
1

Handling Transients of Dynamic Real-Time
Workload Under EDF Scheduling

Daniel Casini, Alessandro Biondi, Giorgio Buttazzo, Fellow, IEEE

Abstract—Real-time dynamic workload consists of tasks that can arbitrarily join and leave the system at run-time. To avoid incurring
deadline misses, tasks that request to join the system must pass an admission test, which has to cope with potential scheduling
transients originated by the residual effect of the tasks that previously left the system. This phenomenon may require some tasks to suffer
an admission delay before being accepted for execution.
This paper focuses on uniprocessor earliest-deadline first (EDF) scheduling with constrained deadlines and explicitly considers methods
for handling scheduling transients in the presence of dynamic real-time workload. A generalized analysis framework is first presented to
overcome several limitations of the existing approaches (including the support for overlapping transients), and is then used to derive
methods for computing bounds on the admission delays incurred by tasks. Building on such results, an on-line protocol is proposed to
handle the admission control of a dynamic workload, which also comes with a variant that can execute in polynomial time to favor its
practical application. Furthermore, the paper shows how the presented analysis can be used off-line for analyzing mode-changes among
static task sets. Experimental results are finally presented to evaluate the proposed algorithms.

Index Terms—Real-time systems, scheduling transients, dynamic workload, mode change, schedulability analysis, deadline-based
scheduling

F

1 INTRODUCTION

Several real-time applications are characterized by a
dynamic workload, where computational activities (tasks)
are allowed to exit and join the system at run-time. Some
representative examples of such applications are multimedia
software systems [1], cloud databases [2], and open environ-
ments, in which new software components may arrive in the
system while other components are already executing. Most
of the operating systems that include real-time scheduling
capabilities are conceived to support a dynamic workload,
as tasks can freely be created and destroyed at run-time. For
instance, this is the case for VxWorks, QNX, and Linux.

To avoid incurring deadline misses, tasks that request to
join the system must pass an admission test before being admit-
ted for execution, which generally consists in a schedulability
test. However, when a new task requests to join the system
after other tasks left, the system can experience a scheduling
transient originated by the residual effect of the leaving
tasks. That is, despite the system would result schedulable in
steady-state conditions according to a classical schedulability
test after admitting the new task, the execution of the leaving
tasks may already have influenced the schedule of the system
so that the admission of a new task can generate deadline
misses. Therefore, as identified in [3], [4], a standard steady-
state schedulability analysis that neglects the leaving tasks
would not be safe, if deadline misses cannot be tolerated. A
solution to this problem consists in delaying the admission of
new tasks up to a safe time in which they can start executing
without causing (or incurring) deadline misses. The time
a task waits during a scheduling transient is denoted as
admission delay.

• D. Casini, A. Biondi, and G. Buttazzo are with the TeCIP Institute
of the Scuola Superiore SantAnna, Pisa, Italy. E-mail: {daniel.casini,
alessandro.biondi, giorgio.buttazzo}@santannapisa.it

The analysis of scheduling transients is similar to the one
of systems with mode-changes, which has been extensively
studied in the literature (a detailed review is reported in
Section 2). However, dealing with a dynamic workload
presents considerable differences. Two of the most important
ones are the need for computing admission delays online, and
the possibility to manage overlapping transients originated by
multiple (and potentially interleaved) leaving/joining tasks;
i.e., the case in which multiple tasks request to join the system
at different times while the system is still experiencing a
scheduling transient.

To the best of our knowledge, the methods addressing
such problems under earliest-deadline first (EDF) schedul-
ing are only available for implicit-deadline tasks, where
the analysis is performed with simple utilization-based
tests. Besides the theoretical relevance of supporting con-
strained deadlines, recent works showed that EDF-based
semi-partitioned scheduling allows achieving very high
schedulability performance with limited run-time overhead,
but the methods require dealing with constrained deadlines
even to schedule implicit-deadline tasks [5], [6]. Hence, this
work can also serve as a building block for future work
targeting the computation of admission delays under semi-
partitioned EDF-based scheduling.

Contributions. This paper focuses on uniprocessor (or mul-
tiprocessor partitioned) EDF scheduling with constrained
deadlines and makes the following three contributions:

• First, a schedulability analysis framework is presented
to cope with overlapping scheduling transients and
constrained-deadline tasks, which is entirely based
on a new modeling approach that has been conceived
to support a dynamic real-time workload.

2

• Second, based on the proposed analysis, an on-line
protocol is proposed to handle the admission control
of a dynamic workload. The proposed protocol comes
with two algorithms for computing the admission
delays of tasks, where one of them has a polynomial-
time complexity to favor its online usage.

• Third, the paper shows how the presented analysis
can be used off-line for guaranteeing the schedulabil-
ity of transients originated by mode changes.

Experimental results are finally presented to assess the
performance of the proposed approaches and compare them
with state-of-the-art methods to deal with mode-changes.

Paper Structure. The remainder of this paper is organized
as follows. Section 2 provides a state-of-the-art analysis
for the related work, illustrating the differences with the
present paper. Section 3 presents the system model and
recalls some essential background. Section 4 presents two
schedulability analysis techniques for managing scheduling
transients. Section 5 proposes an on-line protocol to handle
transients and two algorithms for computing the admission
delays of tasks. Section 6 discusses how the presented results
can also be adopted to analyze mode changes of static
task sets. Section 7 reports an experimental study that has
been conducted to assess the performance of the proposed
approaches. Section 8 concludes the paper and states future
work.

2 RELATED WORK

Methods for dealing with scheduling transients have been
extensively studied in the literature. Many authors analyzed
this issue in the context of multi-moded systems, in which
the application can switch among different operating modes,
each corresponding to a different task set. Other authors
explicitly targeted dynamic workloads, but focused on
implicit-deadline tasks or soft real-time guarantees (e.g.,
bounded tardiness).

Mode-change. Although some solutions developed for ana-
lyzing mode changes could be extended for being applied
to the problem addressed in this paper, all of them do not
support some peculiar features that are needed to handle
the admission control of real-time workload. In particular,
most of the works targeting mode changes generally assume
that the operating modes of an application are known a-
priori, and hence target static real-time workload whose
schedulability can be tested off-line for a given transition
delay. Conversely, in the presence of a dynamic workload,
operating modes are not known a priori and admission
delays must be computed on line. In addition, new tasks may
request to join the system while other tasks are still waiting
for being admitted, thus originating overlapping transients.

Unfortunately, to the best of our knowledge, all the
works focused on mode changes do not manage overlapping
transients, since they assume that a mode change can only
occur in steady-state conditions and not during another tran-
sient. Furthermore, since the admission control of dynamic
workloads must be managed at run time, it is possible to
exploit on-line scheduling information to compute smaller
admission delays. Clearly, this cannot be done for protocols
developed for managing mode changes in static task sets.

One of the first works targeting mode changes is due
to Fohler [7], who targeted table-driven scheduling of real-
time tasks. In the context of uniprocessor fixed-priority (FP)
scheduling, several protocols and analysis techniques for
mode-changes have been proposed. The interested reader can
refer to the survey by Real and Crespo [18]. Andersson [10]
focused on EDF scheduling and analyzed the mode-change
protocol proposed by Sha et al. [19] but only assuming
implicit-deadline tasks. This assumption allowed the author
to prove an utilization bound. Phan et al. [13] proposed a
multi-mode automata model and the related compositional
analysis technique for processing multiple event streams.
Their analysis considers overlapping mode changes, but it
requires exploring a reachability graph with an algorithm
that has exponential complexity.

