDF schedulability test requires the specification of a pseudo-
polynomial number of check points [6] that depends on the parameters of
the server upon which tasks execute (as explained in [11, 18]). Being the
server parameters part of the output of the optimization problem (hence,
unknown), upper bounds on them must be used, thus obtaining a poten-
tially large set of constraints and variables.

– As shown in [18], it is possible to formulate an optimization problem to
compute optimal BROE server parameters, minimizing the server band-
width still ensuring the task schedulability. However, the exact problem
formulation involves non-linear constraints, because the supply bound func-
tion of the server is non-linear.

– In the M-BROE framework, the access to global resources is protected by
FIFO non-preemptive spinlocks, but an exact analysis for spinlocks is still
missing, thus preventing the search for an optimal partitioning.

Given such limitations, this paper proposes a sub-optimal methodology for
task partitioning and virtual processors design by splitting the problem in two
phases: First, an MILP optimization is performed for partitioning tasks to
virtual processors; then the optimal server parameters are computed through
the approach presented in [18].

To overcome the problems highlighted above, the following approximations
are proposed to express partitioning as an MILP optimization problem:

– The EDF schedulability is carried out by the Fully Polynomial Time Ap-
proximation Scheme (FPTAS), proposed by Fisher, Baker, and Baruah [21].
According to this approach, the workload of a task is described by the exact
demand bound function for the first λ steps, and by a linear upper-bound
for the remaining steps. Formal details about this approximation will be
reported in Section 5.3.

– The reservation servers are approximated as ideal (fluid) virtual proces-
sors, running at a given speed α, which represents the server bandwidth.
Note that using a classical bounded-delay (α-∆) approximation, the opti-
mization problem results non-linear.

– As done by Wieder and Brandenburg [29], blocking times in the presence
of FIFO non-preemptive spinlocks are computed by the original MSRP
(sufficient) analysis proposed by Gai et al. [22].

Please, note that approaching the problem through an MILP formulation guar-
antees that the achieved partitioning is optimal with regard to the assumed
approximations. Once a task partitioning is obtained, the reservation servers
of each component are designed with another optimization stage that makes
use of the approach presented in [15] for computing the optimal server param-
eters that guarantee the schedulability of a given task set running upon the
server. Such design steps are addressed in the following section.
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It is worth clarifying that the approximation to fluid virtual processors is
used only to guide the task partitioning and not at the stage of the server
design when the task schedulability is enforced.

5 Partitioning and server design: optimization problem formulation

This section presents an MILP formulation to solve the problem of task par-
titioning upon virtual processors. The formulation presented in the following
has been simplified with respect to the one reported in the conference version
of this paper [14], where additional variables and constraints were adopted. It
is also worth mentioning that the formulation is partially inspired by the one
proposed by Wieder and Brandenburg [29] in the context of classical parti-
tioned fixed-priority scheduling without reservation mechanisms.

As stated in Section 3, the worst-case blocking related to component re-
sources is computed assuming that all the virtual processors of a component
are assigned to different physical processors: without loss of generality, the in-
dex k = 1, . . . ,M will be used for both physical processors and virtual proces-
sors. In the following we refer to a single component, hence (i) the component
index is removed from all the terms used below, and (ii) all the tasks referred
in the following are implicitly assumed to be part of a specific set Tk, where
Γk is the component of interest. All the real variables used in the optimization
problem are implicitly constrained as greater than or equal to zero. For such
variables, lower-bounds expressing the minimum (safe) value will be used to
ensure schedulability. Note that any constraint that enforces such variables to
be greater than a negative number has no effect. More specifically, let x be one
of the optimization variables and let y be a negative term: any constraint of the
form x ≥ y degenerates to x ≥ 0, thus imposing no bound on x. This simple
observation will result crucial in understanding the following constraints.

5.1 Decision variables for task allocation

The following decision (binary) variables are defined to decide on the task’s
allocation.
– Ai,k ∈ {0, 1}: binary variable that is set to 1 if and only if task τi is assigned

to server Sk.
Since each task is assigned to exactly one server, the following constraint holds:

Constraint 1. ∀τi,
∑M

k=1 Ai,k = 1.

5.2 Resource sharing - variables and constraints

Blocking times related to resource sharing are crucial to express the task
schedulability as a constraint of the optimization problem. In the following
two sections, constraints are derived to handle arrival blocking and spinning
times.
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5.2.1 Arrival blocking

To precisely encode blocking bounds in the MILP formulation, we decompose
the arrival blocking incurred by a task into the contributions provided by each
shared resource and each processor: this is accomplished with the definition of
the following variables:
– Bi,ℓ,k ∈ R≥0: real variable expressing a lower-bound on the arrival blocking

imposed on τi by critical sections on resourceRℓ, executed by tasks running
on virtual processor Sk.

The key objective of this section consists in providing constraints for variables
Bi,ℓ,k. To this end, we have to distinguish between component and system

resources. For both the types of resources, in the following we provide con-
straints that express blocking bounds for all the types of blocking identified in
Section 3.1.

