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Abstract—This paper revisits lightweight synchronization under
partitioned earliest-deadline first (P-EDF) scheduling. Four different
lightweight synchronization mechanisms—namely preemptive and
non-preemptive lock-free synchronization, as well as preemptive and
non-preemptive FIFO spin locks—are studied by developing a new
inflation-free schedulability test, jointly with matching bounds on
worst-case synchronization delays. The synchronization approaches
are compared in terms of schedulability in a large-scale empirical
study considering both symmetric and asymmetric multiprocessors.
While non-preemptive FIFO spin locks were found to generally per-
form best, lock-free synchronization was observed to offer significant
advantages on asymmetric platforms.

I. INTRODUCTION

From a pragmatic point of view, partitioned earliest-deadline
first (P-EDF) scheduling is in many ways an excellent choice
for multiprocessor real-time systems, as it offers a favorable
combination of low runtime overheads [1], good scalability [2],
accurate schedulability analysis [3–5], consistently good empirical
performance at high utilizations [1, 6, 7], and growing availability
in commercially supported RTOS platforms (e.g., ERIKA Enter-
prise [8] and SCHED DEADLINE [9] in Linux).

However, to support real-world applications, pure scheduling
is not enough: applications that share resources such as data
structures or I/O devices—which is to say, virtually any practical
software system—also require predictable and efficient synchro-
nization mechanisms.

Naturally, the question of how to best synchronize under P-
EDF has received considerable attention in prior work [1, 7, 10],
and a clear picture has emerged: non-preemptive FIFO spin locks
are highly predictable, lightweight in terms of overhead, easy
to use and implement, and analytically well understood [10–12].
However, as the state of the art advances, and as the hardware
landscape continues to evolve, these earlier analyses and studies
increasingly fail to account for important developments.

For one, none of the published studies to date has consid-
ered asymmetric multiprocessors. Unfortunately, as novel het-
erogeneous platforms—consisting of multiple processors with
specialized capabilities running at different speeds (e.g., ARM’s
big.LITTLE architectures or Freescale’s Vybrid platforms)—are
emerging to meet the demanding design requirements of mod-
ern embedded systems, this gap in understanding is becoming
progressively more noticeable. For instance, P-EDF by itself
is a convenient choice for such platforms, since it allows the
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system designer to place each task on a core best matching its
requirements (in terms of speed, instruction set architecture, etc.).
Once synchronization comes into play, though, new complications
arise: when using locks, the blocking times imposed on tasks
running on ‘fast’ processors will depend on critical section lengths
of tasks running on ‘slow’ processors. Hence, critical sections on
‘slow’ processors can result in large blocking times compared to the
timing requirements of tasks running on ‘fast’ processors. Whether
spin locks are still preferable in such a setting is far from obvious.

Rather, lock-free synchronization, wherein the synchronization
delay that tasks incur depends only on the frequency of conflicting
accesses (and not on their duration), could be very attractive on
asymmetric platforms. Alas, although lock-free synchronization
was previously considered [7], no principled, up-to-date analysis
exists in the published literature.

Another major development pertains to how synchronization
delays are accounted for. In recent years, fundamentally new
analysis techniques [12–14] have been developed to cope with
blocking. While previous analyses [1, 7, 10] relied on the inflation
of task parameters to model delays, it has been shown that this
approach incurs substantial structural pessimism [12]. However,
the new inflation-free analyses [12–14], which are based on linear
optimization techniques, have been developed to date only for
fixed-priority scheduling, which means that P-EDF, despite its
many advantages, has regrettably fallen behind the state of the art
in terms of real-time synchronization support.

This paper. Motivated by these developments, we revisit the
problem of predictable and lightweight synchronization under P-
EDF. First, to avoid structural pessimism, we present the first
inflation-free schedulability analysis framework for P-EDF in the
presence of synchronization delays (Sec. III).

Based on this foundation, we then analyze four lightweight
synchronization mechanisms (Secs. IV and V) by applying the
state-of-the-art approach based on linear optimization to (i) lock-
free algorithms with preemptive commit loops, (ii) lock-free
algorithms with non-preemptive commit loops, (iii) FIFO non-
preemptive spin locks and (iv) FIFO preemptive spin locks.

And finally, we report on the first large-scale schedulability
study (enabled by our new analyses) that investigates relative
performance not only on symmetric multiprocessors (Sec. VII-A),
but also on asymmetric multiprocessor platforms (Sec. VII-B)
with a wide range of relative processor speeds (from 2x to
10x). Interestingly, while non-preemptive FIFO spin locks were
found to still generally perform best in the symmetric case, lock-
free synchronization mechanisms were observed to indeed offer
significant advantages on asymmetric platforms.

http://ecrts.org/artifactevaluation


II. BACKGROUND AND SYSTEM MODEL

In this section, we first briefly summarize the considered
resource-management mechanisms, then present our system model,
and finally review existing blocking-aware schedulability analysis
for EDF-scheduled systems.

A. Lock-free Synchronization

Differently from lock-based approaches, lock-free algorithms
do not have critical sections when accessing shared resources.
The main idea is that each task works on a local copy of (a
part of) the shared resource and then tries to perform an atomic
commit to publicize its changes to the shared copy of the resource.
The commit operation can fail if it is not possible to guarantee
linearizability [15] of concurrent operations; in such a case, the
task must re-try to commit its change. Lock-free algorithms are
designed such that (at least) one task always progresses (i.e.,
succeeds to commit) in case of conflicts.

Figure 1 shows example code for pushing elements onto a lock-
free shared queue. As it is typical for lock-free synchronization,
the commit operation is implemented with an atomic Compare-
And-Swap (CAS) instruction, which is widely available on most
current multiprocessor platforms. If a conflict occurs, the commit
attempt is repeated until the CAS instruction succeeds.

1: procedure PUSH(Node∗ newNode)
2: do
3: oldpHead = pHead;
4: newNode->next = oldpHead;
5: while !CAS(pHead,newNode,oldpHead);

Figure 1. Example of a push operation for updating a shared lock-free queue.

We denote as the commit loop the set of instructions needed to
complete the update of a shared resource (lines 2-5 in Figure 1).
That is, we call the entire lock-free operation, including any retries,
the commit loop. A commit loop correspondingly ends only when
the intended update has been successfully committed. We refer to
each individual iteration of a commit loop as an attempt, which may
fail or succeed depending on the presence of conflicting attempts
by other tasks.

In the absence of contention, exactly one attempt is executed.
From a schedulability analysis perspective, we say that a task
suffers retry delay when it must perform multiple attempts due to
conflicts. Arrival blocking can occur (i.e., a preemption may be
delayed) if commit loops are executed non-preemptively.

An example P-EDF schedule that demonstrates lock-free syn-
chronization with preemptive commit loops is shown in Figure 2(a).
In the example, task T2 starts to execute first and enters a commit
loop related to a shared resource `. While T2 is executing the
commit loop, it is preempted by task T1, which commits an update
to `. Then, once T1 finishes, T2 resumes its execution. Because
of the commit of T1, the pending commit of T2 fails and the task
must execute another commit attempt.

While T2 is executing its second commit attempt, task T3
(running on another processor) performs a commit to update `;
hence T2’s second attempt fails, too. These two executions of the
commit loop without succeeding to commit result in retry delay
for T2. The commit loop of T2 is finally re-executed for a third
time without experiencing any conflict.

arrival
blocking spin

delay

time

time

time

time

time

time

normal 
execution

critical 
section

spinning

retry
delay

failed 
commit

succeeded
commit

(b)(a)

Figure 2. Example schedules of three tasks that share a resource `. T1 and T2

execute on processor P1, and T3 executes on processor P2. Up-arrows and down-
arrows denote job releases and deadlines, respectively. (a) Example with lock-free
synchronization. (b) Example with non-preemptive spin locks.

B. Spin Locks

In the case of spin locks, when a task Ti needs to access
a resource that has already been locked by a task on another
processor, it spins (i.e., busy-waits by wasting processor cycles)
until the access to the resource is granted. Once the access is
granted, the critical section using the resource is typically executed
in a non-preemptive manner to ensure progress. Different types
of spin locks can be identified depending on the order with which
multiple requests are served, and based on whether the task remains
preemptive during the spinning phase.

In this work, we consider non-preemptive and preemptive FIFO
spin locks, which have been shown [12] to perform best in terms
of schedulability under fixed-priority scheduling. In both types of
locks, tasks wait in FIFO order. Under non-preemptive spin locks,
both the spinning phase and the critical section are executed as a
single non-preemptive section. Conversely, under preemptive spin
locks, only the critical section is a non-preemptive section, while
the task can be preempted during the spinning phase (just as during
normal execution). A task that is preempted while spinning loses
its position in the queue and must re-issue its lock request when it
is continued.

We say that a task suffers from spin delay while it is busy-
waiting. Spin locks can also cause arrival blocking when a needed
preemption (according to EDF) is delayed due a non-preemptively
executing job. Non-preemptive execution can result from (i) the
execution of a critical section or, (ii) in the case of non-preemptive
spin locks, because a task is busy-waiting. We denote the latter
case as transitive arrival blocking.