Fisher and Ahmed [14] proposed two sufficient schedu-
lability tests for EDF with constrained deadlines consid-
ering applications running under temporal isolation (e.g.,
scheduled by a reservation server) that can experience mode
changes. The two proposed approaches differ in the assump-
tions: in the first one, the authors considered sequences of
mode-changes that are fixed a-priori, while in the second
one the system can arbitrarily switch between a given set
of modes. Both the approaches assume a given transition
delay between the modes and allow for overlapping mode
changes. Later, Ahmed and Fisher [20] developed a parallel
algorithm to speed up the schedulability tests developed
in [14]. Stoimenov et al. [15] addressed the problem of mode
changes under both EDF and FP scheduling considering the
general event stream model and applying real-time calculus
to analyze the system. However, the authors formulated
the analysis in the continuous domain, without providing
bounds on the analysis interval, hence the method cannot be
used to implement a schedulability test. Similarly, a binary
search over an unbounded domain is briefly suggested for
computing transition delays between operating modes. In
a later work, Stoimenov et al. [21] considered the mode-
change problem in the context adaptive reservation servers
using time division multiple access (TDMA), investigating
on the resource provisioning during mode switches. San-
tinelli et al. [22] proposed schedulability analysis for multi-
moded resource reservation servers. The authors proposed
a framework to deal with both inter-server and intra-server
schedulability analysis; however, the contribution of the
paper regards only intra-server analysis, whereas inter-server
schedulability is addressed by means of the results of other
works (e.g., [3], [8]). Other works addressed mode changes
under multiprocessor global scheduling. Rattanatamrong
and Fortes [23] proposed a global real-time multiprocessor
scheduling algorithm managing mode transitions, called
EAGLE-T. In their algorithm tasks are characterized by
different utilizations in different modes, and adapt their
utilization when mode changes occur. The authors focused
on implicit-deadline tasks only.

Nelis et al. [11] proposed two algorithms, named AM-SO
and SM-SO (working under different assumptions), to handle
transitions among modes that can be used with any global
preemptive job-level fixed-priority scheduling algorithm. In
a later work, Nelis et al. [12] proposed another mode-change
protocol designed to work in conjunction with global EDF
(G-EDF) schedulers, ensuring that (i) every job completes

3

TABLE 1
Comparison of the related work.

Paper Scheduler Deadline Processors Workload Approach
Overlapping

transients
Fohler [7] Pre run-time Any UP Static Table Driven NO

Buttazzo et al [3] EDF Implicit UP Dynamic Online protocol YES
Guangming [8] EDF Implicit UP Dynamic Online protocol YES

Rattanatamrong and Fortes [9] Custom Implicit MP-G Dynamic Online protocol NO
Andersson [10] EDF Implicit UP Static Analysis NO

Nelis et al. 2009 [11] EDF / FP Constrained MP-G Static Online protocol NO
Nelis et al. 2011 [12] EDF Constrained MP-G Static Online protocol NO

Phan et al. [13] EDF Arbitrary UP Static Analysis YES
Fisher et al [14] EDF Constrained UP Static Analysis YES

Stoimenov et al. [15] EDF/FP Arbitrary UP Static Analysis NO
Lee and Shin [16] EDF/FP Constrained MP-G Static Analysis NO

Block and Anderson [17] Custom Implicit UP Dynamic Online Protocol NO
This Paper EDF Constrained UP Dynamic and Static Analysis and Online Protocol YES

within its absolute deadline and (ii) during a mode-change
new mode tasks are activated within their relative transition-
deadline.

Lee and Shin [16] extended a schedulability test proposed
by Bertogna et al. [24] for both G-EDF and global fixed-
priority (G-FP) to cope with the off-line analysis of mode
changes consisting of a single transition. No transition
delay has been considered in the analysis. The authors also
provided an approach for computing a transition order for
tasks that allow limiting the amount of interference generated
during the mode change.

Finally, some authors also addressed the mode-change
problem in the field of real-time networks: most relevant
to us are the works by Kopetz et al. [25] and Heilmann et
al. [26].

Dynamic real-time workload. Under EDF, a solution to
handle scheduling transients in the presence of dynamic
workloads has been presented by Buttazzo et al. [3], who
proposed an elastic scheduling framework where a resource
manager can modify the period of the tasks. Whenever
the period of a task is modified, the system can incur in
a transient and the modified task may suffer an admission
delay. Bounds for such a delay are computed in [3], even in
the presence of overlapping transients; however, the work
is limited to implicit-deadline tasks. The latter assumption
allowed the authors to take advantage of simple utilization-
based tests for analyzing the system and derive bounds on
the admission delays.

Guangming [8] improved the result derived in [3] by
providing a tighter bound on the admission delay, but again
the solution is valid only for tasks with implicit deadline.
Block and Anderson [17] and Block et al. [27] proposed a
task reweighting scheme for implicit-deadline tasks working
under partitioned and P-Fair scheduling, respectively. The
authors bounded the delay that can be experienced by a task
when a reweighting event occurs. Andersson and Ekelin [28]
proposed an admission controller for task sets composed of
aperiodic and periodic tasks. The controller exploits the fact
that the release times of periodic tasks is known a priori. No
admission delays were considered.

The problem of mode-changes and admission control
have been more recently addressed in the context of mixed-
criticality scheduling with the Vestal’s model, where a

mode-change occurs when the system switches its criticality
level. For instance, Masrur et al. [29] extended the EDF-
VD [30] algorithm with a bi-level deadline assignment,
which handles a potential increase of the workload due
to dynamic task arrivals (or criticality mode changes) by
assigning smaller virtual deadlines to high-criticality tasks.
Gu and Easwaran [31] improved the schedulability of EDF-
VD by proposing an alternative test based on demand bound
functions.

Comparison and discussion. To better illustrate the dif-
ferences of the present paper with respect to the related
work and to position this paper in the literature, Table 1
presents a taxonomy organized according to the following
characteristics (reported in the table columns): (i) scheduler
type (e.g., EDF or fixed-priority); (ii) type of deadline
(implicit, constrained, or arbitrary); (iii) single-processor (or
partitioned multi-processor) or multi-processor (global); (iv)
requirement of a-priori knowledge of the workload (static
vs. dynamic workload); (v) type of the adopted approach
(mainly distinguished between schedulability analysis and
online protocol); (vi) ability to handle overlapping transients.
For the sake of clarity, only the works most relevant to us
have been included in Table 1.

Finally, it is worth noting that it is a common belief that
the duration of a scheduling transient is bounded by the
deadline of the task that left the system, which hence would
provide a trivial upper-bound for the admission delay of
future tasks. However, this property only holds for implicit-
deadline tasks1. Figure 1 shows an example of a schedule
that proves that this property is not true in the presence
of constrained-deadline tasks. In the figure, τ1 quits the
system at time t = 10, and the new task τ4 arrives exactly
in correspondence of the deadline of τ1, i.e., at time t = 20.
However, although both task sets {τ1, τ2, τ3} and {τ1, τ2, τ4}
are schedulable (this can be verified by applying the well-
established EDF analysis proposed by Baruah et al. [32]), τ4
experiences a deadline miss.