Considering component resources Rℓ, the following constraint expresses a
blocking bound in the case Rℓ is implemented as a local resource:

Constraint 2. ∀τi, ∀Rℓ ∈ RC , ∀k = 1, . . . ,M,
∀τL | DL > Di, ∀τH | DH ≤ Di ∧ ηH,ℓ > 0,

Bi,ℓ,k ≥ δL,ℓ − δL,ℓ · (3− Ai,k −AL,k −AH,k).

Proof. Following Section 3.1, a task τi incurs in local blocking due to a local
resourceRℓ accessed by a task τL withDL > Di when there exists another task
τH with DH ≤ Di that also accesses Rℓ. Both τL and τH must be allocated to
the same virtual processor of τi and the amount of blocking is bounded by the
largest critical section length δL,ℓ. If there not exists a virtual processor Sk

to which τi, τL and τH are allocated, then the term (3 −Ai,k −AL,k −AH,k)
is always positive and the constraint degenerates to zero, thus enforcing no
bound. Otherwise, the constraint Bi,ℓ,k ≥ δL,ℓ is enforced for each task τL that
can generate local blocking, thus coping with the maximum local blocking as
expressed by Equation (7).

Conversely, when a component resource Rℓ is implemented as a global re-
source, tasks allocated to the same virtual processor of τi that access Rℓ may
generate non-preemptive blocking to τi. This case is managed with the follow-
ing constraint:

Constraint 3. ∀τi, ∀Rℓ ∈ RC , ∀k = 1, . . . ,M,
∀τL | DL > Di, ∀τR | ηR,ℓ > 0

Bi,ℓ,k ≥ δL,ℓ − δL,ℓ · (2−Ai,k −AL,k)− δL,ℓ · AR,k.

Proof. Following Section 3.1, a task τi incurs in non-preemptive blocking due
to a resource Rℓ accessed by a task τL with DL > Di when there exists
another task τR allocated to remote virtual processor that also accesses Rℓ

(i.e., ηR,ℓ > 0). Both τL and τi must be allocated to the same virtual processor
and the amount of blocking is bounded by the largest critical section length
δL,ℓ. If there not exists a virtual processor Sk to which both τi and τL are
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allocated, then the term (2−Ai,k−AL,k) is always positive and the constraint
degenerates to zero, thus enforcing no bound. If such a virtual processor Sk

exists, then τR must be allocated to a virtual processor 6= Sk. Whenever this is
not the case, AR,k = 1 and the constraint degenerates to zero, thus enforcing
no bound. Otherwise, the constraint Bi,ℓ,k ≥ δL,ℓ is enforced for each task τL
that can generate non-preemptive blocking, thus correctly enforcing a blocking
bound as in the previous constraint.

Similarly, still considering the case in which a component resource Rℓ re-
sults in a global resource, it is possible that tasks allocated to the same virtual
processor of τi experience remote blocking (i.e., originated by other virtual
processors). As introduced in Section 3.1, we recall that remote blocking leads
to non-preemptive spinning that in turn may prevent τi from executing. A
lower-bound on such a transitive blocking is encoded by the following con-
straint:

Constraint 4. ∀τi, ∀Rℓ ∈ RC , ∀k = 1, . . . ,M,
∀Sz 6= Sk, ∀τL | DL > Di ∧ ηL,ℓ > 0, ∀τR

Bi,ℓ,k ≥ δR,ℓ − δR,ℓ · (2−Ai,z −AL,z)− δR,ℓ · (1−AR,k).

Proof. A task τi allocated to virtual processor Sz incurs in transitive remote
blocking due to a component resource Rℓ originated by a virtual processor
Sk 6= Sz when (i) there exists a task τR allocated to Sk that accesses Rℓ and
(ii) there exists another task τL allocated to Sz withDL > Di that also accesses
Rℓ. The amount of blocking is bounded by the largest critical section length
δR,ℓ. Whenever such tasks do not exist, at least one of the terms (2−Ai,z−AL,z)
and (1−AR,k) is positive and the constraint degenerates to zero, thus enforcing
no bound. Otherwise, the constraint Bi,ℓ,k ≥ δR,ℓ is enforced for each task τR,
thus correctly encoding a bound on transitive blocking.

Now, it remains to consider system resources. Following the M-BROE anal-
ysis [15], since system resources can be accessed by all the components, they
must always be treated as global resources to cope with the worst-case. As a
consequence, the accesses to such resources are accounted as non-preemptive
blocking, so obtaining the following constraint:

Constraint 5. ∀τi, ∀Rℓ ∈ RS , ∀k = 1, . . . ,M,
∀τL | DL > Di

Bi,ℓ,k ≥ δL,ℓ − δL,ℓ · (2−Ai,k −AL,k).

Proof. The proof is analogous to the one of Constraint 3 assuming that task
τR always exists (AR,k = 1).

Similarly, when remote blocking for a system resource Rℓ is considered, it
is not possible to infer on the critical section lengths on Rℓ that are present
in the other components. Hence, to be safe, we have to assume that a critical
section of maximum length H is present on each virtual processor (please refer
to Section 3), so obtaining the following constraint:
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Constraint 6. ∀τi, ∀Rℓ ∈ RS , ∀k = 1, . . . ,M,
∀Sz 6= Sk, ∀τL | DL > Di ∧ ηL,ℓ > 0

Bi,ℓ,k ≥ H −H · (2 −Ai,z −AL,z).