An example P-EDF schedule with non-preemptive spin locks is
shown in Figure 2(b). In this example, when task T2 is released, it
should be immediately scheduled according to EDF. However, it is
delayed because T1 is non-preemptively spinning while it waits for
a shared resource ` that is currently being used by task T3. Once
T3 completes its critical section, T1 accesses ` in a non-preemptive
manner. Hence, T2 suffers arrival blocking from its release time
until the completion of the critical section of T1. When T2 requests
`, T3 is again using ` and T2 incurs spin delay until the completion
of T3’s critical section. We refer to [12] for further details on spin
locks in real-time systems.

C. System Model

We consider a set of n sporadic tasks τ = {T1, . . . , Tn}
scheduled on m processors P1, . . . , Pm under P-EDF scheduling,
where any ties in absolute deadline are broken in FIFO order. Each

2



task Ti has a contention-free worst-case execution time (WCET) ei,
a minimum inter-arrival time pi and a relative deadline di ≤ pi. A
task Ti’s utilization is the fraction ui = ei/pi; the total utilization
is given by U =

∑n
i=1 ui. Tasks do not self-suspend. We let τ(Pk)

denote the set of tasks allocated to processor Pk, and let P ∗ denote
an arbitrary processor.

The tasks share a set of nr single-unit resources Q =
{`1, . . . , `nr

}. We distinguish between two types of shared re-
sources: (i) local resources, denoted Ql, which are accessed only
by tasks allocated to the same processor and (ii) global resources,
denoted Qg, which are accessed by tasks allocated on different
processors, with Ql ∩Qg = ∅ and Ql ∪Qg = Q.

If resources are protected by locks, local resources are managed
with the Stack Resource Policy (SRP) [16], while global resources
are protected by FIFO spin locks [10, 12, 17] and accessed through
non-preemptive critical sections. If instead resources are managed
with lock-free algorithms, local and global resources are accessed
using the same protocol.

For each task Ti and each resource `q, we let Ni,q denote the
maximum number of accesses (through either critical sections or
commit loops), and let Li,q denote the respective maximum critical
section (or commit loop) length. If a task Ti does not access `q we
require Li,q = Ni,q = 0.

If the SRP is used for managing local resources, each task Ti is
assigned to a preemption level πi, and each resource `q is assigned
a resource ceiling π(`q) [16]. These parameters are computed for
each processor Pk with respect to the set of tasks τ(Pk). According
to the SRP, preemption levels are ordered inversely with respect
to the order of relative deadlines − i.e., πi > πj ⇔ di < dj
with {Ti, Tj} ∈ τ(P ∗), while resource ceilings are defined as
π(`q) = maxTi∈τ(P∗){πi | Ni,q > 0}.

We use the notation dxe0 to denote max(0, dxe) and bxc0 to
denote max(0, bxc). Dense time is assumed.

D. EDF Analysis with Arrival Blocking

Under P-EDF scheduling, the system is schedulable if each
processor is deemed schedulable by uniprocessor EDF analysis.
Hence, we briefly review the analysis of EDF with arrival blocking,
which is based on the notion of deadline busy-periods.

Definition 1 (deadline busy-period): An interval [t0, t0 + t] of
length t is a deadline busy-period iff (i) t0 + t is the absolute
deadline of some job, and (ii) t0 is the last time before t0 + t such
that there are no pending jobs with a release date before t0 and an
absolute deadline before or at t0 + t.

We build on Baruah’s enhanced processor demand criterion
(PDC) [18], which extends the original PDC analysis [19] to
incorporate arrival blocking (due to either the SRP or non-
preemptive sections). The original PDC analysis checks that the
maximum cumulative execution demand of jobs that both are
released and have an absolute deadline in any deadline busy-period
of length t does not exceed the interval length t.

Consider a deadline busy-period [t0, t0 + t]. In the presence of
arrival blocking, at most a single job with an absolute deadline
past t0 + t can contribute additional processor demand [16]. The
additional delay caused by such a job, which necessarily belongs
to a task with a relative deadline larger than t, is accounted for
in the enhanced PDC by a blocking term. According to Baruah’s

analysis [18], a set of n sporadic tasks is schedulable under EDF
with arrival blocking if

∀t ≥ 0, B(t) +

n∑
i=1

⌊
t+ pi − di

pi

⌋
0

ei ≤ t, (1)

where B(t) is an upper-bound on the maximum arrival blocking
experienced in any deadline busy-period of length t.

Baruah [18] defined the blocking bound B(t) as follows:
• in the case of non-preemptive blocking, B(t) =

max{Zx | dx > t}, where Zx denotes the length of the
maximum non-preemptive section of task Tx; and

• in the case of ceiling blocking,

B(t) = max {Lx,q | dx > t ∧ `q ∈ pc(t)} , (2)

where pc(t) denotes the set of local resources whose ceiling
is conflicting with at least one task that has a relative deadline
of length at most t, formally defined as

pc(t) =
{
`q ∈ Ql | π(`q) ≥ min{πx | dx ≤ t}

}
. (3)

If both ceiling and non-preemptive blocking is possible, then
B(t) is simply the maximum of the two bounds.

From Baruah’s analysis [18] we observe:
O1 Arrival blocking in a deadline busy-period of length t is

caused only by tasks with a relative deadline larger than t. In
fact, under either definition, B(t) = 0 for t ≥ max{dx}.

O2 Only a single blocking request can cause arrival blocking.
Based on this foundation, we next present our framework for the
inflation-free analysis of synchronization delays under P-EDF.

III. ANALYSIS FRAMEWORK

Our goal is to integrate (i) blocking times and retry delays that
arise when resources are managed with lock-free algorithms, or
alternatively (ii) blocking times that arise due to contention for
resources that are protected by spin locks. For simplicity, we
assume that either all resources are protected by locks, or that
all resources are synchronized in a lock-free fashion.1

In contrast to the uniprocessor blocking bounds [18], we must
account for both arrival blocking and the additional processor
demand that results from busy-waiting or the re-execution of
commit loops. However, to avoid structural pessimism [12], and
in contrast to the classic MSRP analysis [10], we seek to account
for this extra demand without inflating any task parameters, which
introduces considerable challenges.

A. Analysis Setup Challenges

Theoretically speaking, a task set is schedulable if Eq. (1) holds
for all t ≥ 0 in an infinite and continuous domain [18]. To actually
implement the schedulability test, two additional constraints are
needed: (i) a discretization of the domain for the deadline busy-
period length t; and (ii) a maximum deadline busy-period length
up to which Eq. (1) must be checked. In the presence of arrival
blocking, Baruah established [18] that it is sufficient to check
Eq. (1) only for deadline busy-periods of length t ∈ ∪ni=1{jpi +
di | j ∈ N≥0} with t ≤ L, where

1An analysis of hybrid setups (i.e., where there are some spin locks and some
lock-free data structures) can be derived by combining our analyses of the two
extremes and has been omitted for brevity.
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L = max

{
max{di},

1

1− U
·
n∑
i=1

ui ·max{0, pi − di}

}
. (4)

This bound is valid only if U < 1.
However, when integrating spin or retry delays, a problem arises

with the maximum deadline busy-period length L. As is apparent
from Eq. (4), the value of L depends on each task’s utilization,
which in turns depends on its WCET. When considering lock-free
algorithms (resp., spin locks), the actual execution time of tasks
may be greater due to retry (resp., spin) delay. Eq. (4) hence cannot
be used in its original form.

Inflated [10] task utilizations, which are derived by adding a
coarse-grained upper-bound on the maximum per-job delay to each
task’s WCET, can be computed to sidestep the problem. However,
this approach can be extremely pessimistic [7, 12], and when
it determines a task set to be in overload (i.e., if U ≥ 1 after
WCET inflation), Eq. (4) is invalid, which prevents the application
of the PDC in its original form, even though the task set might
be schedulable. To avoid such pessimism, we developed a new
alternative that does not rely on inflation.

B. Inflation-Free Analysis of Synchronization Delay
The main idea is to bound the maximum deadline busy-period

length using the arrival curve (AC) concept [20, 21]. To this end,
we require the notion of a busy-period.

Definition 2 (busy-period): An interval [t0, t0 + t] of length t
is a busy-period iff, ∀t′ ∈ (t0, t0 + t), there is at least one job
pending at time t′ that was released before time t′.
The maximum busy-period length is known to upper-bound the
maximum deadline busy-period length [22, 23]. In the following,
we let L+ denote a bound on the maximum busy-period length,
which on processor P ∗ is given by the least fixed point [23, 24]:

L+ = min

t > 0 |
∑

Ti∈τ(P∗)

⌈
t

pi

⌉
ei +B(AC)(t) = t

 , (5)

where the term B(AC)(t) denotes an upper-bound on the total
synchronization delay (i.e., retry or spin delay) imposed on all jobs
released in any busy-period of length t. Intuitively, the equation
identifies the first idle time after the beginning of a busy-period
starting at t = 0 by considering the cumulative execution time of
all tasks on processor P ∗.

