
Supporting Component-based Development in
Partitioned Multiprocessor Real-Time Systems

Alessandro Biondi∗, Giorgio C. Buttazzo∗, Marko Bertogna†
∗Scuola Superiore Sant’Anna, Pisa, Italy

†University of Modena and Reggio Emilia, Modena, Italy
Email: {alessandro.biondi, g.buttazzo}@sssup.it, m.bertogna@unimore.it

Abstract—The fast evolution of multicore systems, combined
with the need of sharing the same platform for independently
developed software, demands for new methodologies and al-
gorithms that allow resource partitioning, while guaranteeing
the isolation of concurrent applications. Unfortunately, a major
problem that can break the isolation property of concurrent
partitions is resource sharing. Although a number of resource
access protocols exist for hierarchical uniprocessor systems, no
protocols are available today for managing hierarchical partitions
implemented on top a multiporcessor platform under partitioned
scheduling.

This paper presents a framework to support component-
based design on a multiprocessor platform and proposes a novel
reservation server mechanism, called M-BROE, to handle shared
resources in multiprocessor systems in the presence of resource
reservation scheduling mechanisms.

I. INTRODUCTION

The fast evolution of embedded computing systems is de-
manding for novel methodologies for managing software com-
plexity and simplifying the analysis of software components
that run on the same platform and share common resources.

In several application domains, from multimedia to auto-
motive systems, software typically exceeds 1 million lines of
source code and includes hundreds of concurrent activities that
interact with each other in a complex manner.

For instance, in the automotive domain, the continuous
demand of new functions increased the number of electronic
control units (ECUs) up to a limit that is hard to manage,
for space, weight, and energy constraints. As a result, the
current industrial trend is to integrate multiple functions into the
same ECU, thus saving space weight, and power consumption.
For certification and safety reasons, proper operating system
mechanisms have to be adopted to isolate the behavior of
the different software components that coexist on the same
platform.

An efficient and flexible scheduling technique to achieve tem-
poral isolation among different software modules is resource
reservation [1], [2]. According to this method, the available
processor bandwidth is partitioned among the different modules
through a budget enforcement mechanism which ensures that
tasks executing within different partitions do not interfere with
each others, so that a module receiving a fraction αi of the
total processor bandwidth behaves as if it were executing alone
on a slower processor with a speed equal to αi times the full
speed. The advantage of this approach is that each module can
be guaranteed independently of the behavior of the others.

This concept has been extended to support the development
of hierarchical systems, where each reservation can host an
entire application (or subsystem), whose tasks are handled by
a local scheduler that can be selected independently of the other
reservations. In addition, a subsystem can be further partitioned
into different subsystems, and so on. The reservations defined
at the first level of the hierarchy are managed by a global
scheduler.

A major problem that can break the isolation property of
resource reservations is resource sharing. In fact, suppose that a
resource R is shared by two tasks τ1 and τ2 running within two
subsystems S1 and S2, respectively, and consider the case in
which τ1 blocks on R while τ2 is holding it. If the reservation
budget of S2 is exhausted while τ2 is still inside the critical
section, τ1 will experience an extra blocking delay to wait for
the budget of S2 to be replenished.

To address such a problem, a number of resource access
protocols have been proposed in the literature [3]–[6].

Today, the concept or reservation, and more generally the
idea of temporal isolation is also accepted by the industry to
limit the interference among independently developed software
components and ensure higher predictability of the system.
The temporal isolation is also specified in different standards,
like AUTOSAR [7], adopted in automotive systems, and AR-
INC [8], adopted in avionics.

Another problem is that, with the evolution of processors,
several industries are facing a transition from single core to
multicore systems, hence it is crucial to provide support for
resource reservation in multicore platforms. This kind of plat-
forms, in fact, allow application providers to continue exploit-
ing Moore’s law greedy demand for computing power without
incurring thermal and power problems. Although a number of
approaches have been proposed to support resource reservations
on multicore systems [9]–[11], none of them considered the
possibility for the applications to share global resources. On
the other hand, there are a few papers considering resource
sharing in the scheduling of independently developed real-time
applications on a partitioned multiprocessor system [12], [13],
but they assume that each application is statically allocated on
a dedicated core, thus no reservation mechanism is assumed
for platform virtualization.

In this context, depending on whether resources are shared
by tasks running within the same reservation or belonging to
different reservations, the access must be regulated by different
methods. In particular, three different types of resources can
be distinguished: (i) Local resources, shared only by tasks be-



longing to the same reservation; (ii) Processor-local resources,
shared by tasks belonging to different reservations allocated on
the same core. (iii) Global resources, shared by tasks belonging
to different reservations allocated to different cores.

Such a distinction is important because the resource type
affects the protocol for accessing and executing the critical
section and the protocol for managing the reservation budget.
More specifically, local resources can be safely accessed by
the Stack Resource Policy (SRP) [14] using any budget man-
agement mechanism; Processor-local resources can be accessed
by H-SRP [3] combined with the BROE [6] algorithm for
managing the reservation budget. At the moment, however,
no protocol is available for safely accessing global resources
in a multiprocessor platform supporting reservations under a
partitioned approach. The situation is summarized in Table I:

no
reservation

same
reservation

different
reservations

same
processor

PIP, PCP
SRP, ...

Local
PIP, PCP
SRP, ...

Processor-local
H-SRP + BROE
H-SRP + SIRAP

different
processors

MSRP
... N.A.

Global
Contribution
of this paper

Table I: Types of shared resources and related protocols.

Contributions. This paper has four main contributions:
first, a framework is presented to support component-based
design for independently developed real-time applications on
a multiprocessor platform; second, a novel reservation server,
called M-BROE, is proposed to support resource sharing in
multiprocessor systems in the presence of resource reservations;
third, two protocol design alternatives (BCBS and BCAS) are
presented and compared, highlighting their pros and cons;
forth, two components interfaces are analyzed in terms of their
limitations and benefits.

Paper structure. Section II presents the system model
and our framework to support component-based design, also
specifying the component interface needed for the integration.
Section III describes the M-BROE reservation algorithm and
the corresponding scheduling rules. Section IV presents the
schedulability analysis for the proposed framework. Section V
discusses design choices for M-BROE and presents experi-
mental results comparing alternative behavior for M-BROE.
Section VI describes extensions for the component interface and
the corresponding schedulability analysis. Section VII discusses
further research issues related to the optimal design of the
virtual processors. Section VIII concludes the paper.

II. FRAMEWORK AND MODELING

This section describes the proposed framework to sup-
port component-based design under partitioned multiprocessor
scheduling. We first introduce the system model, then we define
the component interfaces for the integration, and finally, the
scheduling infrastructure for managing reservations.

A. System model
This paper considers a system consisting of N software

components Γ1,Γ2, . . . ,ΓN . Each software component Γk (also

referred to as component or application) consists of a set
T (Γk) of nk real-time periodic or sporadic tasks. Each task
τi ∈ T (Γk) is characterized by a worst-case execution time
(WCET) Ci, a period (or minimum interarrival time) Ti, and a
relative deadline Di.