Proof. The proof is analogous to the one of Constraint 4 assuming that task
τR always exists (AR,k = 1) and that δR,ℓ = H.

Finally, the following variables are introduced to model the blocking times
corresponding to each resource:
– Bi,ℓ ∈ R≥0: real variable expressing a lower-bound on the arrival blocking

imposed on τi by critical sections on resource Rℓ.
Such variables act as aliases to aggregate the blocking times generated by each
processor: the following constraint is enforced to encode their definition:

Constraint 7. ∀τi, ∀Rℓ, Bi,ℓ =
∑M

k=1 Bi,ℓ,k.

5.2.2 Spinning time

As stated in Section 3, the use of non-preemptive FIFO spinlocks is accounted
by inflating tasks’ WCETs by means of the spinning time ξi generated by
remote blocking. We decompose the spinning time ξi of a task τi by using the
following variables:
– ξi,k ∈ R≥0: real variable expressing a lower-bound on the spinning time for

task τi originated from virtual processor Sk.
– ξi,k,ℓ ∈ R≥0: real variable expressing the contribution of the spinning time

ξi in accessing the resource Rℓ, originated from virtual processor Sk.

The per-processor spinning time ξi,k can be expressed as

Constraint 8. ∀τi, ∀k = 1, . . . ,M, ξi,k =
∑

Rℓ
ξi,k,ℓ.

Similarly, the overall spinning time ξi of a task τi is formulated as

Constraint 9. ∀τi, ξi =
∑M

k=1 ξi,k.

Then, the key objective consists in identifying constraints that provide
safe bounds on the spinning time ξi,k,ℓ. Again, it is necessary to distinguish
between component and system resources. For a component resource Rℓ, the
following constraint is provided:

Constraint 10. ∀τi, ∀k = 1, . . . ,M, ∀Rℓ, ∀τx | τi 6= τx,

ξi,k,ℓ ≥ δx,ℓ · ηi,ℓ ·Ax,k − B ·Ai,k.

Proof. This constraint derives directly from the computation of the spinning
time for component resources, as defined in Equations (4) and (5). The con-
straint collects the maximum critical section on Rℓ of tasks τx allocated on
virtual processor Sk. To account for the overall spinning time, the critical sec-
tion length is multiplied for the number of critical sections on Rℓ for τi (see
Equation (5)). Thanks to the decision variable Ax,k, the first term becomes
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zero if task τx is not allocated on server Sk. The remaining term −B · Ai,k is
provided to have zero spinning time contribution from the same processor at
which τi is allocated (critical sections executed on the same processor of τi do
not cause spinning). In this case, B represents a numerically large constant
that dominates all possible values for the term δx,ℓ · ηi,ℓ, and can be formally
defined as B = maxx,ℓ{δx,ℓ} ·maxi,ℓ{ηi,ℓ}.

When a system resource Rℓ is considered, the spinning time can be ex-
pressed as follows:

Constraint 11. ∀τi, ∀k = 1, . . . ,M, ∀Rℓ, ∀τx | τi 6= τx,

ξi,k,ℓ ≥ H · ηi,ℓ · Ax,k − B · Ai,k.

Proof. The proof follows from the one of Constraint 10, assuming critical sec-
tions of length H.

5.3 Schedulability - variables and constraints

This section presents the constraints for the optimization problem expressing
the schedulability of a task set upon a reservation server. As stated in Sec-
tion 3, the local schedulability upon an M-BROE server can be checked by
Equation (9); however, as expressed at the beginning of Section 5, the exact
test is not easily tractable in an optimization problem. To solve this problem,
the workload of a task set is approximated using the FPTAS [21] approach.
According to the FPTAS, the demand bound function dbfi(t) of a task τi is
exact for the first λ steps and then approximated with a linear upper-bound.
Depending on the chosen value of λ, function dbfi(t) can be approximated
with any desired degree of accuracy. Formally, the FPTAS for the demand
bound function is expressed as

dbf
(λ)
i (t) =

{

dbfi(t), if t ≤ (λ− 1)Ti +Di

Ci + ξi + (t−Di)Ui, otherwise,
(13)

where Ui = (Ci+ ξi)/Ti, to account for the WCET inflation related to the use
of spinlocks.

Using this approximation, the EDF schedulability has to be considered in
λ + 1 time points for each task. The resulting sufficient EDF schedulability
test for a set of tasks T is expressed as follows:

∀p = 0, 1, . . . , λ, ∀t ∈ tSet(p),

B(t, p) +
∑

τi∈T

dbf
(λ)
i (t) ≤ sbf(t), (14)

where tSet(p) is the set of schedulability check-points [21] defined as

tSet(p) =
⋃

τi∈T

{pTi +Di}, (15)
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and B(t, p) is defined to approximate the blocking term of Equation (11) as

B(t, p) =

{

B(t), if 0 ≤ p < λ

maxi{Bi}, p = λ.
(16)

As stated by Baruah in [4], the blocking term B(t) is zero for values of
t larger than the maximum relative deadline of the tasks under analysis. As
a consequence, the exact blocking function B(t) can be used (i.e., B(t, p) =
B(t), ∀p ≥ 0) in the MILP formulation if a sufficiently large number λ of
check-points is used for the FPTAS.