It bears repeating thatB(AC)(t) reflects only retry and spin delay,
and not any arrival blocking: as established by Pellizzoni and
Lipari [22] and Spuri [23], arrival blocking is irrelevant when
bounding the maximum busy-period of sporadic tasks. (How we
compute B(AC)(t) is discussed in Sec. VI.)

One final complication is that, if the task set is in overload, then
Eq. (5) has no solution—i.e., the maximum busy-period length is
unbounded. Therefore, it is not possible to directly apply Eq. (5)
to bound the maximum busy-period length L+.

Instead, we solve Eq. (5) through an iterative fixed-point search,
thereby obtaining a sequence of time intervals in which the PDC
can be applied. If the processor is overloaded, then the PDC will
eventually fail. Otherwise, a fixed-point iteration will converge to
the maximum busy-period length.

1: procedure PDC(Pk,tLB,tUB)
2: for all t ∈ Φk ∩ {tLB ≤ t ≤ tUB} do

3: if B(PDC)(t) +
∑
Ti∈τ(Pk)

⌊
t+pi−di

pi

⌋
0
ei > t then

4: return FALSE;
5: return TRUE;

Figure 3. Algorithm for checking the PDC in the time window [tLB , tUB ] for the
tasks allocated to processor Pk . The term B(PDC)(t) denotes an upper-bound on
the total arrival blocking and spin (resp., retry) delay in a deadline busy-period of
length t and will be determined in Secs. IV and V. The set Φk denotes the values
of t at which the value of the expression in line 3 changes (i.e., the steps of the
demand curve) and will be determined in Sec. VI-A.

1: procedure ISCPUSCHEDULABLE(Pk)
2: L← minTi∈τ(Pk)

{ei};
3: while TRUE do
4: L+ ← B(AC)(L) +

∑
Ti∈τ(Pk)

⌈
L
pi

⌉
ei;

5: if L == L+ then
6: break;
7: if not PDC(Pk, L, L

+) then
8: return FALSE;
9: L← L+;
10: return TRUE;

Figure 4. Algorithm for checking schedulabiliy on processor Pk .

Based on this intuition, we developed the schedulability test
shown in Figures 3 and 4. The algorithm in Figure 3, which serves
as the foundation for the schedulability test shown in Figure 4,
checks the PDC in a given time window [tLB , tUB ].

Note that the algorithm in Figure 3 depends on the blocking
term B(PDC)(t), which is an upper-bound on the cumulative arrival
blocking and spin (resp., retry) delay in any deadline busy-period
of length t, and which—in contrast to B(AC)(t)—does account
for arrival blocking. We will discuss our approach for actually
computing B(PDC)(t) shortly in Sec. III-C. The algorithm further
depends on the set Φk. This set includes all deadline busy-period
lengths for which the PDC must be checked, which correspond
to the points of discontinuity (i.e., the steps) of the LHS of the
inequality checked in line 3 of Figure 3. We discuss how to
compute Φk in Sec. VI-A.

A system is deemed schedulable if the algorithm in Figure 4
returns TRUE for each of the processors P1, . . . , Pm. The algo-
rithm enters a loop in which Eq. (5) is solved through a fixed-point
iteration (line 4): the loop starts from L = minTi∈τ(Pk){ei} and
iteratively produces a new tentative upper-bound for the busy-
period length L+. In each iteration, the PDC is applied to the time
window [L,L+], which is the interval between the last and the
current tentative busy-period lengths.

The algorithm has two stop conditions: (i) either a potential
deadline miss is identified by the PDC (line 7) and the task set is
deemed not schedulable, or (ii) the fixed-point iteration converges
(i.e., L = L+, as tested in line 5), thus ensuring that deadline
misses have been ruled out in any deadline busy-period shorter
than the maximum busy-period length, which implies that all tasks
in τ(Pk) are schedulable.

Theorem 1: Given a correct definition of the set Φk and correct
upper-bounds B(AC)(t) and B(PDC)(t), if the procedure ISC-
PUSCHEDULABLE(Pk) returns TRUE for each of the processors
P1, . . . , Pm, then all jobs complete by their deadline.

Proof: Suppose not. Then there exists a task Ti ∈ τ(Pk)
for which ISCPUSCHEDULABLE(Pk) returns TRUE although
Ti misses a deadline at some time t1. Let t0 be the time before
t1 such that [t0, t1] is a deadline busy-period and let t = t1 −
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t0. We observe that, since a deadline is missed at time t1, the
total processor demand during [t0, t1] must exceed the interval
length t [18]. Let L+ denote the maximum busy-period length
computed in line 4 of ISCPUSCHEDULABLE(Pk). Note that L+

is a fixed point of Eq. (5), which bounds the maximum busy-
period length [23, 24], which in turn bounds the maximum deadline
busy-period length [22, 23]. Hence, t ≤ L+. However, then the
PDC algorithm is applied to an interval [L,L+] that includes the
deadline busy-period length t (see line 7 in Fig. 4). Since the set Φk
includes all the check-points for the PDC, if the PDC algorithm
returns TRUE, then the maximum demand in a deadline busy-
period of length t cannot exceed the interval length t [18]. Since
ISCPUSCHEDULABLE(Pk) returns TRUE, the PDC algorithm
must return TRUE as well. Contradiction.

C. Blocking and Delay Computation

In the following, we present an approach for computing suitable
upper-bounds B(AC)(t) and B(PDC)(t) by means of solving opti-
mization problems. Specifically, we propose to obtain these bounds
in a declarative fashion with either an integer linear program (ILP)
in the case of lock-free synchronization, or a mixed-integer linear
program (MILP) in the case of spin locks.

At a high level, our approach enumerates all possible requests for
shared resources that could overlap with a given problem window
and models their contribution to retry delay and/or blocking as
variables of a (M)ILP, that, when maximized, yields a safe upper-
bound on the maximum delay in any possible schedule. To rule out
impossible scenarios, we impose constraints that encode protocol
invariants (e.g., causes of retry delay, non-preemptive sections,
etc.) and workload characteristics (such as task locality, request
rates, etc.).

Our analysis conceptually leverages the LP-based approach first
introduced by Brandenburg [13] and further developed by Wieder
and Brandenburg [12]. However, these prior analyses exclusively
target fixed-priority scheduling and cannot directly be applied to
EDF-scheduled systems. In particular, whereas the prior analyses
derive an optimization problem for each task, the notion of a per-
task optimization problem is meaningless in our context since
the PDC framework does not consider individual tasks, but rather
examines deadline busy-periods as a whole.

IV. DELAY DUE TO LOCK-FREE ALGORITHMS

In this section, we present our analysis of retry delay in
lock-free synchronization under P-EDF. We first lay the ground
work with essential definitions, and then prove in Sec. IV-A key
invariants about lock-free synchronization that we exploit in our
analysis. Finally, we derive the ILP used to analyze lock-free
synchronization in Secs. IV-B–IV-F.

To begin, let P ∗ be the processor under analysis and let t be
an arbitrary, but fixed (i.e., constant) deadline busy-period length
under observation. Moreover let τR = τ \ τ(P ∗) denote the set of
remote tasks.

We let nljobs(Ti, t) =
⌊
t+pi−di

pi

⌋
0

denote the maximum
number of jobs of a local task Ti ∈ τ(P ∗) that have both release
times and absolute deadlines in a deadline busy-period of length t.
This definition follows directly from Eq. (1).

In addition, nrjobs(Ti, t) is introduced as an upper bound on
the number of jobs of a remote task Ti ∈ τR that are pending in
any interval of length t.

Lemma 1: ∀Ti ∈ τR, nrjobs(Ti, t) =
⌈
t+di
pi

⌉
.

Proof: Without loss of generality, consider a generic time
window [0, t]. If Ti is released before time instant tr = −di, then,
assuming task Ti does not miss any deadlines, it must be completed
at time t0 = 0, so it cannot be pending during [0, t]. Similarly, if
Ti is released after time t, it cannot be pending in [0, t]. Since
the interval in which Ti can be pending has a maximum length of
t+ di, the bound follows from the observation that at most

⌈
t+di
pi

⌉
jobs of Ti are released in [−di, t].

From the point of view of the ILP solver, nrjobs(Ti, t) and
nljobs(Ti, t) are simply constants since the length t is constant in
the context of a specific ILP instance.

Next, we establish the key properties of lock-free algorithms
that serve as the analytical basis of our ILP formulation.

A. Properties of lock-free algorithms

As explained in Sec. II-A, under lock-free synchronization, a
task suffers retry delay only if it conflicts with commits of other
tasks. Consider two tasks Ti and Tx that concurrently attempt to
update a shared resource `q. Specifically, let ci and cx denote the
commit loops executed by Ti and Tx, respectively.

Definition 3: We say that ci causes Tx to incur retry delay if ci
has been the last commit to modify `q when cx fails.

Lemma 2: A commit loop is re-executed at most once per each
conflicting commit loop that causes retry delay.

Proof: Consider an arbitrary commit loop ci conflicting with
another arbitrary commit loop cx 6= ci. Simultaneous commits
are impossible by construction in lock-free algorithms (e.g., as
guaranteed by the CAS instruction). Hence, two scenarios are
possible: (i) ci commits before cx and (ii) ci commits after cs. In
case (i), there are no further retries of ci since it has completed.
In case (ii), cx can cause only a single retry of ci because cx has
completed.