The system has to be executed on a multiprocessor platform
composed of M identical processors, each denoted as Pm, with
m = 1, . . . ,M . To enable a modular design and analysis of
the system, each component Γk is statically partitioned over
M virtual processors Skj , j = 1, . . . ,M, each implemented by
a reservation server characterized by a maximum budget Qkj
and a period P kj . The ratio αkj = Qkj /P

k
j is referred to as the

reservation bandwidth. The virtual processor at which a task
τi ∈ T (Γk) is assigned is denoted as S(τi).

Each component Γk is abstracted through a component
interface consisting ofM couples (Qkj , P

k
j ), with j = 1, ...,M,

representing the budget and the period of the reservation server
associated to Skj . Hence, each component does not export any
detailed information about the tasks composing it. Also note
that, to keep the interface as simple as possible, no information
related to the resources accessed by each component is exported
in the interface. More complex interfaces are discussed in
Section VI.

The allocation of virtual processors to physical processors
is performed by a component integrator module, which is
responsible for statically assigning each reservation server
Skj , j = 1, ...,M to a specific processor Pm. Note that such a
mapping can be arbitrary, that is the jth virtual processor is not
forced to be allocated to the jth processor. The processor on
which the virtual processor Skj is assigned is denoted as P(Skj ).
No a priori assumptions are made on this mapping when
component interfaces are designed. The component integrator
is also responsible for admitting or rejecting each application
Γk. In order to contain the complexity of the formulation, this
paper assumes M = M . The generic case in which M ≥ M
will be addressed in a future work. The framework described
above is illustrated in Figure 1 for a platform composed of
M = 4 processors.

�� �� �� �� ��� ��� ��� ���

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

����������	 ����������


�� �� �� ��

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

���������������
���


�
�

�
�

����������	
���

�	�
	��������	
���

Figure 1: Proposed hierarchical framework.



Tasks can access shared resources through mutually exclusive
critical sections. At a component level, we distinguish between
two types of resources: (i) component resources, accessed
only by tasks belonging to the same component, (ii) system
resources, accessed by tasks belonging to different components.

For each resource R`, δi,` denotes the length of the longest
critical section of task τi related to R`, while ηi,` denotes the
number of critical sections used by τi on R`.

Definition 1: Maximum Resource Holding Time The re-
source holding time Hi,` for a resource R` accessed by a task
τi is defined as the maximum budget consumed from the lock
of R` until its unlock in the τi’s code.

Note that if a resource is accessed in a non-preemptive
manner, its resource holding time is equal to the critical section
length (i.e., Hi,` = δi,`). On the other hand, if a resource is
accessed in a preemptive way (e.g., as under SRP), the resource
holding time takes into account all possible preemption delays
occurring within the critical section. Details on how to compute
resources holding times can be found in [15].

To be admitted in the system, a component must have all
its tasks with a bounded resource holding time. Formally, each
component Γk must satisfy the following condition for each
system resource R`:

∀τi ∈ T (Γk),∀R`, Hi,` ≤ H, (1)

Regarding component resources Rq used by tasks assigned to
different virtual processors, we require that the sum of the
maximum resource holding times of Rq from each virtual
processor is bounded by MH. Formally we require that

∀Γk,∀Rq ∈ Rk,
M∑
j=1

max{Hi,q | S(τi) = Skj } ≤MH, (2)

where Rk denotes the set of component resources accessed by
tasks running on different virtual processors, formally defined
as

Rk = {Rq | ∃τ1, τ2 using Rq ∧ S(τ1) 6= S(τ2)} . (3)

B. Scheduling infrastructure

The tasks of a component allocated to a virtual processor are
managed by a local scheduler, which can be selected between
EDF or any fixed-priority (FP) algorithm. Under EDF, tasks
are ordered by increasing relative deadlines, whilst under FP
scheduling tasks are ordered by decreasing priorities, so that τ1
is the highest priority task. We denote as local non-preemptive
section a time interval in which the preemption is disabled for
the local scheduler.

Each reservation associated with a virtual processor is im-
plemented by an M-BROE server (i.e., the novel scheduling
mechanism proposed in this paper). The M-BROE server is
based on a Hard Constant Bandwidth Server (H-CBS) [16],
[17] extended to support resource sharing in a multiprocessor
environment providing resource reservations. The various M-
BROE servers are scheduled under partitioned EDF scheduling
on the M processors.

Given the mapping of each reservation server to processors,
three types of shared resources can be identified:

• Local resources: shared only by tasks running upon the
same reservation server;

• Processor-local resources: shared only by tasks executing
on the same processor, but on different reservation servers;

• Global resources: shared by tasks executing on different
processors.

The access to local resources is managed through the SRP
[14] protocol, while the access to processor-local resources
is performed by using the H-SRP [3] protocol in conjunction
with the M-BROE server resource access policy (inherited from
the original BROE server), such resources are accessed in a
local non-preemptive manner. Contention for global resources
is managed through the MSRP [18] protocol in conjunction
with the M-BROE server resource access policy.

Please note that a component resource R` results to be a
local resource only if all the tasks accessing R` are assigned
to the same virtual processor. Similarly, a system resource will
never results to be a local resource (except for the special case
in which it is accessed by only one component).

III. THE M-BROE SERVER

This section presents the M-BROE algorithm, which extends
the BROE server [6] to support resource sharing in multipro-
cessor systems.

The original BROE server has been conceived as an exten-
sion of the H-CBS server to support resource sharing among
tasks executing upon different reservations. As well known
from the literature, the access to shared resources under re-
source reservations introduces the problem of budget depletion
inside critical sections, which prolongs the blocking delay with
the time needed to replenish the budget.

The BROE server solves this problem by introducing a bud-
get check before entering a critical section, and managing the
budget to preserve both the bandwidth and worst-case service
delay of the server when resources are accessed. However,
the BROE server has been designed for uniprocessor systems.
Under multiprocessor partitioned scheduling, the BROE server
can still be used in its original formulation, but there is no
support for accessing global resources (i.e., resources shared
by tasks running on different processors).

In the M-BROE server, the contention for global resources
is managed through FIFO non-preemptive spinlocks by inte-
grating the MSRP [18] protocol. The use of such a kind of
spinlocks is also motivated by their performance in terms of
schedulability, as identified by Wieder and Brandenburg [19]
through an extensive set of experimental results. Spinlocks
are widely used to address resource sharing in multiprocessor
embedded systems, being an effective mechanism to ensure
mutual exclusion requiring low runtime overheads and footprint
for its implementation. For example, the AUTOSAR standard
mandates the use of non-preemptive spinlocks.

For a task τi executing on processor Pj and accessing a
global resource R` with FIFO non-preemptive spinlocks, the
maximum spinning time ξ`,j (i.e., the maximum time for which
a task wastes processor cycles waiting for R`) is bounded by
the sum of the longest resource holding times of R` related
to tasks running on other processors. Assuming that global
resources are accessed in a non-preemptive fashion (as true in



the MSRP protocol), resource holding times reduce to critical
section lengths, hence ξ`,j can be formally expressed as

ξ`,j =
∑
Pj 6=Pm

max{δi,` | P(S(τi)) = Pm}, (4)

The next section introduces the rules that describe the M-BROE
server: Rules 1,2,3 and 4 are from the original BROE server,
while Rule 5 is the proposed extension to support resource
sharing in multiprocessor systems.

A. M-BROE server rules

The rules of an M-BROE server with period P and maximum
budget Q (bandwidth α = Q/P ) are summarized below.

