
Real-Time Multitasking in Arduino

Pasquale Buonocunto, Alessandro Biondi, Pietro Lorefice

Scuola Superiore Sant’Anna, Pisa, Italy

Email: {p.buonocunto, alessandro.biondi}@sssup.it

pietro.lorefice@gmail.com

Abstract— This work-in-progress paper presents an ex-

tension to the Arduino framework that introduces mul-

titasking support. This allows to have more concurrent

tasks instead of the single cyclic execution provided by

the standard Arduino framework. The extension is imple-

mented by integrating in a seamless way the ERIKA open-

source Real-Time OS, maintaining the simplicity of the

programming paradigm typical of the Arduino framework.

I. INTRODUCTION

In recent years, Arduino established as the most popular

platform for rapid prototyping. Arduino consists of both a

physical programmable circuit board (often referred to as a

microcontroller) and an IDE (Integrated Development Envi-

ronment) that runs on your computer. Its widespread adoption

is highly related to its major strength: the simplicity during

the programming and execution phases. In fact, unlike most

others programmable circuit boards, Arduino does not need

an external hardware (i.e., programmer) to load the new code

onto the board, because an USB cable is sufficient for power

supply, programming and communication. Additionally, the

Arduino IDE uses a simplified version of the C++ language,

making it easier to learn. This happens because Arduino

provides a framework that allows the user to program a

fully-working application without knowing any details of the

underlying hardware. Moreover, there is a huge number of

free third party libraries and code examples that permits to

immediately use external devices, with the minimum effort to

acquire the needed knowledge. Finally, the Arduino board is

designed with a common form factor that allows to access

the functions of the microcontroller into a more standardized

way. However, although the Arduino programming model is

simple and effective, it does not support concurrency and it is

strongly limited to only a block of instructions that is cyclically

repeated.

Contribution: We present RT-Arduino, an extension for the

Arduino framework that introduces the real-time multitasking

support. While the classical Arduino programming model

consists of a single main-loop containing the code to be

executed, RT-Arduino allows to specify a number of different

loops, each one executed with a given frequency.

The main strength of the proposed approach is that the

RT-Arduino programming model is compliant with the clas-

sical Arduino concept. RT-Arduino provides a very simple

interface to specify a multitasked application, introducing few

differences with respect to the original programming model.

Each loop is mapped on an OSEK-task that are scheduled

by the ERIKA Enterprise RTOS; the RTOS configuration

is automatically generated limiting as much as possible the

parameters that have to be specified by the user.

II. RELATED WORK

For this kind of hardware which is typically used in different

Arduino boards, a lot of operating systems are available.

Contiki is a lightweight operating system built around an

event-driven kernel which optional preemptive multithread-

ing [7]. Contiki has the proto-threads abstraction: ability

to write thread-like programs with blocking calls on top

of event-driven kernel [8]. As an alternative to cooperative

proto-threads, Contiki provides preemptive threading model

implemented as optional library;

TinyOS is an embedded operating system written in the

nesC programming language as a set of cooperating tasks and

processes [2]. A TinyOS component can post a task, which the

OS will schedule to run later. Tasks are non-preemptive and

run in FIFO order. This simple concurrency model is typically

sufficient for I/O-centric applications, but reveals inadequate

with CPU-intensive applications. This led to the development

of a separate thread library called TOSThreads [10];

Mbed-Rtos is a platform for developing smart devices that

are based on 32-bit ARM Cortex-M microcontrollers [1]. An

optional library implementing the standardized CMSIS-RTX

API provides RTOS functionality, such as thread management

(define, create, and control), events (signals, message and mail)

and resources management (mutex and semaphore);

There are also other multithreaded operating systems de-

signed for wireless sensor networks that provides Unix-like

abstractions. Examples are NuttX, ChibiOS/RT, LiteOS, Man-

tis and MansOS [14]. All of them are quite similar and

provide preemptive scheduler for multithreaded applications.

They differ especially in hardware abstraction architectures

and available library and device drivers. Hsowever, each one

has some drawback, including the require to learn some

particular language or a new programming paradigm, and

they do not provide real-time constraints, but only limited

multiprogramming facilities. Moreover, the multiprogramming

support is often included as an optional component, thus

increasing the total footprint in terms both of ROM and RAM.



A. Erika Enterprise RTOS

Our solution is based on ERIKA Enterprise, a real-time

kernel [9] which allows achieving high predictable timing

behavior with a very small run-time overhead and memory

footprint. ERIKA Enterprise is an innovative OSEK/VDX

RTOS for small microcontrollers that includes highly pre-

dictable real-time kernel mechanisms and uses innovative

programming features to support time sensitive applications

on a wide range of microcontrollers and multi-core platforms.