Retry delay can be caused by two types of conflicts:
• local conflicts, which are caused by the execution of local,

preempting tasks with a shorter relative deadline; and
• remote conflicts, which are caused by the asynchronous

execution of tasks on other processors.
A key property of lock-free synchronization is that the magni-

tude of retry delay does not depend on the length of conflicting
commits, but only on the number of local and remote conflicts. We
next introduce three lemmas that characterize when and how often
local and remote conflicts occur.

Lemma 3: A job incurs at most one local conflict each time that
a local higher-priority job is released.

Proof: To conflict, two commit attempts must overlap in time.
For local conflicts, this means that the commit attempt that suffers
the conflict must have been preempted. Since jobs are sequential
and since commit loops are not nested, a job executes at most
one commit attempt at the time of preemption. Hence any job
suffers at most one local conflict per preemption. In the absence
of self-suspensions, preemptions arise only due to the release of
higher-priority jobs. The claim follows.
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Anderson et al. previously observed this property in an analysis
of lock-free synchronization on uniprocessors [25].

Lemma 4: A job causes at most one local conflict per each
resource that it accesses.

Proof: As in the proof of Lemma 3, observe that a commit
attempt that suffers a local conflict must have been preempted. Let
J be an arbitrary job and let `q be an arbitrary resource. Let Cq
denote the set of in-progress commit loops related to `q that have
been preempted while J executes. Since tasks do not self-suspend,
no commit loop in Cq can make progress until J completes. Once
J completes, a commit loop c ∈ Cq can be re-executed because of
J ; then, c will eventually commit. Hence c will be the commit to
have last updated `q and the other commit loops in Cq \ {c} will
not retry because of J .

We now address remote conflicts.
Lemma 5: A remote commit loop cx (on any processor other

than P ∗) causes at most one remote conflict on processor P ∗.
Proof: To conflict, two commit attempts must overlap in time.

Let C denote the set of commit attempts on processor P ∗ that
overlap in time with cx. The attempts in C that succeed before the
completion of cx do not incur in a conflict with cx. For the other
attempts, an argument similar to the proof of Lemma 4 holds—
once any other commit has succeeded, cx no longer satisfies Def. 3.
The claim follows.

In the following, we present an ILP formulation for computing
the bound B(PDC)(t). To reduce clutter, from now on we omit the
superscript ‘(PDC)’. The modifications needed to compute the
bound B(AC)(t) are discussed in Sec. VI-B.

B. Variables
To model retry delays in all possible schedules, we define the

following variables for all tasks Ti, Tj ∈ τ(P ∗) and for each
resource `q ∈ Q:
• Y Li,j,q(t) ≥ 0, an integer variable that counts the number of

local conflicts incurred by Ti while accessing `q due to jobs
of Tj in a deadline busy-period of length t;

• Y Ri,q(t) ≥ 0, an integer variable that counts the number
of remote conflicts incurred by Ti while accessing `q in a
deadline busy-period of length t; and

• Ai,q(t) ∈ [0, 1], a binary variable such that Ai,q = 1 if and
only if task Ti causes arrival blocking with a commit that
updates `q .

If unambiguous, we omit the parameter t to improve readability.
These variables are integer because they count events (i.e.,

retries) that happened in a given schedule. The rationale behind
these variables is the following.

Consider an arbitrary, but concrete schedule S, and in S consider
an arbitrary deadline busy-period [t0, t1] of length t = t1 − t0. For
such a fixed trace S, it is trivial to determine Y Li,j,q(t) by counting
for each task Ti and each task Tj the number of times that Ti
suffered local conflicts due to Tj during [t0, t1]. In other words,
for any deadline busy-period [t0, t1] in any possible schedule S,
there exists a straightforward mapping from (S, [t0, t1]) to Y Li,j,q(t).
Further, in any such deadline busy-period [t0, t1] in any schedule
S, the total retry delay during [t0, t1] caused by Ti’s re-execution
of commit loops that suffered local conflicts with Tj is bounded
by Y Li,j,q(t) · Li,q time units.

Since this reasoning applies to any schedule, it also applies
to the (generally unknown) schedule in which the maximal retry
delay is incurred. Hence, by maximizing the sum of the terms
Y Li,j,q(t) · Li,q for all tasks and resources, subject to constraints
that express system invariants, we obtain a safe upper bound on
the total worst-case delay due to local conflicts in any schedule.

Analogous reasoning applies to Y Ri,q(t) and Ai,q(t). Based on
these considerations, we arrive at the following objective.

C. Objective Function

The objective of the ILP formulation is to maximize the delay
bound B(t), which is defined as

B(t) =
∑

Ti∈τ(P∗)

∑
`q∈Q

Y Ri,q(t) +Ai,q(t) +
∑

Tj∈τ(P∗)

Y Li,j,q(t)

 · Li,q.
In the following sections, we present constraints that serve to

exclude impossible schedules. The resulting attained maximum
bounds the worst-case delay across all schedules not excluded
by the constraints. Hence, a set of correct constraints yields a
safe upper-bound on the maximum delay in any possible deadline
busy-period of length t, including the worst-case scenario.

D. Generic Constraints

The first three constraints apply to both preemptive and non-
preemptive commit loops. First, a task Ti obviously incurs no
retries due to a resource `q that it does not use (i.e., Ni,q = 0).

Constraint 1: ∀`q ∈ Q,∀Ti ∈ τ(P ∗) | Ni,q = 0,
Y Ri,q +

∑
Tj∈τ(P∗) Y

L
i,j,q = 0.

Similarly, a task that does not access a resource `q cannot prevent
other tasks from updating `q .

Constraint 2: ∀`q ∈ Q,∀Tj ∈ τ(P ∗) | Nj,q = 0,∑
∀Ti∈τ(P∗) Y

L
i,j,q = 0.

Next, we introduce a key constraint limiting remote conflicts.

Constraint 3: ∀`q ∈ Q,∑
Ti∈τ(P∗)

Y Ri,q ≤
∑
Tx∈τR

nrjobs(Tx, t) ·Nx,q.

Proof: Suppose not. Then there exists a schedule in which (i)
at least one remote commit loop to update `q caused a local commit
loop to retry more than once, or (ii) at least one local commit loop
related to `q has been re-executed more than once due to the same
remote commit loop. Case (i) is impossible by Lemma 5, while
Lemma 2 rules out case (ii). Contradiction.

E. Constraints for Preemptive Commit Loops

First of all, if commit loops are executed preemptively, then
arrival blocking is not possible.

Constraint 4:
∑
Ti∈τ(P∗)

∑
`q∈QAi,q = 0.

Proof: Arrival blocking corresponds to times of priority
inversion; however, if tasks remain preemptable at all times,
priority inversion does not arise.

With the following constraint, we enforce that no retries for
commit loops are considered for tasks that cannot have a job with
a release time and absolute deadline both in a deadline busy-period
of length t.
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Constraint 5: ∀Ti ∈ τ(P ∗) | nljobs(Ti, t) = 0,∑
`q

(
Y Ri,q +

∑
∀Tj∈τ(P∗) Y

L
i,j,q

)
= 0.

Proof: As stated in Sec. II-D, in any deadline busy-period
with length t, a task Ti with nljobs(Ti, t) = 0 can contribute
demand only because of arrival blocking. However, when using
preemptive commit loops, there is no arrival blocking.

We now look at retries due to local conflicts.
Constraint 6: ∀Ti ∈ τ(P ∗),∀Tj ∈ τ(P ∗),∑

`q

Y Li,j,q ≤
⌈
di − dj
pj

⌉
0

· nljobs(Ti, t).

Proof: Once Ti is released, it can only be preempted by
local tasks Tj with a shorter relative deadline dj < di.2 Suppose
(w.l.o.g.) that the task Ti is released at time 0: then a task Tj will
preempt Ti only if it is released before time di−dj , otherwise it has
a later absolute deadline than Ti. In the interval [0, di−dj), at most
d(di − dj)/pje0 jobs of Tj are released. Hence, the RHS upper-
bounds the number of jobs of Tj that preempt Ti in a deadline
busy-period of length t. By Lemmas 3 and 4, this also bounds the
maximum number of retries caused by Tj .

Constraint 7:

∀Tj ∈ τ(P ∗),∀`q ∈ Q,
∑

Ti∈τ(P∗)

Y Li,j,q ≤
⌈
t

pj

⌉
.

Proof: Suppose not. Then there exists a schedule in which (i)
a commit loop related to `q performed more than one retry due to
the same job of Tj or (ii) a job of Tj caused more than one retry
of a commit loop related to `q. Lemma 3 rules out case (i), and
Lemma 4 rules out case (ii). Contradiction.

To further bound the number of retries, we apply response-time
analysis on commit loops, i.e., we bound the maximum timespan
during which a task executes a commit loop, lasting from the
beginning of the loop until the successful completion of the commit,
including any retries and times of preemption.