1. The validity of this result under implicit-deadline can be easily
proved by upper-bounding the formula for the transient delay proposed
in [3] with the relative deadline.

4
t

dbf(t)

0 Di Ti +Di

Ci

2Ci

t

dbf(t)

0 Di Ti +Di

Ci

2Ci

t

dbf e
i (t,∆i, t

E
i)

0 αi αi +DitEi

Ci

Ci + ci

t

dbf
e

i (t,∆i, t
E
i)

0 Di αi αi +Di

Ci

2Ci

tEi

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di 3Ti +Di

Ci

2Ci

3Ci

4Ci

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di

Ci

2Ci

3Ci

1

t

dbf(t)

0 Di Ti +Di

Ci

2Ci

t

dbf(t)

0 Di Ti +Di

Ci

2Ci

t

dbf e
i (t,∆i, t

E
i)

0 αi αi +DitEi

Ci

Ci + ci

t

dbf
e

i (t,∆i, t
E
i)

0 Di αi αi +Di

Ci

2Ci

tEi

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di 3Ti +Di

Ci

2Ci

3Ci

4Ci

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di

Ci

2Ci

3Ci

1

t

dbf(t)

0 Di Ti +Di

Ci

2Ci

t

dbf(t)

0 Di Ti +Di

Ci

2Ci

t

dbf e
i (t,∆i, t

E
i)

0 αi αi +DitEi

Ci

Ci + ci

t

dbf
e

i (t,∆i, t
E
i)

0 Di αi αi +Di

Ci

2Ci

tEi

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di 3Ti +Di

Ci

2Ci

3Ci

4Ci

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di

Ci

2Ci

3Ci

1

t

dbf(t)

0 Di Ti +Di

Ci

2Ci

t

dbf(t)

0 Di Ti +Di

Ci

2Ci

t

dbf e
i (t,∆i, t

E
i)

0 αi αi +DitEi

Ci

Ci + ci

t

dbf
e

i (t,∆i, t
E
i)

0 Di αi αi +Di

Ci

2Ci

tEi

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di 3Ti +Di

Ci

2Ci

3Ci

4Ci

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di

Ci

2Ci

3Ci

1

τ1
t

10 20

τ2
t

10 13 20

τ3
t

13 20.5 22

τ4
t

20 24

τ1 exits

τ4 arrives E
deadline miss

Figure 1: Transient Example

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di 3Ti +Di

Ci

2Ci

3Ci

4Ci

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di

Ci

2Ci

3Ci

1

Fig. 1. Example in which the scheduling transient originated by a
task (τ1 in the figure) that leaves the system is not exhausted at the
task’s deadline. The parameter of the tasks in the example (described
by worst-case computation time, relative deadline, and period) are:
τ1 = 〈10, 20, 20〉, τ2 = 〈3, 20, 20〉, τ3 = 〈7.5, 22, 22〉, τ4 = 〈4, 4, 20〉.
Task τ1 leaves the system at time t = 10, while task τ4 joins the system
at time t = 20, equal to τ1’s deadline.

3 SYSTEM MODEL AND BACKGROUND

This paper considers a uniprocessor system that executes a
dynamic real-time workload consisting of sporadic real-time
tasks that can arbitrarily join or leave the system at run-
time. Tasks are managed under preemptive EDF scheduling.
Each task is characterized by a worst-case execution time
(WCET) Ci, a minimum inter-arrival time Ti, and a relative
deadline Di ≤ Ti. The utilization of a task is denoted as
Ui = Ci/Ti. Before being admitted for execution, a task
that requests to join the system must pass an admission
test based on its parameters (the WCET can be enforced
with a budgeting mechanism, e.g., as available in Linux
with the SCHED_DEADLINE scheduling class [33] or in
AUTOSAR [34]).

In order to analyze scheduling transients, this paper
considers scenarios in which the system is subject to a
sequence of events S = {E1, E2, . . . , EN}, where each event
Ek = 〈τi, tk, type〉 is characterized by

• a task τi;
• a time tk, relative to the beginning of the last busy

period, in which the event is occurred; and
• the type of the event, where type = {ARRIVAL,

EXIT} represents the arrival or the exit of τi, respec-
tively.

A busy period is defined as a time interval such that (i)
the processor is busy at all times during the interval, (ii) just
before the interval, the processor is idle, and (iii) just after the
interval, the processor is idle. The system is said to be idle
before its startup. All the times are assumed to be relative to
the beginning of an arbitrary busy period of interest, which
is studied by means of the analysis techniques presented in
this paper: this is because, once an idle time occurs, all the
scheduling transients are exhausted [35].

To simplify the notation, it is assumed that a task can have
at most one arrival and one exit event in a sequence S, i.e.,
once a task τi leaves the system it cannot request to join the
system again. Note that multiple join requests of a task τi can
easily be handled by considering the arrival of different tasks
with the same parameters of τi. The set of tasks for which
there exists an exit event into the sequence S is denoted by
Γe(S). Similarly, Γa(S) denotes the set of tasks for which

there exists an arrival event in S. Given a task τi ∈ Γe(S),
tei is defined as the time at which the task left the system,
i.e., tei = tk : ∃Ek = 〈τi, tk, EXIT〉 ∈ S. In a similar way,
tai denotes the time at which task τi ∈ Γa(S) arrived in the
system, i.e., tai = tk : ∃Ek = 〈τi, tk, ARRIVAL〉 ∈ S. For each
task τi ∈ Γa(S), the admission delay λi ≥ 0 is defined such
that ∆i = tai + λi is the actual time at which τi is admitted
for execution. Once a task is admitted, it can start releasing
jobs following a sporadic pattern that respects its minimum
inter-arrival time. Any non-admitted task is rejected. For
consistency, we require that if there exists a task τi such that
∆i > 0 and τi ∈ Γe(S), then ∆i≤tei , i.e., a task can exit
only after the time it actually joined the system. Note that,
differently from other proposals, this model does not forbid
overlapping scheduling transients.

For the sake of completeness, the analysis presented in
this paper also considers a task set ΓO that was admitted
for execution before the beginning of a given sequence S and
that is not interested by the events in S, i.e., none of the tasks
in ΓO leaves the system. All the tasks that do not join the
system during a sequence have the admission time set to
zero, i.e.,

∀τi ∈ ΓO ∪ {Γe(S) \ Γa(S)}, ∆i = 0. (1)

To reduce clutter, the set ΓF (S) = ΓO ∪ {Γa(S) \ Γe(S)} is
defined, which represents the set of tasks that are present
into the system after a sequence S has completed. Finally,
the following short notation is adopted: bxc0 = max{0, bxc}
and (x)0 = max{0, x}.

TABLE 2
Main notation adopted throughout the paper.