In addition to the OSEK/VDX standard scheduling algorithm,

ERIKA Enterprise implements other scheduling algorithms

such as Fixed Priority with preemption thresholds, Stack

Resource Policy (SRP) [3], Earliest Deadline First (EDF) [11],

resource reservations (FRSH) [12] and hierarchical scheduling

(HR) [4], [5] which can be used to schedule tasks with real-

time requirements. In particular, ERIKA supports periodic

and aperiodic task scheduling according to fixed and dynamic

priorities; interrupt handling for urgent peripherals operation

(interrupts always preempt task execution); and time bounded

resource sharing through the Immediate Priority Ceiling pro-

tocol [13], [6].

In Erika Enterprise, all the RTOS objects like tasks, alarms

and resources are static (i.e., predefined at compilation time).

To specify the objects composing a particular application,

Erika Enterprise uses the OIL (OSEK Implementation Lan-

guage) configuration files. OIL is a text description language

defined as part of the OSEK/VDX standard, that is used for

RTOS and application configuration. RT-Druid is an applica-

tion provided with Erika Enterprise that is in charge of pro-

cessing the OIL configuration in order to generate the specific

Erika Enterprise code that defines the requested configuration.

To allow writing, compiling, and analyzing applications in a

comfortable environment, the RT-Druid plug-in for Eclipse

is used. It also provides support for code generation and

integration with static analysis tools.

III. SYSTEM DESCRIPTION

In the Arduino notation, the name sketch is used to denote a

program for the Arduino framework. The sketch consists in a

unit of code that is processed, compiled and then uploaded on

the Arduino board. In the following we use ERIKA MAKE

and Arduino MAKE to refer to the ERIKA Enterprise and

Arduino MAKE build processes, respectively. The entire build

flow process of RT-Arduino is showed in Figure 1. It involves

several different phases. The first one takes the sketch code as

input and give as output two files: the .OIL, which describes

the ERIKA application, in terms of tasks used, resources, and

other options, and the C file containing the whole code of

the application, ready to be compiled by the Arduino MAKE

phases. The OIL file, instead, is feeded to RT-DRUID that

parses it and generate ERIKA configuration files (eecfg.h and

eecfg.c) that contains all the data structures for the application

described in the OIL file. At this point, the compilation of

ERIKA can take place, and so the ERIKA MAKE phase

generates a static library as output. Finally, the LINK phase

put together this library with the object files resulted from the

Figure 1: Build process

Arduino MAKE phase, thus building the binary file ready to

be loaded into the microcontroller.

A. Custom parser description

CUSTOM pre-processing During this phase, the sketch file

is preprocessed to extract the information useful for generating

the OIL file. In particular, the sketch is parsed to identify the

RT-Arduino loops. To make the experience for the user as

seamless as possible, the constructs used to declare a task are

very similar to the one used to declare a C function, in the form

void loopX(p), X and p being integer numbers representing

the identifier of the loop and its period. For each loop, an

OSEK-task configuration is generated and associated to the

code inside the loop. In addition, the period of the loop is

extracted in order to configure an OSEK alarm triggering the

task activation, by using a global OSEK counter. This is done

by parsing the sketch looking for the above declarations and

adding them to a predefined OIL template, which also specifies

the details (CPU, MCU, etc.) of the Arduino board on which

the program will then be uploaded.

Arduino processing In this phase the code is subject to de-

fault Arduino transformations, needed to produce a compiler-

compatible code. In particular, the original sketch (in .pde or

.ino formats) is converted to a standard .cpp file, and any

additional files beside the main one are appended to it. It will

also contain any user-defined import of external libraries.

It is worth noting that at this stage the file is not yet

ready to be compiled, since the task declarations, as seen

in the following examples, are not standard C, and need to

be modified in order to be recognized by both the Erika

framework and the compiler.

CUSTOM post-processing The last phase is responsible

to transform the sketch into an ERIKA Enterprise application,



and to further modify the .cpp file produced in the previous

step in order to make it compiler-compatible. In further detail,

each task declaration needs to be modified into an Erika

declaration, in the form TASK(loopX), and along with any

other element of the Erika framework, wrapped into an extern

”C” declaration, since Arduino sketches are written using C++

while Erika is plain C. At this point, the file is ready to

be compiled, but it still requires additions in order to make

it fully functional. For this reason, the necessary framework

initialization functions are added during the setup phase of

the application (before any user-defined code is executed),

and each automatically created alarm is started in order to

eventually start the task execution. In this way, the activation

of the tasks is completely transparent to the user.