Definition 4: We letW P
i,q denote an upper bound on the commit-

loop response time, which is defined as follows: if Ti enters a
commit loop ci to update `q at time te, and if Ti completes ci at
time tc, then tc − te ≤W P

i,q .
The completion of ci can be delayed
(i) directly, due to both local conflicts with commit loops of

preempting tasks Th (i.e., those that have a relative deadline
dh < di) and due to remote conflicts (because of commit
loops of remote tasks);

(ii) transitively, due to commit loops pertaining to resources
other than `q executed by preempting tasks that experience
either local or remote conflicts (or both); and

(iii) due to the regular execution of preempting tasks.
The following lemmas and Theorem 2 establish a coarse upper

bound on W P
i,q, which is then used to state a constraint on the

maximum number of retries.
Definition 5: Consider the following scenario: (i) task Ti is

executing a commit loop ci to update a resource `q, (ii) while
executing ci, Ti is preempted by a local task Tx, (iii) Tx in turn is
preempted by another local task Th, and (iv) Th updates a resource

2Only tasks with strictly shorter relative deadlines are considered since FIFO
tie-breaking is assumed.

`k. If `k = `q, or if Tx is executing a commit loop that attempts
to update `k when it is preempted by Th, then the completion of
ci is either directly or transitively delayed by Th’s update. We
let ∆L

h,k(Ti, `q) denote an upper bound on the local per-resource,
per-job retry delay experienced by ci in this case.

Lemma 6: A valid upper bound on the local per-resource, per-
job retry delay is given by

∆L
h,k(Ti, `q) = max{Lx,k | Tx ∈ τ(P ∗) ∧ dh < dx < di}

if `k 6= `q , and by

∆L
h,k(Ti, `q) = max{Lx,k | Tx ∈ τ(P ∗)

∧(dh < dx < di ∨ i = x)}

if `k = `q .
Proof: Let Ti, Tx, and Th denote three local tasks as specified

in Def. 5. First observe that Tx can preempt Ti only if dx < di and
that Th can preempt Tx only if dh < dx. Therefore, dh < dx < di.

Now consider the case `k 6= `q, in which ci is not directly
delayed by Th’s update of `k. Hence any delay of ci due to Th’s
update of `k must arise transitively because Tx is forced to retry
its commit. By Lemma 4, the retry delay experienced by Ti is
bounded by the maximum length of at most one attempt by Tx to
update `k, i.e., Lx,k. The bound follows.

Finally, in the case `k = `q, Th’s update can also directly
interfere with Ti’s update attempt. Hence Ti’s maximum cost per
commit attempt must be considered, too.

Based on Lemma 6, it is possible to bound the delay caused by
a preempting job that interrupts a given commit loop.

Lemma 7: Let ci be a commit loop of task Ti that attempts to
update `q. Let Jh be a job of a task Th that can preempt Ti (i.e.,
it has a relative deadline dh < di and is executing on the same
processor). Each job Jh delays the completion of ci by at most
Eh(Ti, `q) time units, where

Eh(Ti, `q) = eh +
∑
`k∈Q

Fk(Ti, `q, Th), (6)

and

Fk(Ti, `q, Th) =

{
0 if Nh,k = 0,

∆L
h,k(Ti, `q) otherwise.

Proof: First note that, ignoring retry delay, Jh executes for
at most eh time units. By Lemma 4, Jh can cause at most one
local conflict per each resource that it accesses. For each resource
`k, if Th uses `k (i.e., Nh,k > 0), then by Lemma 6 it directly or
transitively delays ci for at most ∆L

h,k(Ti, `q) time units.
Next, we establish a corresponding bound on delay due to

interference from remote tasks.
Lemma 8: Consider a commit loop ci pertaining to resource

`q that Ti starts to execute at time te and completes at time tc.
Let Tr denote a remote task that updates a resource `k at some
time t′ ∈ [te, tc]. An upper bound on the direct or transitive delay
incurred by ci due to Tr’s update is given by

∆R
k (Ti, `q) = max{Lx,k | Tx ∈ τ(P ∗) ∧ dx < di}

if `k 6= `q , and by

∆R
k (Ti, `q) = max{Lx,k | Tx ∈ τ(P ∗) ∧ (dx < di ∨ i = x)}
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if `k = `q .
Proof: Analogously to Lemma 6. If `k 6= `q , then Tr’s update

of `k can affect ci only if it forces another task Tx on Ti’s processor
that preempted ci to retry an update of `k, which implies dx < di.
If `k = `q , then Tr’s update can also cause Ti to retry.

We can now state the bound W P
i,q .

Theorem 2: Let te be the time at which Ti enters a commit
loop to update `q and let tc be the time at which Ti completes the
commit, then tc− te ≤W P

i,q , where W P
i,q is the least positive fixed

point of the following equation:

W P
i,q = Li,q +∑

Th∈τ(P∗)
dh<di

⌈
min{di − dh,W P

i,q}
ph

⌉
· Eh(Ti, `q) +

∑
`k∈Q

∑
Tr∈τR

nrjobs(Tr,W
P
i,q) ·Nr,k ·∆R

k (Ti, `q).

Proof: Analogously to response-time analysis. Without loss
of generality suppose that a job of Ti enters a commit loop ci
pertaining to resource `q at time t0 = 0.

First note that a task Th can preempt Ti only if it has a shorter
relative deadline (dh < di). As previously argued in the proof
of Constraint 6, jobs of a task Th cannot preempt Ti after time
di − dh. Moreover, jobs that are released after time W P

i,q cannot
delay the completion of ci since at time W P

i,q the commit ci is

complete. Hence, there are at most
⌈
min{di−dh,W P

i,q}
ph

⌉
jobs of each

task Th ∈ τ(P ∗) with dh < di that can preempt Ti while ci is
pending. By Lemma 7, each of these jobs can delay the completion
of ci by at most Eh(Ti, `q) time units.

Consider now the delay due to remote conflicts. For each
resource `k ∈ Q, in an interval of length W P

i,q there are at
most

∑
Tr∈τR nrjobs(Tr,W

P
i,q) ·Nr,k commit loops executed by

remote tasks. By Lemma 8, each such update delays ci by at most
∆R
k (Ti, `q) time units.
Finally, in order to complete ci, task Ti must execute the last

attempt for ci (i.e., the one that succeeds) which has an execution
cost of at most Li,q time units.

Finally, based on the commit-loop response-time W P
i,q, we

present the last constraint for preemptive commit loops.
Constraint 8: ∀Ti ∈ τ(P ∗),∀`q ∈ Q,

Y Ri,q ≤ nljobs(Ti, t) ·Ni,q ·
∑
Tx∈τR

nrjobs(Tx,W
P
i,q) ·Nx,q.

Proof: Each update of `q performed by some local task Ti
completes in W P

i,q time units. During an interval of length W P
i,q,

each remote task Tx ∈ τR updates `q at most nrjobs(Tx,W P
i,q) ·

Nx,q times. The constraint follows since there are, for each local
task Ti, at most nljobs(Ti, t) jobs of Ti with release times and
absolute deadlines in a deadline busy-period of length t, each of
which updates `q at most Ni,q times.

If no valid commit-loop response-time bound W P
i,q is found (i.e.,

if the fixed-point iteration diverges), Constraint 8 is omitted.

F. Constraints for Non-Preemptive Commit Loops

If commit loops are executed non-preemptively, a task is guaran-
teed to remain scheduled from the time at which it enters a commit

loop until the time at which it successfully commits. As a result,
jobs incur arrival blocking if at the time of their release a local
job with a later absolute deadline is non-preemptively executing
a commit loop. The length of arrival blocking is determined by
(i) the non-preemptive execution of the commit loop itself plus any
(ii) transitive retry delay due to remote conflicts.

We now enforce basic constraints to exclude impossible scenar-
ios related to arrival blocking.

Constraint 9:
∑
Ti∈τ(P∗)

∑
`q∈QAi,q ≤ 1.

Proof: Follows from Observation O2.
Constraint 10: ∀Ti ∈ τ(P ∗) | di ≤ t,

∑
`q∈QAi,q = 0.

Proof: Follows from Observation O1.
Constraint 11: ∀Ti ∈ τ(P ∗),∀`q ∈ Q, Ai,q ≤ Ni,q.

Proof: Suppose not. Then there exists a schedule in which a
task Ti that does not access a resource `q (i.e., Ni,q = 0) causes
arrival blocking accessing `q (Aq = 1). Contradiction.

Next, by linking the variables Ai,q and Y Ri,q, we express that
the transitive retry delay that contributes to arrival blocking is
caused by a single commit loop. To state the following constraint,
we need to introduce a constant term M to represent “infinity”
— formally defined asM =

∑
Tx∈τR

∑
`q
nrjobs(Tx, t) · Nx,q,

which corresponds to the maximum number of retries due to remote
conflicts for any commit loop.

Constraint 12:

∀Ti ∈ τ(P ∗) | nljobs(Ti, t) = 0,∀`q ∈ Q, Y Ri,q ≤ Ai,q · M.

Proof: Following Observation O1, only tasks Ti ∈ τ(P ∗)
that have a relative deadline di > t can cause arrival blocking, in
which case nljobs(Ti, t) = 0. If Ai,q = 0, then there is no arrival
blocking caused by any commits pertaining to `q executed by Ti.
If Ai,q = 1, then the constraint enforces no bound on the number
of retries experienced by Ti in committing to update `q .