At any time t, the server is characterized by an absolute
deadline d and a remaining budget q(t). When a job executes,
q(t) is decreased accordingly.

1) Initially, q(t) = 0 and d = 0.
2) When the M-BROE server is idle and a job arrives at time

t, a replenishment time is computed as tr = d− q(t)/α:
a) if t < tr, the server is suspended until time tr. At time
tr, the budget is replenished to Q and d← tr + P .

b) otherwise the budget is immediately replenished to Q
and d← t+ P ;

3) When q(t) = 0, the server is suspended until time d.
At time d, the server budget is replenished to Q and the
deadline is postponed to d← d+ P .

4) When a task τi wishes to access a processor-local resource
at a time t, a budget check is performed: if q(t) ≥ δi,`,
there is enough budget to complete the critical section,
hence the access is granted. Otherwise a replenishment
time is computed as tr = d− q(t)/α:

a) if t < tr, the server is suspended until time tr. At time
tr, the budget is replenished to Q and d← tr + P .

b) otherwise the budget is immediately replenished to Q
and d← tr + P .

5) When a task τi wishes to access a global resource R`
at a time t, a budget check is performed: if q(t) ≥
(ξ`,j + δi,`), there is enough budget to experience the
maximum spinning time and complete the critical section,
hence the access is granted. Otherwise a replenishment
time is planned at time tr = d − q(t)/α and the same
operations of Rule 4-a or 4-b are performed.

IV. SCHEDULABILITY ANALYSIS

We now present the schedulability analysis for the proposed
framework to support component-based design under multipro-
cessor partitioned scheduling. First, we briefly recall the MSRP
protocol and its schedulability analysis. Then, we present the
schedulability analysis for M-BROE used in conjunction with
MSRP and H-SRP. Given an assignment of tasks to virtual
processors, Section IV-C reports the schedulability test to
guarantee a set of tasks executing within the M-BROE server
implementing the virtual processor abstraction.

Finally, the analysis for the component integrator is provided,
that is, given an assignment of virtual processors to physical
processors, we show how to guarantee the schedulability of the

virtual processors according to their requirements specified in
the component interface.

The SRP and H-SRP protocols and their integration with
BROE are not recalled in this paper for space limitations, please
refer to [6], [20] for additional details.

Schedulability analysis is presented for local EDF schedulers,
but it can be easily extended for local FP scheduling; however
such an analysis is not reported for space limits.

A. The MSRP protocol

The MSRP protocol has been proposed by Gai et al. [18]
as an extension of the uniprocessor SRP protocol to deal with
resources accessed from multiple processors. MSRP uses SRP
as it is for local resources (i.e., the ones shared by tasks
executing on the same processor), while it makes use of non-
preemptive FIFO spinlocks to deal with global resources. When
a task τi wants to access a global resource, and the resource
is locked from a task on another processor, τi becomes non-
preemptive and starts spinning (i.e., wasting processor cycles)
until the access to the resource will be granted. The critical
section on the global resource is also executed in a non-
preemptive manner. Multiple requests from different processors
are served in FIFO order, i.e., we can assume the existence of
a global FIFO queue containing at most one task per processor.

The original analysis of MSRP relies on a computation time
inflation for each task accessing a resource. That is, a bound
on the maximum spinning time is computed for each global
resource R` accessed from a given processor; then, such a
bound is used to inflate the computation time of the tasks using
R`. The amount of inflation imposed to each task is denoted as
remote blocking. At the same time, a blocking factor related to
non-preemptive spinning and non-preemptive access to global
resources is accounted for each task. That is, when a task
becomes non-preemptive it disallows higher-priority tasks to
execute, imposing non-preemptive blocking on them. Finally,
since MSRP relies on the classical SRP protocol for local
resources, tasks are also affected by local blocking.

The next section integrates the original MSRP analysis [18]
proposed by Gai et al. with M-BROE.

Please note that, as identified in [19], [21], the original
MSRP analysis is inherently pessimistic for several reasons.
Pessimism can be reduced by exploiting the full knowledge
of task parameters and response-times (e.g., as shown by
Wieder and Brandenburg in [19]). However, in a component-
based environment, the parameters of the other applications are
unknown, hence it is not possible to exploit tasks parameters
(as periods and critical sections) to refine the analysis. 1

On the other hand, the original MSRP analysis provides
a simple as well as effective method to compute bounds on
remote blocking and non-preemptive blocking by only using
bounds on critical section lengths.

1The only exception to such a limitation is related to the case in which com-
ponent resources are accessed by tasks assigned to different virtual processors:
in this case, after component integration, these resources could result in global
resources and it would be possible to reduce pessimism in the schedulability
analysis for the tasks of a component (but not for tasks in other components).



B. Integrating MSRP in the M-BROE framework

We first present expressions for computing remote blocking,
non-preemptive blocking and local blocking; then, in the next
section we integrate them with the schedulability analysis of
our proposed framework based on M-BROE.
Remote blocking. Given a global resource R` accessed from
processor Pj , an upper-bound on the maximum spinning time
ξ`,j can be computed by using Equation (4). Then, to compute
an upper-bound Si on remote blocking on a task τi we have
to account for the maximum spinning time for each critical
section of τi, with P(S(τi)) = Pj , that is:

Si =
∑
R`

{ηi,`ξ`,j | R` used by τi}. (5)

The term Si will be used to inflate the computation time of
task τi. Please note that, since Rule 5 of the M-BROE server
ensures that the budget will never exhaust during the spinning
phase, we can account for a single spinning time ξ`,j for each
critical section of R` used by τi.
Non-preemptive blocking. Due to non-preemptive spinning
and non-preemptive access to global resources, tasks are af-
fected by a blocking factor equal to the longest non-preemptive
section causing arrival blocking. Under local EDF scheduling,
such a blocking factor can be computed as:

BNP
i = max

k,R`

{ξ`,j + δk,` | R` used by τk ∧Dk > Di}, (6)

assuming that tasks τk and τi execute on processor Pj (i.e.,
P(S(τk)) = P(S(τi)) = Pj).
Local blocking. Local resources are accessed using the classi-
cal (uniprocessor) SRP protocol. The SRP blocking factor for
task τi due to local resources is denoted by BLi . For lack of
space, we omit the expression for such blocking factor, please
refer to [14] for details about SRP blocking.

The actual arrival blocking imposed on each task τi can be
then computed as:

Bi = max{BNP
i , BLi }. (7)

Upper-bound for the spinning time. Please note that a
component does not know the parameters of the tasks in the
other components. Moreover, when testing the schedulability
of a component on its virtual processors, it is not possible to
infer on the mapping that will be performed by the component
integrator. Looking at the definition of the spinning time ξ`,j in
Equation (4), we can observe that such an equation depends on
(i) critical section lengths of the other tasks, (ii) the processor
on which the tasks are assigned. Since system resources are
potentially used by all the components, it is not possible to
exactly compute the spinning time ξ`,j . Hence, a safe upper-
bound on that term has to be used in the schedulability analysis,
that is expressed by the following lemma.

Lemma 1: For each system resource R` accessed by tasks
executing on procesor Pj we have

∀`, j ξ`,j ≤ (M − 1)H.