IV. EXAMPLES

In this section we present an example of RT-Arduino appli-

cation compared with the equivalent formulation that would

be necessary using the classical Arduino programming model.

The selected example consists in a very simple multi-rate

led blinking application. In this example the application is

in charge of make blinking three different leds, each one at a

different frequency. The three leds Led1, Led2 and Led3 have

to blink every 3s, 7s, and 11s, respectively.

int led1 = 13;

int led2 = 14;

int led3 = 15;

int count = 0;

void loop() {

if (count%3 ==0)

digitalToggle(led1);

if (count%7 ==0)

digitalToggle(led2);

if (count%11 ==0)

digitalToggle(led3);

if (count== 3 ∗ 7 ∗ 11)

count = 0;

count++;

delay(1000);

}

Figure 2: Example of multi-rate led blinking using the classical

Arduino programming model.

Figure 2 shows the considered example implemented with

the classical Arduino programming model. The single loop()

of Arduino contains a delay instruction that is responsible to

define the time granularity of the loop. The value passed as

argument of the delay function has to be set to the MCD

of the blinking periods (in this case 1 second). A variable

count is used to keep track of the current multiple of the time

granularity in order to determine which led has to blink. On the

other hand, Figure 3 shows the same program formulated using

the RT-Arduino programming model. Using our proposed

approach is it possible to specify three different loops, one for

each led. The parameter indicated in the brackets of the loop

is the period (in milliseconds) at which it has to be executed.

int led1 = 13;

int led2 = 14;

int led3 = 15;

void loop1(3000) {

digitalToggle(led1);

}

void loop2(7000) {

digitalToggle(led2);

}

void loop3(11000) {

digitalToggle(led3);

}

Figure 3: Example of multi-rate led blinking using RT-

Arduino.

It is worth observing that this is a very simple example

that can be handled with the original Arduino framework

without excessive programming complexity. In practice, the

situation can be more complex making hard the emulation of

a multithreading behavior without using an RTOS. In addition,

another main advantage of introducing the multithreading

support in Arduino consists in enabling possible preemption

among the loops. For example, it is not uncommon to have

a loop loop large() composed by a time-consuming block of

code, which is executed with a large period. In this case, using

the classical Arduino programming mode as in Figure 2, it is

not possible to preempt the execution of loop large() in favor

of another loop with smaller period.

A. Internal processing

Figure 4 shows the OIL configuration generated by RT-

Arduino for the multi-rate blinking example. As the figure

shows, an OSEK-task specification is provided for each loop

defined in the RT-Arduino sketch. In addition, an OSEK-

alarm is associated to each task. Task priorities are implicitly

assigned following a rate-monotonic order (i.e., the lower the

period, the greater the priority).

V. OPEN ISSUES

The Arduino framework is designed to be single-threaded,

thus all of its code is not thread-safe, including all the external

third-party libraries. There are two approaches to implement

multiprogramming: the first is to have non-preemptive tasks,

however this sometimes can be an unacceptable limitation and

is prone to overrun by a badly-written task code that can cause

low priority tasks to starve. On the other end, the second

approach is to allow an arbitrary task preemption. However,

preemption can lead to inconsistencies due to the lack of

synchronization mechanisms in Arduino.

Different kinds of solutions have been proposed in ex-

isting literature and are widely used in modern RTOS, i.e.

mutexes and different scheduling policy. Mutex semaphores

have been introduced to handle mutual exclusive access to

critical sections. The use of mutex semaphores requires the

explicit specification of critical sections inside the code. In the



CPU m3 {
OS EE {

CPU_DATA = CORTEX_MX {
MODEL = M3;

APP_SRC = "RT-sketch.cpp";

COMPILER_TYPE = GNU;

MULTI_STACK = FALSE;

};

MCU_DATA = ATMEL_SAM3 {
MODEL = SAM3xxx;

};

KERNEL_TYPE = FP;

};

COUNTER TaskCounter;

TASK loop3 {
PRIORITY = 0x03;

SCHEDULE = FULL;

STACK = SHARED;

};

ALARM Alarmloop3 {
COUNTER = TaskCounter;

ACTION = ACTIVATETASK { TASK = loop3; };
};

TASK loop2 {
PRIORITY = 0x02;

SCHEDULE = FULL;

STACK = SHARED;

};

ALARM Alarmloop2 {
COUNTER = TaskCounter;

ACTION = ACTIVATETASK { TASK = loop2; };
};

TASK loop1 {
PRIORITY = 0x01;

SCHEDULE = FULL;

STACK = SHARED;

};

ALARM Alarmloop1 {
COUNTER = TaskCounter;

ACTION = ACTIVATETASK { TASK = loop1; };
};

Figure 4: The OIL configuration generated for the multi-rate

led blinking example.

context of real-time operating systems, several resource shar-

ing protocols such as Priority Inheritance Protocol (PIP) [13],

Priority Ceiling Protocol (PCP) [13], and Stack Resource

Policy (SRP) [3] are used to deal with mutual exclusion.