Finally, we impose constraints on the number of retries. First,
if commit loops are non-preemptive, a task cannot be preempted
during a commit; hence it is clearly not possible to incur local
conflicts.

Constraint 13: ∀`q ∈ Q,∀Ti ∈ τ(P ∗),∑
Tj∈τ(P∗)

Y Li,j,q = 0.

Proof: Follows from the preceding discussion.
As previously in the case of preemptive commit loops, we

introduce a constraint based on the response-time bound WNP
i,q ,

which upper-bounds the time required for Ti to successfully update
`q . To this end, in the context of non-preemptive commit loops, let
WNP
i,q be the least positive fixed point of the following equation:

WNP
i,q = Li,q +

∑
Tx∈τR

nrjobs(Tx,W
NP
i,q ) ·Nx,q · Li,q. (7)

Theorem 3: Let te be the time at which Ti enters a commit
loop to update `q and let tc be the time at which Ti completes the
commit, then tc − te ≤WNP

i,q .
Proof: Analogously to response-time analysis. Let ci be the

commit executed by Ti to update `q. First note that, since we are
considering non-preemptive commit loops, ci cannot be delayed
by local tasks.
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However, ci can be delayed due to remote conflicts related
to `q. In any time interval of length WNP

i,q , `q is updated at
most

∑
Tx∈τR nrjobs(Tx,W

NP
i,q ) ·Nx,q times by remote tasks. By

Lemma 2, each of these requests can cause at most one retry of ci.
Hence, the overall retry delay incurred by ci in any time interval
of length WNP

i,q is upper-bounded by
∑
Tx∈τR nrjobs(Tx,W

NP
i,q ) ·

Nx,q · Li,q .
The theorem follows by noting that, in order to complete ci, task

Ti must execute the last attempt for ci (i.e., the one that succeeds),
which has an execution cost of at most Li,q time units.

Constraint 14: ∀Ti ∈ τ(P ∗),∀`q ∈ Q,

Y Ri,q ≤
∑
Tx∈τR

(nrjobs(Tx,W
NP
i,q ) ·Nx,q) ·

(nljobs(Ti, t) ·Ni,q).

Proof: Follows analogously to Constraint 8.
This concludes our analysis of lock-free synchronization.

V. BLOCKING DUE TO SPIN LOCKS

In this section, we present our blocking analysis for spin locks.
While the analysis is conceptually similar to the one used in Sec. IV,
spin locks have some properties that require the use of a different
approach to obtain suitable bounds on blocking. In particular,
differently from lock-free algorithms, the blocking imposed by
spin locks depends on the critical section lengths of conflicting
requests. To avoid accounting for any critical section more than
once, we adopt a different modeling strategy [12, 13] that considers
each critical section individually.

A. Variables

We model the impact of spin locks on blocking times in any
possible schedule with the following variables for each task Ti ∈ τ
and for each resource `q ∈ Q:
• XS

i,q(t) ≥ 0, a real variable expressing the contribution of
requests for `q issued by Ti to the spin delay incurred by jobs
that execute on P ∗ and that have a release time and absolute
deadline in a deadline busy-period of length t;

• XA
i,q(t) ≥ 0, a real variable expressing the contribution of

requests for `q issued by Ti to the arrival blocking suffered
by tasks on P ∗ in a deadline busy-period of length t; and

• Aq ∈ {0, 1}, a binary variable such that Aq = 1 if and only if
arrival blocking is caused by requests for `q .

The definitions of these variables differ from those defined
for lock-free algorithms in Sec. IV-B, based on the following
rationale: given an arbitrary, but concrete schedule with a deadline
busy-period of length t, the requests of a task Ti for resource `q
contribute to spin delay for XS

i,q(t) · Li,q time units and to arrival
blocking for XA

i,q(t) · Li,q time units. The variables are defined as
reals since they model fractions of time.

B. Objective Function

The objective is to maximize the blocking bound B(t):

B(t) =
∑
∀Ti∈τ

∑
`q∈Q

(
XS
i,q(t) +XA

i,q(t)
)
· Li,q. (8)

The same considerations reported in Sec. IV-C also apply to the
above objective function: by ruling out impossible schedules, a

maximal solution of the MILP represents an upper bound on the
worst-case blocking in any possible schedule. We use the same
notation as in Sec. IV whenever not differently specified.

C. Generic Constraints

We begin with constraints that are applicable to every type of
spin lock. Again, we begin by excluding trivial cases.

Constraint 15: Ti ∈ τ(P ∗) | di ≤ t,∀`q ∈ Q, XA
i,q = 0.

Proof: Follows from Observation O1.

Constraint 16:
∑
∀Ti∈τ(P∗)

∑
`q∈QX

S
i,q = 0.

Proof: Only remote tasks cause spin delay.

Next, we observe that spin delay and arrival blocking are
mutually exclusive, which is key to avoiding structural pessimism
(i.e., to avoid accounting for any critical section more than once).

Constraint 17:

∀Ti ∈ τR,∀`q ∈ Q, XS
i,q +XA

i,q ≤ nrjobs(Ti, t) ·Ni,q.

Proof: First note that the RHS expresses the maximum
number of remote requests for `q in any interval of length t.
Suppose that the constraint does not hold. Then there exists a
schedule with a deadline busy-period of length t in which a
request for `q at some point in time contributes to both arrival
blocking and spin delay. However, arrival blocking occurs only
due to the execution of a task Tl ∈ τ(P ∗) with a relative deadline
> t. In contrast, spin delay occurs due to the execution of a task
Th 6= Tl ∈ τ(P ∗) with a relative deadline ≤ t. Tl and Th cannot
execute simultaneously on P ∗. Contradiction.

The next four constraints characterize arrival blocking.
Constraint 18:

∑
`q∈QAq ≤ 1.

Proof: Follows from Observation O2.

Recall from Sec. II-D that not all local resources can cause local
blocking, depending on their resource ceilings.

Constraint 19: ∀`q ∈ Ql \ pc(t), Aq = 0.
Proof: Follows directly from Eq. (2).

Moreover, depending on the deadline busy-period length t, there
may be no tasks that can cause arrival blocking due to a specific
resource as captured by the following constraint.

Constraint 20: ∀`q ∈ Q, Aq ≤
∑
Ti∈τ(P∗) | di>tNi,q.

Proof: Following Observation O1, arrival blocking can be
caused only by a task Ti with a relative deadline di > t. Arrival
blocking due to `q can occur only if at least one such task accesses
`q (hence yielding a positive RHS).

Finally, we exclude scenarios where more than one local request
causes arrival blocking by linking the decision variable Aq to the
blocking variables for every resource `q .

Constraint 21: ∀`q ∈ Q,
∑
Ti∈τ(P∗)X

A
i,q ≤ Aq.

Proof: If Aq = 0 then (by definition of the variable Aq) it is
not possible to have arrival blocking from `q. If Aq = 1, then the
constraint follows from Observation O2.

D. Constraints for Non-preemptive FIFO Spin Locks (MSRP)

In this section, we present constraints specific to non-preemptive
FIFO spin locks, which are the type of spin locks mandated in Gai
et al.’s MSRP [10].
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The most important constraint encodes the FIFO property and
expresses that each local request (i.e., one issued on processor P ∗)
is delayed by at most one request per remote processor.

Constraint 22: ∀Pk 6= P ∗,∀`q ∈ Q,∑
Tx∈τ(Pk)

XS
x,q ≤

∑
Ti∈τ(P∗)

nljobs(Ti, t) ·Ni,q.

Proof: First note that the RHS of the constraint expresses
the maximum number of requests issued by local tasks that can
experience spin delay (i.e., those that have jobs with both a release
time and absolute deadline within an interval of length t). Suppose
the constraint does not hold. Then there exists a schedule in which
a request issued by a task Ti ∈ τ(P ∗) is delayed by more than one
request issued by a task Tx ∈ τ(Pk). Since requests are served
in FIFO order, and since tasks execute non-preemptively while
spinning and while executing critical sections, each request can
be delayed by at most one request issued by another processor.
Contradiction.

Another bound on per-task spin delay can be derived by
exploiting the periods and deadlines of conflicting tasks.

Constraint 23: ∀Tx ∈ τR,∀`q ∈ Q,

XS
x,q ≤ nrjobs(Tx, t) ·

∑
Ti∈τ(P∗)

nrjobs(Ti, dx) ·Ni,q.

Proof: A job of a remote task Tx overlaps with at most
nrjobs(Ti, dx) jobs of a local task Ti. Hence, the requests for
`q issued by a job of Tx conflict with at most nrjobs(Ti, dx) ·Ni,q
requests of Ti. In particular, when using non-preemptive FIFO spin
locks, each request for `q issued by Ti is delayed by at most one
request for `q issued by Tx. Hence, every job of Tx delays jobs
of a local task Ti with at most nrjobs(Ti, dx) ·Ni,q requests. The
constraint follows since at most nrjobs(Tx, t) jobs of Tx overlap
with an interval of length t.