Proof: By the assumption stated in Equation (1), each task
admitted in the system must have bounded critical sections such

that δi,` ≤ H,∀τi,∀R`. Since we are using non-preemptive
FIFO spinlocks, we can conclude that the spinning time ξ`,j is
bounded by at most a critical section length for each processor
different from Pj , leading to ξ`,j ≤ (M − 1)H. Hence the
lemma follows.

Regarding component resources, critical section lengths are
known, since they belong to tasks of the same component. How-
ever, when tasks are assigned to different virtual processors, it
is not possible to infer on which physical processor such tasks
will execute. For this reason, in order to compute a safe bound
on the spinning time, we have to assume that all the virtual
processors of a component will be assigned to different physical
processors. Therefore, for each component Γk, the upper bound
on the spinning time ξ`,j for a component resource R` can be
computed as

ξ`,j ≤
∑

Sk
j 6=Sk

m

max{δi,` | S(τi) = Skm}.

C. Component local analysis

Now, it is possible to derive a schedulability test for a set of
tasks executing upon an M-BROE server. In this section, we
refer to a single M-BROE server used to implement one of the
M virtual processors required from a component. The M-BROE
is configured with parameters α = Q/P and ∆ = 2(P − Q),
where Q and P refer to budget and period of the server, as
specified in the component interface.

Following the processor demand criterion extended to in-
clude resource sharing [22], a set of tasks T assigned to an
M-BROE server is EDF-schedulable if:

∀t > 0 B(t) + dbf(t) ≤ sbfB(S, t,X) (8)

where

dbf(t) =
∑
τi∈T

(⌊
t−Di

Ti

⌋
+ 1

)
0

(Ci + Si), (9)

B(t) = max{Bi | Di ≤ t}, (10)

and sbfB(S, t,X) is the supply bound function for the M-BROE
server. In the equation above, the notation (x)0 is used to denote
max(0, x).

To compute a lower bound on the supply provided by an
M-BROE server, we note that the only difference with respect
to the original BROE server lies in the additional budget check
performed whenever a global resource is accessed (see Rule 5 in
Section III-A). Such a budget check is identical to the original
one (Rule 4), using a larger threshold to include the spinning
time, i.e., q(t) ≥ (ξ`,j + δi,`). Therefore, we can safely re-use
the same supply bound function provided by the original BROE
server detailed in [20], [23], with a different budget threshold.
In other words, the characterization of the processing bandwidth
supplied by an M-BROE server does not introduced additional
pessimism with respect to the case without global resources.

Let X be the maximum budget threshold that drives the
budget check, the supply function sbfB(S, t,X) of the M-
BROE server is reported in Equation (11).



sbfB(S, t,X) =


t−∆− (k − 1)(P −Q) tA < t ≤ tB
kQ− kX tB < t ≤ tC
α(t−∆) tC < t ≤ tD

(11)
where

k =

⌈
t−∆

P

⌉
(12)

and tA, tB , tC , and tD are reported in Table II. The function is
equal to 0 in the interval [0,∆]. More details on the derivation
of Equation (11) can be found in [20], [23].

tA ∆ + (k − 1)P
tB ∆ + (k − 1)P + (Q− kX)
tC ∆ + kP − kX/α
tD ∆ + kP

Table II: Values for sbfB .

�

�

� � �

2�

2� � 2�

� � 2�

2� � 4�

� � 0

0 � � � �

2�

∆

	
� � ∆


Figure 2: Examples of supply functions sbfB for the M-BROE
server for different values of parameter X .

The function sbfB(S, t,X) is illustrated in Figure 2 for
different values of X . As clear from the graph, the bigger
the value of X , the lower the supply value for the same time
interval [0, t].

The value X (representing the maximum threshold used for
the budget check of the M-BROE server) can be computed as:

X = max
R`

{ξ`,j + δi,` | R` used by τi ∈ T }, (13)

with R` non-local resource (since local resources do not involve
a budget check) and assuming ξ`,j = 0 for processor-local
resources since processor-local resources do not involve a
spinning phase (see Rule 4 of M-BROE).

Also note that the demand bound function reported in Equa-
tion (9) takes into account the computation time inflation related
to remote blocking through the term Si.

D. Component integration analysis

The component integrator has to ensure the schedulability of
the reservation servers assigned to each processor. Each com-
ponent provides a set of reservation servers to the component
integrator according to the specified interface; such reservation
servers will be scheduled under partitioned scheduling on the
M physical processors. Hence, given an assignment of each
reservation server to a processor, uniprocessor schedulability
analysis from [6] can then be used. However, since the access

to global resources results in non-preemptive sections, an
additional blocking term has to be taken into account to ensure
the schedulability of the servers. To better clarify this point,
consider a task τi executing on a server S assigned to processor
P(S). When τi locks a global resource R`, it can potentially
experience a non-preemptive spinning phase, followed by a
non-preemptive critical section on R`. In this case, all the
other reservation servers S′ assigned to processor P(S) (i.e.,
P(S) = P(S′)) will be not able to preempt S. This phe-
nomenon is denoted as non-preemptive server blocking. Such
a blocking concurs with H-SRP blocking for processor-local
resources to quantify the maximum blocking time imposed
on each reservation server. Under the H-SRP protocol, servers
can be blocked by at most one single critical section (like in
classical SRP); further details about H-SRP can be found in
[3], [6]. The overall blocking on each reservation server S
depends on the resources used by the tasks executing upon S.
Since our interface does not export information about shared
resources, a bound on server blocking has to be used to verify
the schedulability of the set of reservation servers assigned to
each processor. Improved schedulability tests for the component
integration can be derived by expanding the interface exported
from each component, as discussed in Section VI.

The non-preemptive server blocking coming from a server S
is originated from the largest non-preemptive section imposed
by tasks executing upon S. By Lemma 1 is then possible to
bound such a blocking factor for system resources. Similarly,
Equation (2) allows to bound the server blocking related to
component resources.

Now it is possible to derive a schedulability test for the
component integrator. A set of components Γ0, . . . ,Γk, . . . ,Γn
can be scheduled if, for each processor Pm with m = 1, . . . ,M ,
the following condition holds:

∀Skj : P(Skj ) = Pm,
∑

r,l:P l
r≤P

k
j

∧
P(Sl

r)=Pm

Qlr
P lr

+
MH
P kj

≤ 1. (14)

V. M-BROE DESIGN CHOICES

In the original BROE server, the problem of budget depletion
inside a critical section is avoided by performing a budget check
before locking a resource. When the budget is not enough
to complete the critical section, BROE postpones the server
deadline to perform a budget replenishment. This mechanism
introduces an additional payback in terms of schedulability
analysis, reflected in a reduced supply function of the BROE
server with respect to a classical periodic server (as the H-CBS)
where no resource sharing is taken into account (that is equiv-
alent to the case for X = 0). With respect to Equation (11),
the payback depends on the maximum threshold X used in the
budget check: the greater the threshold, the lower the supply
function provided by BROE (as illustrated in Figure 2).

When spinlocks are used, each locking of a global resource
is composed of an initial phase of spinning followed by the
actual critical section for the resource. Hence, if a budget
exhaustion occurs in the spinning phase, the server is suspended



leaving the resource unlocked. One could think that it would
be more convenient to perform the budget check after the
spinning phase, i.e., just before entering the critical section for
a global resource. However, we identified some disadvantages
in following this approach, thus the M-BROE protocol has been
defined to perform the budget check before the spinning phase,
taking into account the maximum spinning time (see Rule 5 in
Section III-A).