We now define a set of variables and constraints to express the EDF schedu-
lability according to the FPTAS approach. All the variables contain the pro-
cessor index k, since the schedulability has to be checked for each processor
addressing a partitioned scheduling scheme. First of all, we introduce the fol-
lowing variables to account for the WCET inflation related to spinlocks:
– Ji,k ∈ R≥0: real variable expressing the inflated WCET of a task τi exe-

cuting on virtual processor Sk.
Such a variable can be defined by using the following constraint:

Constraint 12. ∀τi, ∀k = 1, . . . ,M, Ji,k = Ci + ξi − B · (1−Ai,k).

Proof. This constraint simply adds Ci to the overall spinning time ξi. Term
−B · (1−Ai,k) is provided to have a null inflated WCET if τi is not allocated
to server Sk (i.e., when Ai,k = 0). B represents a numerically large constant
that dominates all possible values of the term Ci + ξi, and can be defined as
B = maxi{Ci} · (M − 1)H ·maxi,ℓ{ηi,ℓ}.

Now note that Equations (14) involves the blocking time B(t), defined in
Equation (16). Having to express the schedulability in a limited number of
time points, we introduce variables to quantify the blocking time at the pth

time point of a task:
– PBk,p,j ∈ R≥0: real variable expressing the blocking time on virtual proces-

sor Sk at schedulability check-point pTj+Dj of task τj , with p = 0, 1, . . . , λ.
Such a blocking time is expressed by the following constraint, making use of
the blocking time Bi,ℓ expressed in Constraint 7:

Constraint 13. ∀k = 1, . . . ,M, ∀p = 0, 1, . . . , λ, ∀τj , ∀Rℓ

∀τi | Di ≤ pTj +Dj ∧ p < λ

PBk,p,j ≥ Bi,ℓ − B · (1−Ai,k).

Proof. According Equations (11) and (16), the blocking at the schedulability
check-point t involves blocking times of tasks having deadlines less than or
equal to t for p = 0, 1, . . . , λ. The pth check-point originated from τj is pTj+Dj

(see Equation (15)): this constraint accordingly considers all tasks τi having
Di ≤ pTj +Dj (thus contributing to blocking) excluding the ones that are not
allocated on Sk. Such tasks are excluded through the term −B · (1 − Ai,k),
where B is a numerically large constant that dominates all possible values for
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the term Bi,ℓ and can be formally defined as B = MH. Similarly, all tasks τi
allocated to Sk are considered for p = λ, accounting for the maximum blocking
on Sk.

The computational supply provided by each virtual processor Sk is approx-
imated by assuming ideal (fluid) virtual processors with bandwidth αk. The
following variables are introduced to support this choice:
– αk ∈ R≥0: real variable representing the bandwidth of virtual processor

Sk, with 0 ≤ αk ≤ 1.
At this point we have all the variables and the constraints to express the

EDF schedulability on each virtual processor Sk:

Constraint 14. ∀k = 1, . . . ,M, ∀p = 0, . . . , λ, ∀τj

PBk,p,j +
∑

τi∈Γ

dbf
(λ)
i,k (pTj +Dj) ≤ αk · (pTj +Dj),

where

dbf
(λ)
i,k (t) =







(⌊

t−Di

Ti

⌋

+ 1
)

0
Ji,k, if t ≤ (λ− 1)Ti +Di

Ji,k + (t−Di)
(

Ji,k

Ti

)

, otherwise.

Proof. This constraint derives directly from the FPTAS schedulability test
in Equation (14), for each virtual processor Sk. Thanks to the definition of
variables Ji,k, the contribution in terms of demand bound function of tasks τi
is allowed to be null if τi is not assigned to virtual processor Sk.

5.4 Objectives

We now propose two alternative allocation strategies for the optimization prob-
lem, aiming at different objectives. The first one, denoted as A, aims at allo-
cating the tasks of a component on a small set of virtual processors having high
bandwidth; the second one, denoted as B, aims at distributing tasks among
a larger set of virtual processors with lower bandwidth. Clearly, each alloca-
tion strategy leads to a different instance of the component interface. We now
formalize the objectives for both strategies.
– Strategy A: minimize the overall bandwidth required by a software compo-

nent, that is the sum of the bandwidths required by its virtual processors:

minimize

M
∑

k=1

αk. (17)

– Strategy B: minimize the maximum bandwidth required by the virtual
processor of a component:

minimize max{αk} = minimize Λ, (18)

where Λ is an additional real variable of the optimization problem defined
by the following constraint:

Constraint 15. ∀k = 1, . . . ,M Λ ≥ αk.
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5.5 Interface synthesis

Given the allocation of the component tasks to the virtual platform, produced
by the MILP solution, the design of the reservation server parameters is per-
formed using the approach presented in [18]. Such an approach computes the
optimal budget and period (under the assumed scheduling infrastructure) that
guarantee the application schedulability while minimizing the bandwidth for
each virtual. Then, for each reservation server and for each resource, the maxi-
mum resource holding times are computed according to the interface discussed
in Section 2.1.