We now address arrival blocking. A remote request transitively
contributes to the arrival blocking on processor P ∗ only if a local
task Tx with a relative deadline dx > t is non-preemptively
spinning while waiting for the completion of the transitively
blocking request. Again, due to the FIFO ordering, at most one
request per remote processor can transitively block.

Constraint 24: ∀Pk 6= P ∗,∀`q ∈ Q,∑
Tx∈τ(Pk)

XA
x,q ≤ Aq.

Proof: If Aq = 0, then by definition there is no arrival block-
ing due to requests for `q. If Aq = 1, according to Observation
O2 arrival blocking arises due to at most a single request r issued
on P ∗. Since requests are served in FIFO order, and since tasks
execute non-preemptively while spinning or holding locks, at most
one request issued on Pk can delay r.

E. Constraints for Preemptive FIFO Spin Locks

Under preemptive spin locks, a task can be preempted by other
tasks with shorter relative deadlines even during its spinning phase,
while the critical section is still executed non-preemptively. For this
reason there is no transitive arrival blocking − i.e., a preemption
can never be delayed by remote requests that conflict with local

requests of jobs with larger (or equal) relative deadline tasks. The
following constraint reflects this fact.

Constraint 25: ∑
`q∈Q

∑
Tx∈τR

XA
x,q = 0.

Proof: Follows from the preceding discussion.
Besides reducing arrival blocking, preemptive spin locks have

the disadvantage of increasing the spin delay due to canceled
requests caused by preemptions during the spinning phase. To
capture this phenomenon, we introduce the following additional
variables for each task Ti ∈ τ(P ∗) and for each resource `q ∈ Q:
• Ci,q ≥ 0, an integer variable expressing the number of times

requests for `q issued by jobs of Ti are canceled in a deadline
busy-period of length t.

Clearly, a task Ti that does not access `q must have Ci,q = 0.
Constraint 26: ∀Ti ∈ τ(P ∗) | Ni,q = 0, Ci,q = 0.
An upper-bound on the maximum number of cancellations for

each task is expressed by the subsequent constraint, which exploits
an upper-bound on the number of times a task can be preempted.

Constraint 27: ∀Ti ∈ τ(P ∗),∑
`q∈Q

Ci,q ≤
∑

Th∈τ(P∗) | dh<di

⌈
di − dh
ph

⌉
0

· nljobs(Ti, t).

Proof: Under EDF scheduling, once Ti is released, it can
only be preempted by a local task Th if it has a shorter relative
deadline dh < di.3 Without loss of generality, suppose that a job
Ji of Ti is released at time t0 = 0: then a task Th will preempt Ji
only if it is released before time di − dh; otherwise its absolute
deadline exceeds Ji’s absolute deadline. In the time interval [0, di−
dh), at most

⌈
di−dh
ph

⌉
0

jobs of Th are released. Since the total
number of cancellations suffered by Ti (expressed by the LHS
of the constraint) cannot be larger than the maximum number of
times that jobs of Ti (in a deadline busy-period of length t) are
preempted, the bound follows.

Another constraint is imposed to avoid over-counting each
preemption as multiple cancellations. This is achieved by limiting
the overall number of preemptions to the maximum number of jobs
released in any interval of length t.

Constraint 28: ∀Ti ∈ τ(P ∗),∑
Tj∈τ(P∗)
dj≤di

∑
`q∈Q

Cj,q ≤
∑

Tx∈τ(P∗)
dx<di

⌈
t

px

⌉
.

Proof: First note that the RHS expresses an upper-bound on
the maximum number of preemptions in an interval of length t for
tasks with relative deadline dj ≤ di. Suppose the constraint does
not hold. Then there exists a schedule in which the total number
of cancellations for tasks with relative deadline dj ≤ di in the
whole deadline busy-period of length t (expressed by the LHS of
the constraint) is greater than an upper-bound on the total number
of preemptions of the same tasks. Contradiction.

Finally, as done for FIFO non-preemptive spin locks through
Constraints 22 and 23, we exploit the FIFO progress mechanism

3Only tasks with strictly shorter relative deadlines are considered since FIFO
tie-breaking is assumed.
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to enforce that each local request can be delayed by at most one
remote request per processor. The difference with respect to the
non-preemptive case is that we have to account for reissued re-
quests by considering cancellations due to preemptions during the
spinning phase. This fact is captured by the following constraint.

Constraint 29: ∀Pk 6= P ∗,∀`q ∈ Q,∑
Tx∈τ(Pk)

XS
x,q ≤

∑
Ti∈τ(P∗)

nljobs(Ti, t) ·Ni,q + Ci,q.

Proof: Since requests are served in FIFO order, the proof is
similar to the proof of Constraint 22 after noting that the actual
number of requests for `q issued by all jobs of Ti is upper-bounded
by nljobs(Ti, t) ·Ni,q + Ci,q .

VI. ARRIVAL CURVES AND TEST POINTS

Secs. IV and V report how to determine the PDC blocking bound
B(PDC)(t) for use in the algorithm given in Figure 3. However, to
obtain a practical schedulability test, we still require the discrete set
of test points Φk and the arrival-curve blocking bound B(AC)(t)
for use in the fix-point search in Figure 4.

A. PDC Evaluation Points Φk

To correctly implement the PDC, the set Φk of deadline busy-
period lengths that are to be tested must include all points of
discontinuity of the LHS of the equation at line 3 in Figure 3.
Since this term depends on the bound B(PDC)(t), there are further
discontinuity points in addition to those considered by Baruah [18]
in the uniprocessor case.

In particular, as B(PDC)(t) is computed by solving (M)ILP
formulations, discontinuities arise due to any dependencies of
constraints on the deadline busy-period length t. The set Φk
is hence given by the union of the following contributing sets:
(i) ∪Ti∈τ(Pk){jpi + di | j ∈ N≥0}, which are the standard PDC
check-points for sporadic tasks (as established by Baruah [18]),
and which also correspond to the steps caused by the function
nljobs(Ti, t), the inequalities involving relative deadlines of tasks
in Constraints 15 and 20, and variations in the constituency of the
set pc(t); (ii) ∪Ti∈τ\τ(Pk){jpi − di + ε | j ∈ N≥1}, which reflect
steps of the function nrjobs(Ti, t); and (iii) ∪Ti∈τ(Pk){jpi +
ε | j ∈ N≥1}, which corresponds to the steps of the term dt/pie
in Constraints 7 and 28. In (ii) and (iii), ε > 0 is an arbitrary,
sufficiently small, positive number.

B. Computing the Bound B(AC)(t),

Recall from Sec. III-B that the AC bound simply considers all
jobs released in the problem window, in contrast to the PDC, which
considers only jobs that are both released and have an absolute
deadline in the problem window

For this reason, a different definition of the number of relevant
local jobs nljobs(Ti, t) is needed: nljobs(Ti, t) =

⌈
t
pi

⌉
. This

follows directly from Eq. (5). As stated in Sec. III-B, when
computing the blocking for the AC we do not have to account
for arrival blocking [22]. Hence the constraint

∑
`q∈QAq ≤ 0

holds. The rest of the MILP and ILP formulations presented in the
preceding sections can be reused without changes.

VII. EXPERIMENTAL EVALUATION

We implemented the proposed analyses in SchedCAT [26],
which uses the GNU Linear Programming Kit or CPLEX as
the underlying (M)ILP solver. To assess the new analyses, and
to compare the different mechanisms in different scenarios, we
carried out a large-scale schedulability study based on randomly
generated synthetic workloads. For brevity, we denote FIFO non-
preemptive and FIFO preemptive spin locks as F|N and F|P,
respectively. As a baseline, we used the classic analysis for F|N
spin locks under P-EDF scheduling by Gai et al. [10].

We conducted two experiments considering both symmetric and
asymmetric multiprocessors, respectively.

A. Experiment 1: Symmetric Platforms

1) Workload generation: We considered platforms with m ∈
{2, 4, 8} identical processors. For a given n, we randomly gener-
ated task sets with the following different parameter settings. Task
periods were randomly chosen from a log-uniform distribution
with a range of either [10ms, 100ms] or [1ms, 1000ms]. All
tasks were assigned implicit deadlines. The utilization of each
task was randomly drawn from an exponential distribution with a
mean of 0.1. Each task Ti was allocated to processor Px, where
x = di/me. We assumed the presence of nr ∈ {m/2,m, 2m}
shared resources. Each task Ti was configured to accesses each
resource `q with a probability pacc ∈ {0.1, 0.25, 0.5}. If Ti was
chosen to access `q , then the number of requests Ni,q was chosen
uniformly at random from the set {1, ..., Nmax}, where Nmax

varied across {1, 3, 5, 7, 10}. The maximum critical section (or
commit loop) length Li,q was chosen uniformly at random from
either [1µs, 25µs] (short) or [25µs, 100µs] (medium).

For simplicity, we used the same critical section (or commit
loop) length under both spin locks and lock-free alternatives. This
is unlikely to be the case in practice (many lock-free approaches
incur copy overhead), but it ensures that all reported trends are
solely due to differences in analysis.