Symbol Description

τi ith task
Ci worst-case execution time of τi
Ti minimum inter-arrival time of τi
Di relative deadline of τi
Ui utilization of τi
tei time in which τi lefts the system
tai time in which τi requests to join the system
λi admission delay of τi
∆i time in which τi actually enters the system

(∆i = tai + λi)

S sequence of events
Ek specific event Ek = {τi, tk, ARRIVAL}
ΓO set of tasks in the system not interested by sequences
Γa(S) set of tasks admitted during the sequence S
Γe(S) set of tasks that left the system during the sequence S
ΓF (S) set of tasks in the system at the end of the sequence S

dbfi(t) demand bound function of τi
dbfe

i (t,∆i, t
e
i) demand bound function of a task τi ∈ Γe(S)

dbfi(t) approximate demand bound function of τi
dbfe

i (t,∆i, t
e
i) approximate demand bound function of τi ∈ Γe(S)

D(τi) set of check-point for τi according to Theorem 2
ξ(τi) set of check-point for τi according to Theorem 4

3.1 Background on EDF analysis

The results presented in this paper build upon the processor-
demand criterion (PDC) proposed by Baruah et al. [32]. The
demand function [36] gi(t1, t2) of a task τi in an arbitrary
interval [t1, t2] (with respect to an arbitrary schedule) is
defined as the amount of processing time requested by

5
t

dbf(t)

0 Di Ti +Di

Ci

2Ci

t

dbf(t)

0 Di Ti +Di

Ci

2Ci

t

dbf e
i (t,∆i, t

E
i)

0 αi αi +DitEi

Ci

Ci + ci

t

dbf
e

i (t,∆i, t
E
i)

0 Di αi αi +Di

Ci

2Ci

tEi

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di 3Ti +Di

Ci

2Ci

3Ci

4Ci

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di

Ci

2Ci

3Ci

1

t

dbf(t)

0 Di Ti +Di

Ci

2Ci

t

dbf(t)

0 Di Ti +Di

Ci

2Ci

t

dbf e
i (t,∆i, t

E
i)

0 αi αi +DitEi

Ci

Ci + ci

t

dbf
e

i (t,∆i, t
E
i)

0 Di αi αi +Di

Ci

2Ci

tEi

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di 3Ti +Di

Ci

2Ci

3Ci

4Ci

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di

Ci

2Ci

3Ci

1

t

dbf(t)

0 Di Ti +Di

Ci

2Ci

t

dbf(t)

0 Di Ti +Di

Ci

2Ci

t

dbf e
i (t,∆i, t

E
i)

0 αi αi +DitEi

Ci

Ci + ci

t

dbf
e

i (t,∆i, t
E
i)

0 Di αi αi +Di

Ci

2Ci

tEi

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di 3Ti +Di

Ci

2Ci

3Ci

4Ci

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di

Ci

2Ci

3Ci

1

t

dbf(t)

0 Di Ti +Di

Ci

2Ci

t

dbf(t)

0 Di Ti +Di

Ci

2Ci

t

dbf e
i (t,∆i, t

E
i)

0 αi αi +DitEi

Ci

Ci + ci

t

dbf
e

i (t,∆i, t
E
i)

0 Di αi αi +Di

Ci

2Ci

tEi

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di 3Ti +Di

Ci

2Ci

3Ci

4Ci

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di

Ci

2Ci

3Ci

1

t

dbfi(t)

0 Di Ti +Di

Ci

2Ci

(a)

t

dbf i(t)

0 Di Ti +Di

Ci

2Ci

(c)

t

dbf e
i (t,∆i, t

E
i)

0 αi αi +DitEi

Ci

Ci + ci

(b)

t

dbf
e

i (t,∆i, t
E
i)

0 Di αi αi +Di

Ci

2Ci

tEi
(d)

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di 3Ti +Di

Ci

2Ci

3Ci

4Ci

1

t

dbf(t)

0 Di Ti +Di

Ci

2Ci

t

dbf(t)

0 Di Ti +Di

Ci

2Ci

t

dbf e
i (t,∆i, t

E
i)

0 αi αi +DitEi

Ci

Ci + ci

t

dbf
e

i (t,∆i, t
E
i)

0 Di αi αi +Di

Ci

2Ci

tEi

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di 3Ti +Di

Ci

2Ci

3Ci

4Ci

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di

Ci

2Ci

3Ci

1

t

dbf(t)

0 Di Ti +Di

Ci

2Ci

t

dbf(t)

0 Di Ti +Di

Ci

2Ci

t

dbf e
i (t,∆i, t

E
i)

0 αi αi +DitEi

Ci

Ci + ci

t

dbf
e

i (t,∆i, t
E
i)

0 Di αi αi +Di

Ci

2Ci

tEi

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di 3Ti +Di

Ci

2Ci

3Ci

4Ci

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di

Ci

2Ci

3Ci

1

t

dbf(t)

0 Di Ti +Di

Ci

2Ci

t

dbf(t)

0 Di Ti +Di

Ci

2Ci

t

dbf e
i (t,∆i, t

E
i)

0 αi αi +DitEi

Ci

Ci + ci

t

dbf
e

i (t,∆i, t
E
i)

0 Di αi αi +Di

Ci

2Ci

tEi

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di 3Ti +Di

Ci

2Ci

3Ci

4Ci

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di

Ci

2Ci

3Ci

1

t

dbf(t)

0 Di Ti +Di

Ci

2Ci

t

dbf(t)

0 Di Ti +Di

Ci

2Ci

t

dbf e
i (t,∆i, t

E
i)

0 αi αi +DitEi

Ci

Ci + ci

t

dbf
e

i (t,∆i, t
E
i)

0 Di αi αi +Di

Ci

2Ci

tEi

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di 3Ti +Di

Ci

2Ci

3Ci

4Ci

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di

Ci

2Ci

3Ci

1

t

dbf(t)

0 Di Ti +Di

Ci

2Ci

(a)

t

dbf(t)

0 Di Ti +Di

Ci

2Ci

(c)

t

dbf e
i (t,∆i, t

E
i)

0 αi αi +DitEi

Ci

Ci + ci

(b)

t

dbf
e

i (t,∆i, t
E
i)

0 Di αi αi +Di

Ci

2Ci

tEi
(d)

σ Q Q+ σ 2Q 2Q+ σ

t

dbf
T

i (t)

0 Di Ti +Di 2Ti +Di 3Ti +Di

Ci

2Ci

3Ci

4Ci

1

Fig. 2. Illustrations of the demand bound functions used in Section 4
(solid lines). Insets (a) and (b) show functions dbfi(t) and dbfei (t,∆i, t

e
i),

respectively.

instances (i.e., jobs) of τi that have both release times and
absolute deadlines in [t1, t2]. Formally,

gi(t1, t2) =
∑

ri,k≥t1∧di,k≤t2

ci,k, (2)

where ri,k and di,k are the release time and the absolute
deadline of the kth job of τi, respectively, and ci,k ≤ Ci is
the execution time of the kth job of τi.

The PDC is based on the notion of demand bound function
dbf(t), which provides the maximum demand generated
by a task in any interval of length t. Clearly, dbf(t) upper-
bounds the demand function, i.e., gi(t1, t2) ≤ dbfi(t2 − t1).
For a given task τi, the demand bound function is defined
(see [32]) as:

dbfi(t) =

⌊
t+ Ti −Di

Ti

⌋
0

Ci. (3)

Such a function is illustrated in Figure 2(a).
Under EDF scheduling, the PDC allows verifying the

schedulability of a given set Γ of sporadic tasks with
constrained deadlines as stated in the following theorem.
Theorem 1 (Processor Demand Criterion). A task set Γ of

sporadic, arbitrary-deadline tasks is EDF-schedulable if
and only if

∀t ∈ D∗,
∑
τi∈Γ

dbfi(t) ≤ t (4)

with D∗ =
⋃
τi∈Γ{t = Di + fTi : t < L∗ ∧ f ∈ N≥0},

where L∗ is the length of the analysis interval (bounds
are available in [32], [37]).