The resulting server parameters and vectors of resource holding times (for
each virtual processor) constitute the component interface exported to the
component integrator. Note that, different interfaces can be obtained depend-
ing on the allocation strategy (A or B) that is selected as objective of the
proposed MILP formulation. Nevertheless, each component is guaranteed to
be schedulable under both the interfaces by construction.

6 Virtual processor allocation

The goal of this section is to propose a methodology to partition the virtual
processors of all the components to the M physical processors, that is the
task performed by the component integrator. This is done by another MILP
formulation that, with respect to the adopted analysis (see Section 3.3) and the
interfaces exported by the components, is able to find an exact solution for the
allocation problem. In this section, we assume that each component exports
two interfaces denoted as type A and type B, which are obtained with strategies
A and B presented in Section 5.4, respectively. The interfaces exported by the
components are the input parameters for the formulation. The proposed MILP
formulation is able to decide whether a component is integrated by using the
interface of type A or B. This characteristic represents a key improvement
with respect to the formulation presented in the conference version of this
paper [14], where a single interface per component was considered.

To reduce clutter and improve readability, simplified notation is introduced
to present the following results. The reservation servers exported by the com-
ponents are denoted by Si with i = 1, . . . , N · M , i.e., they are enumerated
with a progressive index, thus getting rid of the double indexes that have been
used in the previous sections. Γ (Si) is used to denote the corresponding com-
ponent of Si. The parameters of the interface of type A are denoted by QA

i ,
PA
i and HA

i . Similarly, the ones of the interface of type B are denoted using
a B superscript. Whenever an interface is not provided by a component (e.g.,
when a component provides only the one of type A), we assume that all its
parameters are set to zero.
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6.1 Decision variables for component allocation

As done for the task allocation problem addressed in Section 5, a set of binary
variables are introduced to decide on the allocation of the virtual processors:
– Ai,k ∈ {0, 1}: binary variable that is set to 1 if and only if the reservation

Si is allocated to physical processor Pk.
The following variables are defined to decide which interface is selected:
– Ij ∈ {0, 1}: binary variable that is set to 1 if and only if component Γj is

allocated with interface A, and 0 if and only if component Γj is allocated
with interface B.

Since a reservation must be assigned to only one processor, the following con-
straint holds:

Integration Constraint 1. ∀Si,
∑M

k=1 Ai,k = 1.

Finally, a constraint is enforced to exclude the interfaces that are not pro-
vided by the components. That is, if the interface of type A is not provided,
then it forces the use of the one of type B. The dual constraint is enforced if
the one of type B is not provided.

Integration Constraint 2.

∀Γj | 6 ∃Si | Q
A
i > 0 ∧ Γ (Si) = Γk Ij = 0.

∀Γj | 6 ∃Si | Q
B
i > 0 ∧ Γ (Si) = Γk Ij = 1.

6.2 Resource sharing: variables and constraints

As done in Section 5, the blocking originated by resource sharing is split for
each resource Rℓ and for each processor Pk, and is managed with the following
real variables:
– Bi,ℓ,k ∈ R≥0: real variable expressing a lower-bound on the arrival blocking

incurred by Si due to critical sections on resource Rℓ that are executed by
tasks running on processor Pk.

We recall that the vectors HA
i and HB

i , which are exported by the compo-
nent interfaces, provide bounds on the resource holding times of the shared
resources. In the following, such bounds are used to derive a set of constraints
that aim at bounding the arrival blocking incurred by the reservation servers.

To ease the presentation of the following three constraints, we define

ei(νi) =

{

(1 − Ij) if νi = A

Ij if νi = B

where Γ (Si) = Γj . This term has the following meaning: e(A) = 0 if and only
if Si is allocated with interface A, while e(B) = 0 if and only if Si is allocated
with interface B.

We can now begin by bounding the blocking due to processor-local re-
sources.
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Integration Constraint 3. ∀νi ∈ {A,B}, ∀Si, ∀Rℓ, ∀k = 1, . . . ,M,
∀νj ∈ {A,B}, ∀Sj | Pj > Pi, ∀νh ∈ {A,B}, ∀Sh | Ph ≤ Pi

Bi,ℓ,k ≥ H
νj
j,ℓ − B(ei(νi) + ej(νj) + eh(νh))− B(3−Ai,k −Aj,k −Ah,k).

Proof. Following the H-SRP blocking analysis, a server Si allocated to proces-
sor Pk can be blocked by a processor-local resource Rℓ only if there exist two
servers Sh and Sj, both allocated to Pk, that access Rℓ and with Ph ≤ Pi > Pj .
If such servers exist, the time Si can be blocked due to Rℓ is bounded by the
maximum resource holding time HA

j,ℓ, if Sj is allocated with interface A, or

HB
j,ℓ, if Sj is allocated with interface B. Whenever the three servers are not

allocated to the same processor Pk, the term (3 − Ai,k − Aj,k − Ah,k) is pos-
itive and hence no bound is enforced. Furthermore, whenever the constraint
considers at least one of such servers that is part of an interface that is not
admitted, the term (ei(νi) + ej(νj) + er(νr)) is positive and hence no bound
is enforced.