In the following we refer to a single M-BROE server and a
generic task τi executing upon it. To distinguish between the
two budget check schemes we denote them as:
• (i) BCAS (Budget Check After Spinning), the scheme

where the budget check is performed considering only the
critical section length;

• (ii) BCBS (Budget Check Before Spinning), the scheme
where the budget check is performed considering both
critical section length and maximum spinning time.

Formally, considering a task τi accessing a global resource R`
at time t, we have the following budget checks: (i) BCAS:
q(t) ≥ δi,`; (ii) BCBS: q(t) ≥ (ξ`,j + δi,`).

Figure 3: Schedule scenarios for the two budget check schemes.

A. The BCAS scheme

Suppose that a task τi executing on processor Pj (i.e.,
P(S(τi)) = Pj) is accessing a global resource R` under the
BCAS scheme, as illustrated in Figure 3-a. First of all notice
that, if the server budget exhausts during the spinning phase, τi
cannot make progress in the resource contention, hence it has
to be removed from the FIFO queue related to R`. In this way
the task has to re-perform the lock on R` at the next budget
replenishment of its server. This behavior results in three effects
that have to be considered:

1) The maximum spinning time plus the critical section
length of R` has to fit inside the full budget of the
server, that is Q ≥ (ξ`,j + δi,`), otherwise τi would incur
in starvation in accessing R` also when the budget is
replenished.

2) Still to avoid starvation in accessing R`, local preemption
has to remain disabled until the critical section on R`
will be completed. In fact, if the budget exhausts during
the spinning phase and other tasks are allowed to execute
before τi at the next budget replenishment, τi could never
have sufficient budget to perform the access to R`, so
incurring in starvation. Since in the worst-case the budget
exhaustion can occur just before finishing the spinning
phase, the non-preemptive blocking imposed by τi will
result in 2ξ`,j + δi,`. The access to resource R` will be
then guaranteed at the next budget replenishment since
Q ≥ (ξ`,j + δi,`) and no preemption on τi is allowed until
R` will be released.

3) For the same reason explained in point 2), the computation
time of τi will be inflated by 2ξ`,j , that is, the task could
wait (and then spin) in the FIFO queue associated to R`
twice the worst-case waiting time before accessing the
resource.

B. The BCBS scheme

Consider now the BCBS scheme in the same scenario ad-
dressed for BCAS, as illustrated in Figure 3-b. In this case
the server budget will never exhaust during the spinning phase.
Hence, when the budget check has been passed, task τi will be
able to spin for the maximum waiting time in the FIFO queue
without being removed from the queue. In this way the WCET
of τi will be inflated by ξ`,j , as in the original MSRP analysis
[18], that is half the inflation required by BCAS. Note that,
as with the BCAS scheme, we must have Q ≥ (ξ`,j + δi,`),
otherwise the budget check will always fail. For the same
reason, the non-preemptive blocking imposed by τi is ξ`,j+δi,`,
which is less than the one under BCAS scheme.

However, while the BCBS scheme results in less WCET
inflation and less non-preemptive blocking, it has a payback
in terms of supply function of the server. As recalled at the
beginning of this section, the greater the threshold used in the
budget check, the lower the supply function provided by the M-
BROE server. Hence, under BCBS we will have a lower supply
with respect to BCAS.

C. Comparing BCBS and BCAS

Table III summarizes the differences between the BCAS and
BCBS schemes identified above.

BCAS BCBS
Non-preemptive

blocking 2ξ`,j + δi,` ξ`,j + δi,`

WCET inflation 2ξ`,j ξ`,j
Budget check
threshold δi,` ξ`,j + δi,`

Table III: Comparison between BCAS and BCBS for a task τi
(executing on processor Pj) accessing a global resource R`.



In spite of the presented advantages of BCBS over BCAS,
we proved (see Appendix A) that it is not possible to derive an
analytically dominance of a scheme over the other. Neverthe-
less, BCBS is more attractive in most practical cases, since it
enforces a lower WCET inflation with respect to BCAS, which
could result disruptive for tasks having a consistent number of
critical sections.

To better evaluate the performance in schedulability of such
two schemes, we carried out a set of experimental results based
on synthetic workload.
Synthetic workload generation A random bandwidth α for
an M-BROE server is generated in the range [0.1, 0.95].
Then, a random server budget Q is generated in the range
[MH, 10MH] and the server period P is then computed as
P = Q/α. A set T of n tasks is randomly generated using the
UUniFast [24] algorithm, enforcing 2P ≤ Ti ≤ 10P,∀τi ∈ T .
The overall utilization of such tasks is set to be ψ ·α, where ψ
denotes the server load normalized to the server bandwidth. We
assume the existence of NR global resources. For each global
resource R`, a random number of tasks in the range [1, rsf·n] is
selected to use R`. The rsf parameter (resource sharing factor)
indicates “how many” tasks use global resources. For each task
τi accessing R`, we generate ηi,` ∈ [1, ηMAX] critical sections
of length δi,` ∈ (0,H]. To obtain realistic task sets, we enforce
Ci ≥

∑
R`

(ηi,` · δi,`), ∀τi ∈ T . All the random variables
are generated with uniform distribution.The values used for the
parameters M , NR, ηMAX, ψ, rsf, n and H will be specified
later for each specific experiment and will be reported in the
caption of the graphs.
Experimental results In all the experiments presented below
we performed the schedulability test presented in Section IV-C
comparing the BCAS and BCBS schemes. Each value plotted
in the graphs is computed as the average over a population of
5000 randomly generated task sets.

A first experiment has been carried out to measure the
schedulability ratio as a function of the server load ψ. Parameter
ψ has been varied from 0.25 to 1, with step 0.05. The result
of this experiment is reported in Figure 4. Clearly, under both
schemes the schedulability ratio decreases as ψ increases, but
BCBS always outperforms BCAS.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

ψ

Sc
he

du
la

bi
lit

y
ra

tio

BCBS
BCAS

Figure 4: M = 4, ηMAX = 4, rsf = 0.5, n ∈ [2, 10], NR = 5.

Figure 5 illustrates the result of a second experiments aimed
at observing the schedulability ratio as a function of the
maximum number ηMAX of critical sections per task. Parameter
ηMAX has been varied from 1 to 10. As shown in the graph,
the gap between BCBS and BCAS tends to increase as ηMAX

increases, due to the greater WCET inflation required under the
BCAS scheme.

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

ηMAX

Sc
he

du
la

bi
lit

y
ra

tio

BCBS
BCAS

Figure 5: M = 4, ψ = 0.5, rsf = 0.5, n ∈ [2, 10], NR = 5.

A third experiment has been carried out to measure the
schedulability ratio as a function of the number of tasks
executing upon the M-BROE server. The number of tasks n
has been varied from 2 to 15. Results are reported in Figure 6.
In this case, a significant increasing gap can be noticed between
BCBS and BCAS, as n increases.

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

n

Sc
he

du
la

bi
lit

y
ra

tio

BCBS
BCAS

Figure 6: M = 4, ψ = 0.5, rsf = 0.5, ηMAX = 4, NR = 5.