4 TRANSIENT-AWARE SCHEDULABILITY ANALYSIS

This section presents two analysis techniques that are capable
of handling transients under EDF scheduling. As discussed
in the previous section, since any transient is exhausted at
the first idle time, both the techniques focus on a sequence of
events S (arrival or exit of tasks) within a single busy-period.
For this reason, all the times reported in this section are
relative to the start time of the busy-period under analysis.

For the purpose of this section, the time at which the
events in S occur and the admission delays of the tasks
are assumed to be given. The proposed analysis techniques
will be then used in the following section as the foundation
to develop methods for handling transients on-line, thus
computing the admission delays.

The first analysis is presented in Section 4.1 and aims
at extending the PDC to verify the system schedulability in
the presence of scheduling transients. The second analysis,
presented in Section 4.2, is based on an approximation
scheme of the PDC and has a polynomial-time complexity.

4.1 PDC-based Analysis

To begin, it is necessary to extend the definition of demand
bound function to cope with tasks τi ∈ Γe(S) that leave the
system at time tei , that is

dbfei (t,∆i, t
e
i) =

{
dbfi(t−∆i) if t < αi +Di,

dbfi(αi −∆i) + ci otherwise,
(5)

where
αi =

⌊
tei −∆i

Ti

⌋
Ti + ∆i, (6)

and ci = min(Ci, t
e
i − αi). Such a function is illustrated in

Figure 2(b). Intuitively speaking, αi is the time at which τi
releases its last job in the scenario in which its demand is
maximized, i.e., when jobs are released as soon as possible.
As a consequence, function dbfei (t,∆i, t

e
i) exhibits a satura-

tion to dbfi(αi − ∆i) + ci after the deadline of such a last
job, which occurs at time αi + Di. The term ci is provided
to bound the time executed by the last job of τi in the same
worst-case scenario. The following lemma formalizes the
validity of function dbfei (t,∆i, t

e
i).

Lemma 1. For a task τi ∈ Γe(S), the following inequality
holds:

∀t ≥ 0, gi(0, t) ≤ dbfei (t,∆i, t
e
i). (7)

Proof: Without loss of generality, let us assume a busy-
period starting at time t = 0 and let α′ be the time in
which the last job of τi is released. Note that the busy-period
includes jobs of τi only up to time tei . By looking at the
definition of demand function in Equation (2), task τi can
then contribute with demand in the busy-period of interest
only up to time α′ + Di, i.e., the absolute deadline of its
last job. Consequently, if t < α′ + Di, the processing time
demanded by τi in [0, t] is given by gi(∆i, t), which is upper-
bounded by dbfi(t−∆i).

For t ≥ α′+Di, τi can contribute with processing demand
only with its last job, then no further demand contribution is
possible. Let c′ be the execution time of τi’s last job. Hence,
the demand generated in [0, t] is constant and equal to
gi(∆i, α

′) + c′, where the first term accounts for the demand
generated by all the jobs of τi except the last one. Such a
contribution is upper-bounded by dbfi(α′ −∆i) + c′.

As stated in the standard PDC-based analysis of EDF
scheduling, the demand of a sporadic task is maximized
when jobs are released as soon as possible. Under this
scenario, the last job of τi is released at time αi = b(tei −
∆i)/TicTi + ∆i. The lemma follows by replacing α′ = αi
and noting that the execution time of the last job of τi is
bounded by the minimum between the time span that goes
from the release of the last job and the exit time, i.e., tei − αi,
and the WCET Ci.

With the above lemma in place, it is possible to present
another key lemma that expresses a condition under which a
system that is subject to the sequence S is schedulable even
in the presence of transients.

Lemma 2. A system that is subject to a sequence of events S
does not incur in deadline misses under EDF scheduling

6

if

∀t ≥ 0,
∑

τi∈ΓF (S)

dbfi(t−∆i)+
∑

τi∈Γe(S)

dbfei (t,∆i, t
e
i) ≤ t.

(8)

Proof: Without loss of generality, assume a busy-period
starting at time t = 0. Due to the optimality of EDF [32], the
system is schedulable if for all intervals [0, t], with t ≥ 0,
the overall processing time demanded to the system never
exceeds the interval length t. Consider an arbitrary EDF
schedule in [0, t]. We proceed by considering the individual
contribution to the overall processing time demanded by
each task interested by the sequence S or present into the set
ΓO.

The processing time demanded in [0, t] by a task τi ∈ ΓO
(i.e., not interested by the events in the sequence S) is given
by gi(0, t). Such a function is upper-bounded by dbfi(t) (note
that ∆i = 0 for such tasks).

A task τi ∈ Γa(S) that joins the system is admitted at
time ∆i = tai + λi. Hence, the processing time demanded
by a task τi ∈ Γa(S) \ Γe(S) (i.e., that joins the system and
does not leave it later) is given by gi(∆i, t). Such a function
is upper-bounded by dbfi(t−∆i). By recalling the definition
of the set ΓF (S), the latter two contributions are expressed
by the first term in Equation (8).

Finally, from Lemma 1, the demand of a task τi ∈ Γe(S)
can be upper bounded by dbfei (t,∆i, t

e
i). Since Equation (8)

accounts for an upper bound on the processing demand
imposed by each task within the busy-period of interest, the
lemma follows. t

dbfi(t)

0 Di Ti +Di

Ci

2Ci

(a)

t

dbf i(t)

0 Di Ti +Di

Ci

2Ci

(a)

t

dbf e
i (t,∆i, t

E
i)

0 αi αi +DitEi

Ci

Ci + ci

(b)

t

dbf
e

i (t,∆i, t
E
i)

0 Di αi αi +Di

Ci

2Ci

tEi
(b)

1

t

dbfi(t)

0 Di Ti +Di

Ci

2Ci

(a)

t

dbf i(t)

0 Di Ti +Di

Ci

2Ci

(a)

t

dbf e
i (t,∆i, t

E
i)

0 αi αi +DitEi

Ci

Ci + ci

(b)

t

dbf
e

i (t,∆i, t
E
i)

0 Di αi αi +Di

Ci

2Ci

tEi
(b)

1

Fig. 3. Illustrations of the approximate demand bound functions used in
Section 4 (solid lines). Insets (a) and (b) show the approximate functions
dbf i(t) and dbfei (t,∆i, t

e
i) respectively. The functions are illustrated for

vi = 1 and ∆i = 0. The dashed lines depict functions dbfi(t).

As in the classical PDC analysis, to actually implement a
schedulability test based on Lemma 2 we need (i) an upper-
bound of the analysis interval, and (ii) a discretization of the
analysis interval.