In a similar manner, the following constraint is provided to bound the
non-preemptive blocking generated by the access to global resources.

Integration Constraint 4. ∀νi ∈ {A,B}, ∀Si, ∀Rℓ, ∀k = 1, . . . ,M,
∀νj ∈ {A,B}, ∀Sj | Pj > Pi, ∀νr ∈ {A,B}, ∀Sr | Hr,ℓ > 0

Bi,ℓ,k ≥ H
νj
j,ℓ − B(ei(νi) + ej(νj) + er(νr))− B(2−Ai,k −Aj,k)− B ·Ar,k.

Proof. A server Si allocated to processor Pk incurs in non-preemptive blocking
when there exists a server Sj allocated to Pk that accesses a global resource
Rℓ. A resource Rℓ is global if there exists at least one server Sr allocated to a
processor 6= Pk that accessesRℓ (i.e.,H

A
r,ℓ > 0 orHB

r,ℓ > 0, depending on which
interface is selected for Sr). If such servers exist, the time Si can incur in non-
preemptive blocking due to Rℓ is bounded by the maximum resource holding
time HA

j,ℓ, if Sj is allocated with interface A, or HB
j,ℓ, if Sj is allocated with

interface B. Whenever the Si and Sj are not allocated to the same processor
Pk, or Sr is not allocated to a processor 6= Pk, at least one of the terms (2 −
Ai,k−Aj,k) and Ar,k is positive and hence no bound is enforced. Furthermore,
whenever the constraint considers at least one of such servers that is part of
an interface that is not admitted, the term (ei(νi)+ej(νj)+er(νr)) is positive
and hence no bound is enforced.

The following constraint enforces a bound on transitive remote blocking.

Integration Constraint 5. ∀νi ∈ {A,B}, ∀Si, ∀Rℓ, ∀k = 1, . . . ,M,
∀Px 6= Pk, ∀νj ∈ {A,B}, ∀Sj | Pj > Pi ∧Hj,ℓ > 0, ∀νr ∈ {A,B}, ∀Sr

Bi,ℓ,k ≥ Hνr
r,ℓ − B(ei(νi) + ej(νj) + er(νr))− B(2−Ai,x +Aj,x)− B(1−Ar,k).

Proof. According to the MSRP blocking analysis, a server Si that is allocated
to a processor Px 6= Pk incurs in transitive remote blocking originated by
processor Pk if there exists a server Sj allocated to Px that accesses a global
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resource Rℓ that is used by a server Sr allocated to Pk. If such servers exist,
the time Si can incur in transitive remote blocking due to Rℓ is bounded by
the maximum resource holding time HA

r,ℓ, if Sr is allocated with interface A,

or HB
r,ℓ, if Sr is allocated with interface B. Whenever both Si and Sj are not

allocated to the same processor Px, or Sr is not allocated to a processor Pk,
at least one of the terms (2−Ai,x −Aj,x) and (1−Ar,k) is positive and hence
no bound is enforced. Furthermore, whenever the constraint considers at least
one of such servers that is part of an interface that is not admitted, the term
(ei(νi) + ej(νj) + er(νr)) is positive and hence no bound is enforced.

Finally, we enforce that the maximum arrival blocking incurred by each
server is the maximum of the arrival blocking times generated by each resource.

Integration Constraint 6. ∀Si, ∀Rℓ, Bi ≥
∑M

k=1 Bi,ℓ,k.

Proof. The term
∑M

k=1 Bi,ℓ,k provides a bound on the arrival blocking incurred
by Si due to resourceRℓ. Since under MSRP a server can incur in arrival block-
ing due to at most one resource, the maximum of all the terms

∑M
k=1 Bi,ℓ,k

(for each resource Rℓ) yields a safe bound.

6.3 Server schedulability: variables and constraints

To express the schedulability at the integration level in the optimization prob-
lem formulation, we have to derive constraints from the test reported in Equa-
tion (12). The idea is to provide variables and constraints representing the
contribution of bandwidth on each physical processor. To this end, two real
variables are defined for each reservation server Si:
– ΦA

i,k ∈ R≥0: a real variable expressing a lower-bound on the budget de-
manded by server Si if allocated with interface A and to processor Pk;

– ΦB
i,k ∈ R≥0: a real variable expressing a lower-bound on the budget de-

manded by server Si if allocated with interface B and to processor Pk;

The following constraint is provided to enforce correct values for such variables.
The constraint makes use of a numerical constant B that is used to represent
infinity, which can be formally defined as B = maxi{Qi}.

Integration Constraint 7. ∀Γj , ∀Si | Γ (Si) = Γj ,

ΦA
i,k ≥ QA

i · Ij − B(1−Ai,k),

ΦB
i,k ≥ QB

i (1 − Ij)− B(1−Ai,k).