Figure 7 reports the results of a last experiment aimed at
evaluating the schedulability ratio as a function of the resource
sharing factor rsf, which specifies the ratio of tasks accessing
global resources. This parameter has been varied from 0.1 to
1 with step 0.1. In this case, the performance improvements
of BCBS over BCAS is marginal for low values of rsf, while
tends to increase as rsf increases.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

rsf

Sc
he

du
la

bi
lit

y
ra

tio

BCBS
BCAS

Figure 7: M = 4, ψ = 0.5, ηMAX = 4, NR = 5, n ∈ [2, 10].

Overall, in all the tested configurations (that are many more
than the ones reported in this paper), the BCBS scheme always
outperformed the BCAS scheme.



VI. EXTENDING THE COMPONENT INTERFACE

As stated in Section II, each component Γk exports an
interface to the component integrator consisting of M couples
(Qkj , P

k
j ), with j = 1, ...,M , representing the budget and

the period of the reservation server associated to Skj . This
interface is minimal and does not export any information
related to resource sharing of a component. For this reason,
the blocking bound MH has to be used in Equation (14) when
component are integrated, assuming that all the reservation
servers serve tasks accessing all resources for their maximum
resource holding time H. Moreover, still because we do not
know which resources are used by each reservation server,
processor-local resources will always be accounted as global
resources through the blocking bound MH. On the other hand,
besides having evident disadvantages, the interface (Qkj , P

k
j ) is

very simple and potentially allows to change component details
related to resource sharing without request a new admission
procedure at the component integrator.

To reduce pessimism when components are integrated (then
improving component acceptance), we analyze an extension
of the component interface by including a set of parameters
related to resource sharing. For each component Γk, the ex-
tended interface is composed of M triples (Qkj , P

k
j ,
~Hk
j ), with

j = 1, ...,M . The new exported parameter ~H is a vector of
resource holding times defined as follows:

~Hk
j = {Hk

j,`1 , . . . ,H
k
j,`NR

, Hk
j,Vk
},

where R`, . . . , R`NR
are system resources and RVk

is a
virtual component resource used to abstract all the component
resources used in Γk. This abstraction is provided since we do
not want to export details related to each component resource.

The value of HVk
is the maximum resource holding time

among all the component resources used by tasks executing on
virtual processor Skj , that are non-local resources. Component
resources resulting in local resources do not have to be taken
into account since they will be accessed using the classical
SRP protocol; hence, such resources cannot generate blocking
time for a reservation server. To exclude local resources in
computing HVk

, we can use the set Rk defined in Equation (3).
Then, it is possible to compute HVk

as

Hk
j,Vk

= max
Rq,τi
{δi,q | S(τi) = Skj ∧Rq ∈ Rk}.

Similarly, for each system resource R`, we compute Hk
j,` as

Hk
j,` = max

τi
{δi,` | S(τi) = Skj }.

Now, using the extended interface (Qkj , P
k
j ,
~Hk
j ), it is pos-

sible to improve the component integration analysis of Sec-
tion IV-D by computing a tighter bound on server blocking for
Equation (14).

As stated in Section IV-D, the blocking Bkj imposed on
each reservation server associated to Skj is the maximum
between the non-preemptive server blocking Bk,NP

j (caused by
global resources) and the H-SRP blocking Bk,H-SRP

j (caused by

processor-local resources). Hence we have

Bkj = max{Bk,NP
j , Bk,H-SRP

j }.

Given an assignment of reservation servers to processor, thanks
to the extended interface, it is possible to identify which
resource results in a global resource and which resource results
in a processor-local resource.2

The H-SRP blocking for a reservation server Skj (please refer
to [3], [6] for further details) can be computed as:

Bk,H-SRP
j = max

l,r:P l
r>P

j
k

{
H l
r,` | ∃Suv , Hu

v,` > 0 ∧ Puv ≤ P
j
k

}
0
.

(15)
where servers Skj , Slr and Suv are assigned to the same processor
(i.e., P(Skj ) = P(Slr) = P(Suv )).

Non-preemptive blocking for a server Skj assigned to pro-
cessor Px can be computed by looking at the maximum non-
preemptive section in accessing global resources, that is:

Bk,NP
j = max

l,r:P l
r>P

j
k

{
ξ`,x +H l

r,` | P(Slr) = Pm
}
0
,

where the spinning time ξ`,x for R` on processor Px can be
bounded (exploiting the parameters of the extended interface)
by

ξ`,x ≤
∑
Px 6=Pm

max{H l
r,` | P(Slr) = Pm}.

Finally, it is possible to refine the integration analysis of
Equation (14) with the following schedulability test:

∀Skj : P(Skj ) = Pm,
∑

r,l:P l
r≤P

k
j

∧
P(Sl

r)=Pm

Qlr
P lr

+
Bkj
P kj
≤ 1. (16)

VII. VIRTUAL PROCESSOR DESIGN AND ALLOCATION

Although there is no space in this paper to discuss how
to partition a given application over a virtual multiprocessor
platform and how to select the best reservation parameters for
each component, we would like to point out some issues that
are worth to be further investigated.

For our multi-processor reservation framework to work prop-
erly, any assignment of tasks to virtual processors is valid
provided the two following conditions are met: (i) the schedula-
bility test in Equation (8) is passed for each virtual processor;
and (ii) the bound on resource holding times of component
resources expressed by Equation (2) is satisfied.

Whether allocating the application tasks on a small set of
“heavy” reservations, or distribute them among a larger set of
“lighter” servers is a design choice that is strictly connected
to the mapping policy adopted at the component integration
level. In particular, these two alternative strategies may lead to
different performance depending on the application scenario.

2Please note that a reservation server which is not using a resource R` will
have Hk

j,` = 0, hence it is possible to identify if a resource will be only used
by reservation server assigned to the same processor or not.



Partitioning tasks into a smaller number “heavy” reservations
allows more tasks to be scheduled within each reservation
server, potentially reducing the number of virtual processors
accessing a component resource. This allows reducing the spin-
ning time and the non-preemptive blocking due to component
resources. However, having heavier servers may impose more
constraints on the component integrator, which has to allocate
servers to physical cores satisfying the schedulability test given
in Equation (14) or (16). As in a bin packing problem, larger
bins are more difficult to accommodate in the available space
left by the previous allocations, leaving a considerable free
utilization on each core.

Conversely, using a higher number of lighter servers makes
the integration phase easier, but satisfying the local schedula-
bility test on each virtual processor and the requirements on the
resource holding time of component resources becomes more
difficult. This happen because: (i) a fewer number of tasks may
be assigned to each virtual processor; and (ii) tasks accessing
the same resource are likely to be spread among different virtual
processors, increasing the spinning and blocking terms, leading
to a larger resource holding time that may exceed the allowed
parameter MH.

Similar considerations can be made at the component in-
tegration level. These problems can be formulated as an ILP
optimization problem.

We plan to analyze these design decisions in a future work,
where we will propose an integrated component interface
design and component integration for a set of applications
scheduled with the M-BROE framework.