For (i), the following lemma can be used.
Lemma 3. Let UF =

∑
τi∈ΓF (S) Ui. If UF < 1, then Equa-

tion (8) is satisfied ∀t > L∗, where

L∗ =
WF +WE

1− UF
, (9)

with
WF =

∑
τi∈ΓF (S)

Ui(Ti −Di),

WE =
∑

τi∈Γe(S)

dbfi(αi −∆i) + Ci.

and αi is defined as in Equation (6).
Proof: For tasks τi ∈ Γe(S), their contribution to Equa-

tion (8) can be upper-bounded as ∀t ≥ 0, dbfei (t,∆i, t
e
i) ≤

dbfi(αi − ∆i) + Ci. Hence, their overall contribution can
be safely upper-bounded by WE . For tasks τi ∈ ΓF (S),
their contribution to Equation (8) can be upper-bounded by
removing the floor operator from function dbfi(t), which
gives ∀t ≥ 0, dbfi(t −∆i) ≤ Ui(t −∆i + Ti −Di)0. Since
∆i ≥ 0, then ∀t ≥ 0, Ui(t−∆i+Ti−Di)0 ≤ Ui(t+Ti−Di)0.
Given Di ≤ Ti, the ()0 operator can be removed from the
latter expression. Hence, their overall contribution can be
safely upper-bounded by WF + tUF .

By exploiting such upper-bounds, if WE +WF + tUF ≤ t
holds for ∀t > L∗, then Equation (8) is satisfied ∀t > L∗.
This upper-bound is a straight line with slope UF . Since
UF < 1, there exists an intersection with the identity function
t = t. Solving with respect to t, the obtained solution is
t = L∗ = (WF +WE)/(1− UF). The lemma follows.

In the limit case in which UF = 1, the maximum analysis
interval can be bounded by the length of the longest busy-
period that the system can experience. This case is analogous
to the one reported in [37], [38] but considering different
arrival curves that can be obtained from the demand bound
functions adopted in this section. Details are available in
Appendix A.2.

Finally, the results of the above lemmas are combined in
the following theorem, which expresses a schedulability test.

Theorem 2. If Equation (8) is verified

∀t ∈
⋃

τi∈ΓF (S)∪Γe(S)

D(τi), (10)

where

D(τi) = {t = ∆i +Di + fTi : t < t∗(τi) ∧ f ∈ N≥0},

t∗(τi) =

{
L∗ if τi ∈ ΓF (S)

min(αi +Di, L
∗) otherwise,

and αi defined as in Equation (6), then Equation (8) is
verified ∀t ≥ 0.

Proof: Note that both functions dbfi(t − ∆i) and
dbfei (t,∆i, t

e
i) are step-wise monotonic with discontinuities

in points ∆i +Di + fTi with f ∈ N≥0. The theorem follows
after recalling Lemma 3, which provides the bound L∗, and
that the last discontinuity of function dbfei (t,∆i, t

e
i) occurs

for t = αi +Di.

The computational complexity of Theorem 2 is the same
of the PDC, i.e., pseudo-polynomial if U < 1. It is worth
mentioning that the presented schedulability test can also
be efficiently implemented with the quick processor-demand
analysis (QPA) algorithm proposed by Zhang and Burns [37].

4.2 FPTAS-based Analysis

In this section, an approximate analysis for scheduling
transients is derived by building upon the fully polynomial-
time approximation scheme (FPTAS) for the PDC proposed
by Fisher et al. [39]. The FPTAS approach is based on
approximate demand bound functions that are defined as
follows:

dbf i(t) =

{
dbfi(t) if t < νiTi +Di

Ci + Ui(t−Di) otherwise.
(11)

7

As it can be noted from the latter equation, the approximate
functions accounts for νi + 1 steps (with νi ∈ N≥0) equal to
the original demand bound function dbfi(t), and then use
a linear bound with slope Ui for the remaining time inter-
vals. Such an approximate function upper-bounds function
dbfi(t) [39] and is illustrated in Figure 3(a).

Leveraging the definition of dbf i(t), an approximate
schedulability test can be formulated to verify the system
schedulability in steady-state conditions.

Theorem 3 (From [39]). A task set Γ of sporadic, constrained-
deadline tasks is EDF-schedulable if

∀t ∈
⋃
τi∈Γ

D(τi),
∑
τi∈Γ

dbf i(t) ≤ t (12)

with D(τi) = {jTi +Di, j = 0, . . . , νi}.

As done in the previous section with Equation (5), the
approximate demand bound function of a task τi ∈ Γe(S)
that leaves the system is defined as:

dbf
e

i (t,∆i, t
e
i) =

{
dbf i(t−∆i) if t < αi +Di,

dbf i(αi −∆i) + Ci otherwise,
(13)

where αi is defined as for Equation (5). The derivation of
such a function (illustrated in Figure 3(b)) is analogous to
Lemma 1 and, by construction, it upper bounds function
dbfei (t,∆i, t

e
i).

Leveraging these approximate demand bound functions,
it is possible to formulate an approximate version of the
schedulability test expressed by Theorem 2.

Theorem 4. A system that is subject to a sequence of events S
does not incur in deadline misses under EDF scheduling
if
∑
τi∈ΓF (S) Ui ≤ 1 and

∀t ∈
⋃

τi∈ΓF (S)∪Γe(S)

ξ(τi),

∑
τi∈ΓF (S)

dbfi(t−∆i) +
∑

τi∈Γe(S)

dbfei (t,∆i, t
e
i) ≤ t (14)

where

ξ(τi) =


{∆i + jTi +Di} if τi ∈ ΓF (S), j = 0, ..., νi
{∆i + jTi +Di} if τi ∈ Γe(S), j = 0, ..., νi ∧

∆i + jTi +Di ≤ αi +Di,

with αi defined as in Equation (6).

Proof: After recalling Theorem 3 in place of the
standard PDC analysis, the proof is analogous to the one of
Theorem 2 but considering the finite set of discontinuities of
the adopted approximate demand bound functions. Such dis-
continuities occur at points ∆i+jTi+Di for tasks τi ∈ ΓF (S).
Similarly, for tasks τi ∈ Γe(S), the discontinuities occur for
the same family of points in time, but are limited by the
maximum number of jobs that τi can release leaving the
system at time tei , which is accounted with the term αi +Di,
as done in Lemma 1.

The computational complexity of the test provided by
Theorem 4 is O(|

⋃
τi∈Γ∗(S) ξ(τi)|) = O(

∑
τi∈Γ∗(S)(νi + 1))

where Γ∗(S) = ΓF (S) ∪ Γe(S).

5 HANDLING TRANSIENTS ONLINE

This section presents an on-line protocol to handle scheduling
transients and proposes two methods for computing the
admission delays λi for tasks that request to join the system.
As a prerequisite, the run-time scheduling mechanism is
required to keep track of the beginning time of the current
busy period, and of the sequence S of events occurred within
that interval. The protocol consists of the following rules:

R1. Whenever a new task τi requests to join the
system at time tai , the system verifies the steady-
state schedulability by means of an admission
test.

R2. Whenever there is an idle time, any task that
passes the admission test can join the system
without incurring an admission delay.

R3. Whenever a task τi passes the admission test, the
admission delay λi is computed with one of the
methods presented in the following sections. The
task is admitted for execution at the earliest time
between ∆i = tai + λi and the time at which the
first idle time occurs.

The admission test used in rule R1 is strictly dependent
on the method that is used in rule R3 for computing
the admission delays. In the following, building on the
analysis techniques presented in Section 4, two methods
for computing the admission delays are presented, where
each of them is accompanied with a corresponding admission
test. The first one is able to compute the minimum delay with
respect to the precision enabled by the analysis, but it suffers
from a large run-time complexity. The second one is based
on an approximation of the analysis and allows computing
the admission delays in polynomial time, thus favoring its
practical applicability.