Proof. If component Γj is allocated with interface of type A, then Ij = 1 and
no bound is enforced on QB

i ; otherwise, if Γj is allocated with interface of type
B, then no bound is enforced on QA

i . For both the interface types, if a server
Si is not allocated to processor Pk, then no bound is enforced on both ΦA

i,k

and ΦB
i,k. As a consequence, ΦA

i,k ≥ QA
i is enforced if and only if (i) interface A

is selected and (ii) Si is allocated to Pk. The same holds for ΦB
i,k ≥ QB

i when
interface B is selected.
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Variables ΦA
i,k, ΦB

i,k and Bi are finally used in the following constraint
that enforces the schedulability of the servers under P-EDF and MSRP (see
Equation (12)). The constraint exploits the fact that, whenever no bound is
enforced on the above mentioned variables, then they are allowed to degenerate
to zero and hence provide no contribution to the schedulability test.

Integration Constraint 8. ∀k = 1, . . . ,M, ∀νi ∈ {A,B}, ∀Si | P
νi
i > 0

Bi

Pi

+
∑

νj∈{A,B}

∑

Sj

P
νj

j
≤P

νi
i

P
νj

j
>0

Φ
νj
j,k

P
νj
j,k

≤ 1 + B(1−Ai,k) + B · e(νi).

Proof. Consider a processor Pk and a server Si according to an interface νi.
First note that if (i) Si is not allocated to Pk (Ai,k = 0) or (ii) the component
of Si is not allocated with interface νi (ei(νi) = 1), then the RHS of the
inequality becomes infinite and hence no constraint is enforced. Now, suppose
that this is not the case, thus the LHS is equal to 1. Given that variables ΦA

i,k,

ΦB
i,k and Bi yield valid lower-bounds on the server budget and arrival blocking,

respectively, the inequality reduces to Equation (12). Hence the constraint
enforces the schedulability test for the servers.

7 Experimental results

This section presents some experimental results aimed at evaluating the pro-
posed methodology. Experiments have been conducted to evaluate the per-
formance in terms of schedulability ratio for the whole methodology, and to
measure the run time of the procedure for partitioning an application upon
a virtual processor. The proposed MILP formulations have been implemented
with the IBM CPLEX solver running on a machine equipped with 40 cores
Intel Xeon E5-2640 @ 2.4 GHz and 128 GB of RAM. Note that the pre-
sented results are related to a different experimentation with respect to the
one presented in the conference version of this paper [14], as it considers (i) a
different approach for performing component integration, (ii) a different work-
load generation strategy, which in particular considers more shared resources,
and (iii) a different MILP formulation for performing the task partitioning.
Also, the experiments have been executed on a different machine and with a
re-engineered implementation of the proposed algorithms.

7.1 Workload generation

Given an overall system utilization U , N software components were generated.
The utilizations Uk of the components were generated using the UUnifast [12]
algorithm, limiting their values in the range [0.15, 1.5]. The task set Tk in
each component Γk was generated by fixing a number of tasks n, each with
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utilization ui ≤ 0.8 generated by UUnifast. Tasks periods Ti were randomly
chosen in the set {5, 10, 20, 30, 50, 80, 100, 120, 150, 200} ms, and tasks com-
putation times were computed as Ci = uiTi. We assumed the presence of
NRC component resources for each component and NRS system resources.
For each resource Rℓ, a random number of tasks in the range [1, rsf · nk] was
selected with uniform distribution to access Rℓ. The rsf parameter (resource
sharing factor) indicates how many tasks use a resource. For each task τi ac-
cessing Rℓ, we randomly generated ηi,ℓ ∈ [1, ηMAX] critical sections of length
δi,ℓ ∈ (0,H], both with uniform distribution. To have realistic task sets, we en-
forced Ci ≥

∑

Rℓ
(ηi,ℓ · δi,ℓ), ∀τi ∈ Tk, for each component Γk (k = 1, . . . , N).

7.2 Experiment 1

This experiment was carried out to evaluate the schedulability performance
of the entire approach proposed in this paper. For each component generated
according to the strategy described in the previous section, the partitioning
and interface synthesis method presented in Section 5 has been applied. Both
strategies A and B have been considered, thus generating two interfaces for
each component. Then, the component integration has been performed with
the approach presented in Section 6. We denote a system schedulable when
the integration of the components that constitute the system succeeds, i.e.,
when the approach of Section 6 founds an allocation and a configuration of
interfaces under which all the corresponding virtual processors are schedulable.
It is worth repeating that, under the proposed design flow, the schedulability of
the virtual processors of a component Γ transitively ensures the schedulability
of the tasks in Γ .

For comparison purposes, three variants of the proposed approach have
been tested:

1. A, which corresponds to adopting only interfaces obtained with strategy
A described in Section 5;

2. B, which corresponds to adopting only interfaces obtained with strategy
B described in Section 5;

3. A ∨ B, which denotes the case in which the full methodology is applied,
thus allowing the selection of the best interface for each component to favor
their integration.

Note that preliminary results related to the third variant were also pre-
sented in the conference version of this paper [14]: however, the corresponding
MILP formulation has been fully detailed only in the present paper. The exper-
imentation considered systems consisting of N = 5 components to be executed
on a physical platform including M = 4 processors. The schedulability perfor-
mance of the proposed methodology was evaluated as a function of the system
utilization U , which has been varied from 1.5 to M with step 0.25. For each
value of U , the schedulability ratio was computed over 500 systems, hence
testing a total of 27500 components and 137500 tasks. The following param-
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eters have been kept constant during the experimentation: λ = 30, rsf= 0.3,
ηMAX = 2, H = 100µs.