Another possible solution consists in the use of a different

scheduling policy, like the limited preemptive scheduling [15].

In general, using this approach every task can be partitioned

into multiple preemptive and non-preemptive sections, and it

can be used to avoid critical races among tasks. A limit case

of this approach consists in defining all the tasks to be non-

preemptively executed.

Usually, it is common to have a simple implementation of

the limited preemptive scheduling, by providing a single, non-

preemptive, high-priority task, like as done in MansOS [14].

However, this is quite limiting because of the additional

constraint for the programming model. In fact, all the critical

sections must be inserted in the non-preemptive task, disallow-

ing safe resource sharing among multiple tasks. This can be

acceptable for simple scenario, like small WSN application,

but can not be considered a general solution for a more

complex embedded system application.

All of the previous discussed mechanisms are already

implemented and usable in the Erika Enterprise kernel, that

we integrated in Arduino. However, to be correctly used,

all explicit synchronization mechanisms require the user to

have a deep understanding of the problems related to mul-

tiprogramming and real-time systems, and also to correctly

design and implement the whole application. This represents

a major drawback since we aim to seamlessly integrating

the mutual-exclusions functionalities already provided by the

Erika Enterprise kernel into the Arduino framework.

VI. CONCLUSIONS

This WiP provides a first implementation of the integration

between the Erika Enterprise kernel and the Arduino frame-

work in order to provide a multiprogramming support to the

well know Arduino framework.

REFERENCES

[1] Embedded platform for ARM devices, 2014.
[2] Tinyos operating system for low-power wireless devices, 2014.
[3] T. P. Baker. Stack-based scheduling for realtime processes. Real-Time

Systems, 3(1):67–99, April 1991.
[4] M. Bertogna, N. Fisher, and S. Baruah. Resource-sharing servers

for open environments. IEEE Transactions on Industrial Informatics,
5(3):202–220, August 1991.

[5] A. Biondi, G. Buttazzo, and M. Bertogna. Schedulability analysis of
hierarchical real-time systems under shared resources. Technical report,
RETIS Lab, Scuola Superiore SantAnna, 06 2013.

[6] G. Buttazzo. Hard Real-Time Computing Systems: Predictable Schedul-

ing Algorithms and Applications, Third Edition. Springer, New York,
2011.

[7] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and
flexible operating system for tiny networked sensors. In Local Computer

Networks, 2004. 29th Annual IEEE International Conference on.
[8] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali. Protothreads: Simplifying

event-driven programming of memory-constrained embedded systems.
In Proc. of the 4th International Conference on Embedded Networked

Sensor Systems. ACM, 2006.
[9] P. Gai, G. Lipari, L. Abeni, M. di Natale, and E. Bini. Architecture for

a portable open source real-time kernel environment. In Proceedings of

the Second Real-Time Linux Workshop and Hand’s on Real-Time Linux

Tutorial, November 2000.
[10] K. Klues, C.-J. M. Liang, J. Paek, R. Musăloiu-E, P. Levis, A. Terzis,

and R. Govindan. Tosthreads: Thread-safe and non-invasive preemption
in tinyos. In Proc. of the 7th ACM Conference on Embedded Networked

Sensor Systems. ACM, 2009.
[11] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in

a hard-real-time environment. Journal of the Association for Computing

Machinery, 20(1):46–61, January 1973.
[12] L. Marzario, G. Lipari, P. Balbastre, and A. Crespo. IRIS: A new

reclaiming algorithm for server-based real-time systems. In Proc.

of the IEEE Real-Time and Embedded Technology and Applications

Symposium, Toronto, Canada, May 2004.
[13] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols:

An approach to real-time synchronization. IEEE Transactions on

Computers, 39(9):1175–1185, September 1990.
[14] G. Strazdins, A. Elsts, and L. Selavo. Mansos: Easy to use, portable

and resource efficient operating system for networked embedded devices.
In Proc. of the 8th ACM Conference on Embedded Networked Sensor

Systems. ACM, 2010.
[15] Y. Wu and M. Bertogna. Improving task responsiveness with limited

preemptions. In Proceedings of the 14th IEEE International Conference

on Emerging Technologies & Factory Automation, ETFA’09. IEEE Press.