5.1 Method 1

This section considers a task τN that requests to join a
system at time taN and presents a method for computing
the admission delay λN of τN . The system is assumed to
be schedulable previously to the arrival of τN . Let S be
the sequence of events occurred within the current busy
period of the system up to time taN , where the last event in
S corresponds to the arrival of τN . The proposed method
assumes that the standard PDC (Theorem 1) is used as
admission test, i.e., considering the task set ΓF in steady-state
conditions.

Following the analysis stated by Theorem 2, the objective
of the proposed method consists in solving the following
optimization problem:

minimize λN

subject to ∀t ∈ D∗,∑
τi∈ΓF (S)\{τN}

dbfi(t−∆i) +
∑

τi∈Γe(S)

dbfei (t,∆i, t
e
i)

+ dbfN (t− taN − λN) ≤ t.
(15)

This optimization problem can be solved by applying the
following iterative algorithm:

1) Initially, let λN = 0.

8

2) Apply Theorem 2 to S. If the schedulability test is
passed, then τN can be admitted with delay λN and
the algorithm terminates. Otherwise, let t∗ ∈ D∗ be a
check-point in which Equation (8) is not satisfied.

3) Compute the minimum delay λ′N such that the schedu-
lability test in t∗ does not fail. Then, set λN = λ′N and
go to step 2.

The validity of this approach is ensured by the fact
that all the terms in Equation (8) are monotone in λN . In
the following, two lemmas are presented to compute the
admission delay at step 3. To avoid discussing the limit
case of a fully-utilized system, the following results assume∑
τi∈ΓF (S) Ui < 1. First note that the failure point t∗ can

correspond to (i) a check-point in D∗ originated by τN , or to
(ii) a check-point in D∗ originated by another task τi 6= τN .
Case (i) is addressed in Lemma 4 and case (ii) in Lemma 5.

Lemma 4. Let t∗ ∈ D(τN) be a check-point originated by τN
in which Theorem 2 is not verified. Also, let t′ = t∗ − λN .
The failure in t∗ can be removed by setting the admission
delay λN of τN to the least fixed-point of the following
recursive equation:

λ′N =
∑

τi∈ΓF (S)

dbfi(t
′ + λ′N −∆i)+∑

τi∈Γe(S)

dbfei (t′ + λ′N ,∆i, t
e
i)− t′.

(16)

Proof: Theorem 2 is verified in the check-point t∗ if∑
τi∈ΓF (S)

dbfi(t
∗ −∆i) +

∑
τi∈Γe(S)

dbfei (t∗,∆i, t
e
i) ≤ t∗.

Being both the demand bound functions involved in the
previous inequality non-decreasing in t∗, the minimum
admission delay such that the check-point is satisfied is given
when the LHS of the inequality is equal to t∗. The resulting
equation is recursive, as both sides depend on t∗ (which
in turn depends on λN). The equation can be rewritten
as Equation (16) and its convergence (i.e., the existence of
a fixed point) can be proved by observing that: (i) it is
monotonic non-decreasing as Equation (16) comprises a sum
of monotonic non-decreasing functions; and (ii) it is upper-
bounded as long as

∑
τi∈ΓF (S) Ui < 1 (see Appendix A.1 for

details). Hence the lemma follows.

Equation (16) can be solved with a fixed-point iteration
starting from λ′N = λN (i.e., the current admission delay
before removing the failure in t∗).

Lemma 5. Let t∗ ∈ D∗\D(τN) be a check-point not originated
by τN in which Theorem 2 is not verified. The failure in
t∗ can be removed by setting the admission delay λN of
τN to:

λ′N = t∗ −K + TN −DN − taN + ε (17)

where ε > 0 (arbitrary small) and

K =

(⌊
t∗ −KF −KE)

CN

⌋
0

+ 1

)
TN

with
KF =

∑
τi∈ΓF (S)\{τN}

dbfi(t
∗ −∆i),

KE =
∑

τi∈Γe(S)

dbfei (t∗,∆i, t
e
i).

Proof: First note that, since t∗ does not depend on λN ,
both KF and KE are constants. To fix the failure point by
setting λN = λ′N , the following condition must be verified:

KF +KE + dbfN (t∗ − (taN + λN)) ≤ t∗. (18)

By replacing the definition of dbfN (t∗ − (taN + λN)) in
Equation (18), it follows that⌊

t∗ − (taN + λN) + TN −DN

TN

⌋
0

≤ t∗ −KF −KE

CN
,

which, by exploiting the properties of the floor function, can
be rewritten as:
t∗ − (taN + λN) + TN −DN

TN
<

⌊
t∗ −KF −KE

CN

⌋
0

+ 1.

Solving with respect to λN , the inequality becomes:

λN > t∗ −K + TN −DN − taN ,

with K defined as in the lemma statement. Hence the lemma
follows.

Implementation and complexity. By leveraging some prop-
erties of the involved equations, an efficient implementation
of the proposed iterative algorithm can be devised. The
resulting algorithm is named ADT (Admission Delay for
Transients) and is reported in Figure 4. Algorithm ADT
exploits the observation that, once Equation (15) is satisfied
in a check-point t∗ ∈ D∗ \ D(τN) by using a particular delay
λN , it remains satisfied ∀λ′N ≥ λN . This property directly
follows from the monotonicity in λN of the demand bound
function of τN . The main advantage introduced by the latter
result is that it is not necessary to verify Theorem 2 many
times, but instead it is possible to design an algorithm that
requires to process each check-point in the set D∗ \ D(τN)
only once.

1: procedure ADT(ΓF (S),Γe(S))
2: λN ← 0;
3: Doth ←

⋃
τi∈ΓE(S)∪{ΓF (S)\{τN}}D(τi);

4:
5: for t← Doth ∧ t ≥ taN do
6: λN ← max(λN , LEMMA 5 (ΓF (S), Γe(S)));
7: end for
8: do
9: updated← false

10: for t← D(τN) do
11: λ′N ← LEMMA 4 (ΓF (S), Γe(S));
12: if (λ′N > λN) then
13: updated← true;
14: λN = λ′N ;
15: end if
16: end for
17: while (updated==true);
18: return λN ;
19: end procedure

Fig. 4. Pseudo-code for the ADT (Admission Delay for Transients)
algorithm.

9

The ADT algorithm starts by initializing λN = 0 and by
setting Doth as the set of check-points that are not originated
by τN . Then, it proceeds by processing such check-points by
means of Lemma 5, updating λN accordingly (line 6). Note
that the algorithm avoids processing the check-points before
time taN at which τN requested to join the system: this is
because the demand contribution of τN cannot affect them.
Finally, the algorithm processes the check-points originated
by τN (set D(τN)) by means of Lemma 4. Such check-points
are processed as long as λN does not increase (see the loop
at lines 8-17). The termination of the algorithm is guaranteed
by the fact that λN is never decreased and that λN is upper-
bounded by a constant term as long as

∑
τi∈ΓF (S) Ui < 1

(see Appendix A.1 for details).
As for the standard PDC analysis, the ADT algorithm

runs for a pseudo-polynomial number of iterations as long
as the steady-utilization of the system is strictly less than one.
Each iteration has either (i) a constant-time complexity, when
Lemma 4 is applied (e.g., by storing the sum of demand-
bound functions in an incremental fashion whenever a new
task joins the system), or (ii) a O(λ∗N) complexity when
Lemma 5 is used, where λ∗N is an upper-bound on λN (as
discussed after the lemma). The average-case performance
of the algorithm can be further improved by computing
the bound L∗ (see Lemma 3) at each iteration in which
λN changes. Since L∗ decreases as λN increases, using an
updated value of L∗ may allow to processing a lower number
of check-points.