VIII. CONCLUSIONS

This paper presented a framework for supporting component-
based design in multiprocessor real-time systems under par-
titioned scheduling. Each component is statically partitioned
and guaranteed over a set of virtual processors; then, an
interface representing the computational requirements of such
virtual processors is provided to a component integrator. Vir-
tual processors are implemented through reservation servers.
Components are integrated assigning virtual processors to the
physical processors available in the computing platform. To
support the proposed framework, a novel scheduling mecha-
nism, called M-BROE, has been presented to enable resource
sharing among independently developed real-time applications
running on the multiprocessor system under hierarchical reser-
vations. The resource access protocol makes use of FIFO
non-preemptive spinlocks to ensure mutual exclusion of the
resources shared among different processors. Blocking factors
have been estimated and a schedulability test has been derived
under partitioned EDF scheduling.

Considering that the presented protocol is based on a budget
check performed when a task attempts to enter a critical section,
two budget checking schemes have been analyzed: budget
check before spinning (BCBS) and budget check after spinning
(BCAS). Although it has been proved that none of the two
schemes dominates the other, extensive simulations experiments
on synthetic generated task sets showed that BCBS performs
significantly better than BCAS in most practical situations.

Another contribution of the paper was to propose two compo-
nent interfaces: a simple one that only requires the knowledge
of the parameters (budget and period) of each reservation,
and a more detailed one that also exports the knowledge
of the used resources. The simpler interface introduces more
pessimism in the analysis at component integration, whereas the
second removes such a pessimism by taking into account the
knowledge about resource usage and thus allowing computing
a more precise bound on the blocking terms.

ACKNOWLEDGEMENTS

This work has been partially supported by the 7th Framework
Programme JUNIPER (FP7-ICT-2011.4.4) project, founded by
the European Community under grant agreement n. 318763,
and the 7th Framework Programme P-SOCRATES (FP7/2007-
2013), grant agreement n. 611016.

REFERENCES

[1] C. W. Mercer, S. Savage, and H. Tokuda, “Temporal protection in real-
time operating systems,” in Proc. of the 11th IEEE workshop on Real-
Time Operating System and Software, Seattle, Washington, May 1994,
pp. 79–83.

[2] L. Abeni and G. Buttazzo, “Resource reservations in dynamic real-time
systems,” Real-Time Systems, vol. 27, no. 2, pp. 123–165, 2004.

[3] R. I. Davis and A. Burns, “Resource sharing in hierarchical fixed priority
pre-emptive systems,” in Proc. of the IEEE Real-time Systems Symposium
(RTSS 2006), Rio de Janeiro, Brazil, Dec. 5-8, 2006, pp. 257–268.

[4] G. Lamastra, G. Lipari, and L. Abeni, “A bandwidth inheritance algorithm
for real-time task synchronization in open systems,” in Proc. of the 22nd
IEEE Real-Time Systems Symposium, London, UK, December 3-6 2001,
pp. 151–160.

[5] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “SIRAP: a synchronization
protocol for hierarchical resource sharing in real-time open systems,” in
Proc. of the 7th ACM & IEEE International Conference on Embedded
Software (EMSOFT 2007), Salzburg, Austria, October 1-3, 2007.

[6] M. Bertogna, N. Fisher, and S. Baruah, “Resource-sharing servers for
open environments,” IEEE Transactions on Industrial Informatics, vol. 5,
no. 3, pp. 202–219, August 2009.

[7] AUTOSAR, AUTOSAR Release 4.1, Specification of Operating System,
http://www.autosar.org, 2013.

[8] ARINC, ARINC 651: Design Guidance for Integrated Modular Avionics.
Airlines Electronic Engineering Committee (AEEC), November 1991.

[9] H. Leontyev and J. Anderson, “A hierarchical multiprocessor bandwidth
reservation scheme with timing guarantees,” vol. 43, no. 1, September
2009, pp. 60–92.

[10] E. Bini, G. Buttazzo, J. Eker, S. Schorr, R. Guerra, G. Fohler, K.-E. Arzen,
V. R. Segovia, and C. Scordino, “Resource management on multicore
systems: The ACTORS approach,” IEEE Micro, vol. 31, no. 3, pp. 72–
81, May-June 2011.

[11] R. Inam, N. Mahmud, M. Behnam, T. Nolte, and M. Sjdin, “The
multi-resource server for predictable execution on multi-core platforms,”
in Proc. of the 20th IEEE Real-Time and Embedded Technology and
Applications Symp. (RTAS 2014), Berlin, Germany, April 15-17, 2014.

[12] F. Nemati, M. Behnam, and T. Nolte, “Independently-developed real-time
systems on multi-cores with shared resources,” in Proceedings of 23th
Euromicro Conference on Real-time Systems (ECRTS11), 2011.

[13] S. Afshar, N. Khalilzad, F. Nemati, and T. Nolte, “Resource sharing
among prioritized real-time applications on multiprocessors,” in 6th
International Workshop on Compositional Theory and Technology for
Real-Time Embedded Systems, 2013.

[14] T. P. Baker, “Stack-based scheduling for realtime processes,” Real-Time
Systems, vol. 3, no. 1, pp. 67–99, April 1991.

[15] M. Bertogna, N. Fisher, and S. Baruah, “Resource holding times: Compu-
tation and optimization,” Real-Time Systems, vol. 41, no. 2, pp. 87–117,
February 2009.

[16] A. Biondi, A. Melani, and M. Bertogna, “Hard constant bandwidth server:
Comprehensive formulation and critical scenarios,” in Proceedings of
the 9th IEEE International Symposium on Industrial Embedded Systems
(SIES 2014), Pisa, Italy, 18-20 June, 2014.



[17] L. Marzario, G. Lipari, P. Balbastre, and A. Crespo, “IRIS: A new
reclaiming algorithm for server-based real-time systems,” in Proc. of the
IEEE Real-Time and Embedded Technology and Applications Symposium,
Toronto, Canada, May 25-28 2004.

[18] P. Gai, G. Lipari, and M. D. Natale, “Minimizing memory utilization of
real-time task sets in single and multi-processor systems-on-a-chip,” in
Proceedings of IEEE Real-Time Systems Symposium 2011.

[19] A. Wieder and B. Brandenburg, “On spin locks in AUTOSAR: Blocking
analysis of FIFO, unordered, and priority-ordered spin locks,” in Pro-
ceedings of the 34th IEEE Real-Time Systems Symposium (RTSS’2013),
December 2013, pp. 45–56.

[20] A. Biondi, G. Buttazzo, and M. Bertogna, “Schedulability analysis of
hierarchical real-time systems under shared resources,” RETIS Lab,
Scuola Superiore Sant’Anna, Italy, Tech. Report TR-13-01, July 2013.

[21] B. Brandenburg, “Scheduling and locking in multiprocessor real-time op-
erating systems,” in Ph.D. dissertation, The University of North Carolina
at Chapel Hill, 2011.

[22] S. Baruah, “Resource sharing in EDF-scheduled systems: a closer
look,” in Proceedings of the 27th IEEE Real-Time Systems Symposium
(RTSS’06), Rio de Janeiro, Brazil, December 5-8, 2006.

[23] A. Biondi, A. Melani, M. Bertogna, and G. Buttazzo, “Optimal design
for reservation servers under shared resources,” in Proceedings of the
26th Euromicro Conference on Real-Time Systems (ECRTS 14), Madrid,
Spain, 9-11 July, 2014.