Figure 2 reports the results of this experiment obtained with n = 5 tasks
per component, NRC = 2 component resources per component (for a total
of 10 component resources), and NRC = 2 system resources. Note that, for
this particular setting of parameters, A is more effective than B for almost all
the tested system utilizations, with A being able to guarantee four times more
system instances than B for U = 3. As expected, the mixed strategy (A ∨
B) outperforms the others, being able to admit almost 80% of the generated
systems for utilizations up to 3.25 (corresponding to the 80% of the available
utilization). Figure 3 reports the results of the same experiment repeated with
n = 8 tasks per component. As it can be observed from the graph, there is a
significant degradation for the B approach, while A and A ∨ B show a slight
degradation with the exception of the cases with high utilization (U ≥ 3.25).
The main causes of the performance degradation can be attributed to (i) the
schedulability penalties introduced by resource reservation, which generally
increase with the number of tasks managed by a server, and (ii) the higher
impact of resource sharing (note that the adopted method for generating the
workload tends to generate more critical sections as the number of tasks in-
creases). According to this interpretation, the degradation results much higher
for the B approach because more servers tend to be generated (recall that
strategy B tends to spread the tasks across the virtual processors) and the
consequent higher likelihood of implementing component resources as global
resources, which hence result in higher blocking times.

1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

U

S
ch
ed
u
la
b
il
it
y
ra
ti
o

A

B

A ∨ B

Fig. 2 Schedulability ratio as a function of the system utilization U for n = 5 (25 tasks in
total), NR

S = 2, and NR
C = 2.

To better evaluate the impact of resource sharing on the schedulability
ratio, another test was performed with an increased number of resources:
NRC = 4 component resource for each component (for a total of 20 com-
ponent resources) and NRS = 4 system resources. The result of this test is
reported in Figure 4 for n = 5, and in Figure 5 for n = 8. As it can be noted
from the graphs, all the three approaches show a performance degradation.
For n = 5, the mixed strategy (A ∨ B) is able to guarantee more than 60% of
the tested systems up to U = 3. For n = 8, the results show a clear degrada-
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Fig. 3 Schedulability ratio as a function of the system utilization U for n = 8 (40 tasks in
total), NRS = 2, and NRC = 2.

tion, and A ∨ B is able to guarantee about 60% of the tested systems up to
U = 2.75.
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Fig. 4 Schedulability ratio as a function of the system utilization U for n = 5 (25 tasks in
total), NRS = 4, and NRC = 4.
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Fig. 5 Schedulability ratio as a function of the system utilization U for n = 8 (40 tasks in
total), NR

S = 4, and NR
C = 4.
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7.3 Experiment 2

In this experiment, the run time needed to solve the MILP formulation for
task partitioning has been measured as a function of the number of tasks (n)
in a component. For each value of n, the average and the maximum run time
was measured over 500 randomly generated components. Figures 6 and 7 re-
port run time taken by strategies (A) and (B), respectively. The results are
collected under the same parameter configuration used in Figure 2. The max-
imum run time shows an exponential trend as the number of tasks increases.
This result is expected since the number of the variables on the MILP formu-
lation increases with the number of tasks. However, note that both the strate-
gies have a maximum running time lower than one minute for components of
n = 10 tasks. Therefore, such results show that the proposed task partitioning
approach is perfectly compatible with the timeframe of offline (design-time)
activities, e.g., those in the automotive domain, where the considered number
of tasks is particularly representative.
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Fig. 6 Average and maximum run time for solving the MILP formulation for task parti-
tioning with strategy (A).
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Fig. 7 Average and maximum run time for solving the MILP formulation for task parti-
tioning with strategy (B).
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8 Conclusions and future work

This paper presented a component-based design methodology for supporting
the integration of independently developed real-time applications upon multi-
processor platforms in the presence of shared resources. Applications consists
of a set of periodic and sporadic real-time tasks that can use both compo-
nent and system-level resources. The physical platform is abstracted through
a number of virtual platforms, one for each component, each consisting of a
set of virtual processors implemented by reservation servers.

The proposed methodology uses an MILP formulation to partition each
application upon the virtual multiprocessor platform taking shared resources
into account. Two allocation strategies have been proposed as a objective of the
formulation. Once an allocation is found for each component, the synthesis of
the virtual processors is performed to find the optimal reservation parameters
that can guarantee the schedulability of the applications. Then, a component
integrator uses an MILP formulation for allocating all virtual processors to
the physical processors to preserve the schedulability of the system.

Simulation experiments on synthetic applications have been carried out to
validate the effectiveness of the approach. The achieved results showed that,
under a representative setting, the proposed design methodology is able to
admit 90 percent of the generated systems having utilization up to 3 on a
quad-processor platform, in the presence of shared resources and reservations.

As a future work we plan to investigate non-linear optimization problem
formulations for the task partitioning, as well as resource sharing driven heuris-
tics, hence proposing a comparison study through extensive simulation ex-
periments. Furthermore, it would be interesting to integrate the support for
real-time lock-free algorithms to protect shared-memory objects [13].
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