2) Results: In our study, we evaluated more than 2000 different
configurations, varying the number of tasks n from 10 to 10m
in steps of m/2 for each configuration. As the number of tasks
increases, the overall system load and the contention for shared
resources increases. For each value of n, 500 different task sets
were generated and tested. Across the range of all tested configura-
tions, we noticed that, even with the new analysis, the pessimism
gap [7] between spin locks and lock-free algorithms remains
present. Once more, F|N spin locks perform best in most of the
configurations and our new analysis consistently outperforms the
baseline from [10], showing significant improvements especially in
the presence of high contention. In some particular configurations,
F|P spin locks are found to dominate all other studied mechanisms,
performing slightly better than even F|N spin locks. Although
specific task sets (e.g., those containing tasks with short periods)
can highly benefit from the lower arrival blocking imposed under
F|P spin locks, the marginal gain in schedulability observed (on
average) in this study does not justify the additional complexity
needed for their support [27, 28]. Concerning lock-free algorithms,
the use of non-preemptive commit loops was observed to result
in slightly better performance. Experimental results from three
representative configurations are reported in Figures 5(a)–5(c).
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(a)m = 4, pi ∈ [1ms, 1000ms], nr = 4,
pacc = 0.25,Nmax = 1, short crit. sections
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(b)m = 4, pi ∈ [1ms, 1000ms], nr = 8,
pacc = 0.25,Nmax = 3, short crit. sections
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(c)m = 8, pi ∈ [10ms, 100ms], nr = 8,
pacc = 0.25,Nmax = 5, medium crit. sections
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(d)m = 4, pi ∈ [10ms, 100ms], nr = 4,
pacc = 0.25,Nmax = 3, Uslow = 0.7,

n′ = 7, very short crit. sections
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(e)m = 8, pi ∈ [10ms, 100ms], nr = 8,
pacc = 0.1,Nmax = 5, Uslow = 0.7,

n′ = 5, very short crit. sections
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(f)m = 8, pi ∈ [10ms, 1000ms], nr = 8,
pacc = 0.25,Nmax = 3, Uslow = 0.7,

n′ = 5, very short crit. sections

No blocking F|N spin locks F|P spin locks F|N spin locks [10] Lock-Free Non-preemptive Lock-Free

Figure 5. Experimental results of six representative configurations. Figures (a), (b) and (c) show results from Experiment 1 (Sec. VII-A) while Figures (d), (e) and (f)
show results from Experiment 2 (Sec. VII-B). The values of the parameters used in each configuration are reported in the captions above the figures.

The relevant configuration parameters are reported in the caption
above each graph. Inset (a) reports results for a configuration
with low contention, where lock-free algorithms exhibit slightly
worse performance with respect to spin locks, but their use is not
disruptive in terms of system schedulability. Insets (b) and (c) show
two configurations where F|N spin locks dominate all the other
mechanisms, accepting up to 65% more task sets than lock-free
algorithms for n = 30 in inset (c), and 30% more task sets for
n = 22 in inset (b).

B. Experiment 2: Asymmetric Platforms

1) Workload generation: To simulate asymmetric platforms, we
split the available processors in two subsets: given the number of
processors m ∈ {2, 4, 8}, we defined Pfast = {P1, ..., Pm/2} to
be a set of “fast” processors and (ii) Pslow = {Pm/2+1, ..., Pm}
to be a set of “slow” processors. Let s ≥ 1 be a scale factor to
simulate the ratio between the different speeds of the processors.
For each processor P ∈ Pfast, we generated a task set running on
P by means of the Emberson et al.’s [29] task set generator. The
generator was given a target utilization Ufast chosen uniformly
at random from the interval [0.95, 0.99], and a target task count of
n′ ∈ {5, 7, 10} tasks. For each task Ti ∈ τ(P ), the maximum criti-
cal section (or commit loop) lengths Li,q were chosen uniformly at
random from from either [1µs, 5µs] (extremely short), [1µs, 10µs]
(very short) or [1µs, 25µs] (short). The same generation strategy
was then applied to each processor in the setPslow but with a target
utilization of Uslow = {0.7/s, 0.8/s}. Finally, the execution cost
and critical section length parameters of each task executing on
“slow” processors was scaled up by the factor s to coarsely simulate
the effects of a slower processor. The rest of the parameters were
generated as reported in Sec. VII-A1.

2) Results: More than 3000 different configurations have been
evaluated while varying the scale factor s ∈ {1, 2, ..., 10}. For

each value of s, 500 different task sets were generated. Taking into
account all tested configurations, we observed the following trends:
(i) lock-free algorithms show significantly better performance
than spin locks as the scale factor increases in case of low or
moderate contention; (ii) the gap in performance between lock-free
algorithms and spin locks tends to decrease as contention increases;
(iii) our new analysis of F|N spin locks shows a consistent
improvement over the baseline analysis [10]; (iv) F|N spin locks
generally perform better than F|P spin locks; and (v) executing
commit loops non-preemptively, rather than preemptively, tends
to increase schedulability. The results from three representative
configurations are reported in Figures 5(e), 5(d) and 5(f). As
it is apparent in the graphs, all mechanisms tend to degrade
in schedulability as the scale factor increases. Trend (i) can be
observed in both Figures 5(e) and 5(d), where the analysis of lock-
free algorithms accepts up to seven times more task sets than F|N
spin locks. Trend (ii) can be observed in Figure 5(f), which reports
the results for a configuration with higher contention (pacc = 0.25).
Trends (iii) and (iv) are apparent in all the three figures. Finally
trend (v) is evident in Figure 5(f), where lock-free algorithms with
non-preemptive commit loops are able to guarantee 10% more task
sets than the preemptive alternative.

VIII. RELATED WORK

Lightweight synchronization mechanisms for multiprocessor
systems have been studied for many years and comprehensive
surveys are available [30, 31]. Most relevant to us, Mellor-
Crummey and Scott [17] provided foundational algorithms for
implementing efficient FIFO spin locks. Different techniques for
implementing queue-based spin locks that allow busy-waiting jobs
to be preempted were developed subsequently [27, 28]. Works
addressing the efficient implementation of lock-free algorithms
are also available [32, 33]. In the context of real-time systems,
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lock-free algorithms were first analyzed by Anderson et al. [25]
under both EDF and FP scheduling on uniprocessor systems. Later,
Holman and Anderson studied the use of lock-free synchronization
in Pfair-scheduled real-time systems [34]. A different look at lock-
free algorithms is due to Cho et al. [35], who studied workloads
characterized by arrival curves managed by a uniprocessor utility-
based scheduler.

Concerning spin locks, Gai et al. [10] were the first to formally
analyze blocking due to spin locks, proposing the MSRP, which
combines the classical SRP for uniprocessor with FIFO non-
preemptive spin locks. Devi et al. [36] later extended Gai et
al.’s analysis for FIFO non-preemptive spin locks to deal with
globally scheduled systems. These analyses have been also used
for the Flexible Multiprocessor Locking Protocol (FMLP) [37],
which integrates FIFO non-preemptive spin locks to manage short
critical sections. Finally, in 2013, Wieder and Brandenburg [12]
presented the first inflation-free analysis for spin locks under P-FP
scheduling; we have transferred this approach to P-EDF scheduling
and adapted it to lock-free synchronization. Spin-based locks
have also been investigated in work targeting reservation-based
scheduling [11, 38].

Beside lightweight synchronization mechanisms, much effort
has been spent on the design and the analysis of semaphore-based
protocols for multiprocessor real-time systems; recent overviews
are available in [1, 13, 14].

The analysis framework for P-EDF proposed in this paper
relies on Baruah’s enhanced PDC [18]. In 2009, Zhang and
Burns proposed the QPA algorithm [4] to speed up PDC analysis.
Conceptually, we believe that our analysis framework could also
benefit from integrating the QPA idea; we leave it as a future work
to explore the applicability of QPA in greater detail.

IX. CONCLUSIONS AND FUTURE WORK

In this work, we have revisited the analysis of lightweight
synchronization mechanisms under P-EDF scheduling.

To enable the inflation-free analysis of synchronization delays,
we have developed a new PDC-based, iterative schedulability
test (Sec. III). On the basis of this foundation, we have studied
four different lightweight synchronization mechanisms, which for
the most part have not been considered before under P-EDF, and
proposed matching bounds on worst-case synchronization delay.
In particular, we have proposed the first inflation-free analysis
of lock-free algorithms under P-EDF scheduling and a new and
improved analysis for FIFO spin locks.

To evaluate the proposed analyses, we conducted a large-scale
experimental study considering both symmetric and asymmetric
multiprocessor platforms. We observed that systems composed of
asymmetric multiprocessors can benefit from the use of lock-free
algorithms, especially if contention is predominantly low. At the
same time, we confirmed the effectiveness of non-preemptive FIFO
spin locks on symmetric multiprocessors.

The closer look at lock-free algorithms provided in this work
allows for interesting future exploration. For instance, lock-
free synchronization could be a good match in the domain of
component-based software design, where it could enable the
analysis of opaque components without any assumptions on
maximum critical section lengths, while also isolating components

from overruns during accesses to shared resources, which is the
Achilles Heel of current component-based systems [11, 38] and a
cause of much pessimism.
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