[24] E. Bini and G. C. Buttazzo, “Measuring the performance of schedulability
tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, 2005.

APPENDIX A
ANALITYCAL COMPARISON BETWEEN BCBS AND BCAS
Lemma 2: The BCBS scheme does not analytically domi-

nate the BCAS scheme.
Proof: Consider an M-BROE server S having budget Q

and period P , leading to a bandwidth α = Q/P and a worst-
case service delay ∆ = 2(P −Q). Consider a simple task set
composed of 2 tasks, τ1 and τ2, executing upon the M-BROE
server under local EDF scheduling.

Task τ2 has a single critical section of length δ2,` on a
global resource R`, while task τ1 does not have critical sections.
Let also ξ` be the maximum spinning time for accessing R`.
Under the BCBS scheme, the budget check threshold will be
XBCBS = δ2,` + ξ`, while under the BCAS scheme it will be
XBCAS = δ2,`. In addition, suppose that Q > 2XBCBS. The non-
preemptive blocking for BCBS is equal to BBCBS = δ2,` + ξ`,
while for BCAS is equal to BBCAS = δ2,`+2ξ`. Such a blocking
factor is imposed from time t ≥ D1. For task τ1, we set
C1 = 2Q−2XBCBS+ε−BBCBS, D1 = ∆+P+2Q−2XBCAS+ε,
and T1 = 10P > D1. For task τ2, we set C2 = δ2,` + ε and
D2 = T2 = T1. Parameter ε is an arbitrary small number such
that 0 < ε < ξ` (e.g., ε = 1).

The schedulability of the task set has to be only checked
in two time instants, that are t1 = D1 and t2 = T1 = T2.
Let us consider the BCBS scheme first: in this case, we have
dbf(t1) = C1 and sbfB(S, t1, X

BCBS) = 2Q− 2XBCBS. There-
fore, verifying the schedulability condition of Equation (8) we
obtain

BBCBS + dbf(t1) ≤ sbfB(S, t1, X
BCBS),

2Q− 2XBCBS + ε ≤ 2Q− 2XBCBS

leading to ε ≤ 0, hence the test fails.
Now, consider the BCAS scheme. In this case, we have

dbf(t1) = C1 and sbfB(S, t1, X
BCAS) = 2Q − 2XBCAS.

Replacing such terms in the schedulability test we obtain:

BBCAS + dbf(t1) ≤ sbfB(S, t1, X
BCAS),

BBCAS + 2Q− 2XBCBS + ε−BBCBS ≤ 2Q− 2XBCAS,

BBCAS + 2XBCAS − 2XBCBS + ε−BBCBS ≤ 0,

BBCAS + 2XBCAS − 3(δ2,` + ξ`) + ε ≤ 0,

δ2,` + 2ξ` + 2δ2,` − 3(δ2,` + ξ`) + ε ≤ 0,

2ξ` − 3ξ` + ε ≤ 0.

Hence, the schedulability check at time t1 succeeds. Following
a similar reasoning it is easy to show that the check also
succeeds at time t2.

Lemma 3: The BCAS scheme does not analytically domi-
nate the BCBS scheme.

Proof: Consider an M-BROE server S having budget Q
and period P , leading to a bandwidth α = Q/P and a worst-
case service delay ∆ = 2(P −Q). Consider a simple task set
composed of 2 tasks, τ1 and τ2, executing upon the M-BROE
server under local EDF scheduling.

Task τ1 has a single critical section of length δ1,` on a
global resource R`, while task τ2 does not have critical sections.
Let also ξ` be the maximum spinning time for accessing R`.
Under the BCBS scheme, the budget check threshold will be
XBCBS = δ1,` + ξ`, while under the BCAS scheme it will be
XBCAS = δ1,`. In addition, suppose that Q > 2XBCBS. The non-
preemptive blocking for BCBS is equal to BBCBS = δ1,` + ξ`,
while for BCAS is equal to BBCAS = δ2,`+2ξ`. Such a blocking
factor is imposed from time t ≥ D1. For task τ1, we set
C1 = Q−XBCBS−BBCBS− ξ`− ε, D1 = ∆ +Q−XBCAS + ε,
and T1 = 10P > D1. For task τ2, we set C2 = ε and
D2 = T2 = T1. Parameter ε is an arbitrary small number such
that 0 < ε < ξ` (e.g., ε = 1).

The schedulability of the task set has to be only checked
in two time instants, that are t1 = D1 and t2 = T1 = T2.
Let us consider the BCBS scheme first: in this case, we have
dbf(t1) = C1+ξ` and sbfB(S, t1, X

BCBS) = Q−XBCBS. There-
fore, verifying the schedulability condition of Equation (8) we
obtain

BBCBS + dbf(t1) ≤ sbfB(S, t1, X
BCBS),

Q−XBCBS − ε ≤ Q−XBCBS,

leading to ε ≥ 0, hence the test is passed. Following a similar
reasoning, it is easy to show that the check also succeeds at
time t2.

Now, consider the BCAS scheme. In this case, we have
dbf(t1) = C1 + 2ξ` and sbfB(S, t1, X

BCAS) = Q − XBCAS.
Replacing such terms in the schedulability test we obtain:

BBCAS +Q−XBCBS − ε−BBCBS + ξ` ≤ sbfB(S, t1, X
BCAS),

BBCAS +Q−XBCBS − ε−BBCBS + ξ` ≤ Q−XBCAS,

BBCAS −XBCBS − ε−BBCBS + ξ` ≤ −XBCAS,

δ1,` + 3ξ` − 2(ξ` + δ1,`)− ε ≤ −δ1,`,

ξ` − ε ≤ 0,

Hence, the test fails for t1.



APPENDIX B
ADDITIONAL EXPERIMENTAL RESULTS

Figures 8, 9, 10, 11, 12 and 13 report additional experimental
results comparing the BCBS and BCAS schemes. The values
for the configuration parameters used for such experiments are
reported in the caption of the figures.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

ψ

Sc
he

du
la

bi
lit

y
ra

tio

BCBS
BCAS

Figure 8: M = 4, ηMAX = 4, rsf = 0.3, n ∈ [2, 10], NR = 5.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

ψ

Sc
he

du
la

bi
lit

y
ra

tio

BCBS
BCAS

Figure 9: M = 4, ηMAX = 4, rsf = 0.75, n ∈ [2, 10], NR = 5.

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

n

Sc
he

du
la

bi
lit

y
ra

tio

BCBS
BCAS

Figure 10: M = 4, ηMAX = 4, rsf = 0.75, ψ = 0.75, NR = 5.

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

M

Sc
he

du
la

bi
lit

y
ra

tio

BCBS
BCAS

Figure 11: ηMAX = 4, rsf = 0.3, ψ = 0.6, n ∈ [2, 10], NR = 5.

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

M

Sc
he

du
la

bi
lit

y
ra

tio
BCBS
BCAS

Figure 12: ηMAX = 4, rsf = 0.5, ψ = 0.6, n ∈ [2, 10], NR = 5.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

rsf

Sc
he

du
la

bi
lit

y
ra

tio

BCBS
BCAS

Figure 13: M = 4, ηMAX = 2, ψ = 0.6, n ∈ [2, 10], NR = 5.