5.2 Method 2: Approximated delay computation

This section aims at deriving an approximate algorithm to
compute the admission delay in polynomial time. To this
end, the FPTAS-based analysis introduced in Section 4.2 is
used as admission test in rule R1 of the proposed protocol.

As done in the previous section, consider a task τN for
which it is required to compute a safe admission delay λN ,
and let S be the sequence of events occurred within the
current busy-period of the system up to the arrival of τN
(time taN). The same assumptions stated in the previous
section have been adopted, with the only exception being that
Theorem 3 is used to verify the steady-state schedulability.
Our objective is to leverage Theorem 4 to express a transient-
aware schedulability test in the form of H constraints λN ≥
Vz , with z = 1, . . . ,H , where Vz is a constant term. Once this
has been accomplished, a safe admission delay can then be
computed as

λN = maxz=1,...,H{Vz}.

More specifically, each term Vz will be derived by the
check-points of the test in Theorem 4, for a total of H = |{t ∈
∪τi∈Γe(S)∪ΓF (S)ξ(τi) : t ≥ taN}| constraints.

In the following, four lemmas will be presented to cope
with the derivation of the terms Vz from the check-points.
Note that each check-point can be originated by (i) τN , or (ii)
another task τi 6= τN .

Case (i). Following Theorem 4, a check-point originated
by τN can be expressed as t∗ = taN + λN + DN + jTN
(with j ∈ N≥0). Due to the dependency of t∗ on λN , a
circular dependency arises when evaluating in t∗ the demand
bound functions of the other tasks 6= τN . In fact, being λN

the parameter to be computed (and hence unknown), such
demand bound functions can be either in their piece-wise
constant part or in their linear part; hence, their expression
is not known a-priori. The following lemma allows breaking
such a circular dependency by deriving a safe lower bound
for λN .
Lemma 6. Let UF =

∑
τi∈ΓF (S)\{τN} Ui and let t∗ ∈ ξ(τN)

be a check-point of Theorem 4 originated by τN defined
as t∗ = ∆N + t′ with t′ = DN + jTN and j ∈ N≥0. The
check-point t∗ is verified if

λN ≥
dbfN (t′) +KF +KE − taN − t′

1− UF
, (19)

where

KF =
∑

τi∈ΓF (S)\{τN}

Ci + Ui(t
a
N + t′ −∆i −Di)0,

KE =
∑

τi∈Γe(S)

dbfi(αi −∆i) + Ci,

and αi is defined as in Equation (6).

Proof: The lemma follows by exploiting upper bounds
on the terms that compose Equation (14) and the fact
that such terms are non-decreasing in t. In particular, the
upper bound on functions dbf i(t − ∆i) is obtained by
degenerating the approximation to a single discontinuity
point, thus obtaining a linear and continuous bound equal to
Ci + Ui(t −∆i −Di)0. By replacing t = t∗, such an upper
bound can be rewritten as Ci+Ui(tai +t′−∆i−Di)0 +UiλN .
Then, summing over all tasks in ΓF (S), the upper bound on
the first term of Equation (14) results KF +UFλN +dbfN (t′).
Note that there is no need to leverage an upper bound on
function dbfN (t), as in the check-point t∗ its value does
not depend on λN (i.e., dbfN (t∗ −∆N) = dbfN (t′)), hence
dbfN (t′) is a constant term. Finally, the upper bound on
functions dbf

e

i (t,∆i, t
e
i) is obtained by noting that such

functions exhibit a saturation to dbf i(αi −∆i) + Ci.

The upper bound provided by the above lemma can
be quite coarse, especially for high values of UF ; however,
it can be used as an initial solution to devise an iterative
method that refines the bound on λN . In fact, by leveraging
a given upper bound λubN on λN , the following lemma allows
tightening the admission delay.
Lemma 7. Let t∗ ∈ ξ(τN) be a check-point of Theorem 4

originated by τN defined as t∗ = ∆N + t′ with t′ =
DN + jTN (j ∈ N≥0). Given an upper bound λubN ≥ λN ,
the check-point is verified if

λN ≥ dbfN (t′) +K − taN − t′ (20)

with

K =
∑

τi∈ΓF (S)\{τN}

dbf i(t
′′−∆i)+

∑
τi∈Γe(S)

dbf
e

i (t
′′,∆i, t

e
i),

where t′′ = taN + λubN + t′.

Proof: As done in the proof of Lemma 6, the lemma
follows by exploiting upper bounds on the terms that
compose Equation (14) and the fact that such terms are
non-decreasing in t. Since λubN ≥ λN , then t′′ ≥ t∗. As a
consequence, dbfN (t′) +K provides a safe upper bound of

10

the LHS of Equation (14) when evaluated in the check-point
t = t∗.

Lemma 7 can be repeatedly applied, thus generating a
non-increasing sequence of lower bounds on λN . At the first
iteration, λubN is set at the value obtained with Lemma 6; then,
the obtained bound can in turn be used to set λubN for a next
application of Lemma 7, and so on for a desired number of
iterations.

Case (ii). Now, consider the case in which a constraint
in the admission delay λN is derived from check-point of
Theorem 4 that is not originated by τN . In this case, being
the check-point independent of λN , all the terms in Equa-
tion (14) are constant with the exception of dbfN (t −∆N),
which instead depends on λN through ∆N . Since function
dbfN (t − ∆N) is composed of a piece-wise constant part
and a linear part, two corresponding sub-cases must be
considered. These are respectively managed by Lemma 8
and Lemma 9, which provide mutually-exclusive conditions
(note the second equations in the systems considered by the
two lemmas).

Lemma 8. Let t∗ ∈ ξ(τi) be a check-point of Theorem 4
originated by τi 6= τN . The check-point is verified if the
following system of equations is verified:{

λN > t∗ −K + TN −DN − taN
λN > t∗ − νNTN −DN − taN

(21)

where

K =

(⌊
t∗ −KF −KE)

CN

⌋
0

+ 1

)
TN ,

KF =
∑

τi∈ΓF (S)\{τN}

dbfi(t
∗ −∆i),

KE =
∑

τi∈Γe(S)

dbfei (t∗,∆i, t
e
i).

Proof: Following the definition of function dbfN (t), if
t∗ < ∆N + νNTN + DN then dbfN (t∗ −∆N) corresponds
to a value in the piece-wise constant part of the function.
Rewriting the latter inequality by expanding ∆N = taN +λN ,
it follows that λN > t∗−νNTN −DN − taN . Note that, under
such a condition, dbfN (t∗ −∆N) = dbfN (t∗ −∆N). Hence,
the same approach adopted in the proof of Lemma 5 can be
used to derive a lower bound on λN . The only difference
consists in taking into account the constant terms KF and
KE , which must be redefined by means of the approximate
demand bound functions. Hence, the lemma follows.

Lemma 9. Let t∗ ∈ ξ(τi) be a check-point of Theorem 4
originated by τi 6= τN . The check-point is verified if the
following system of equations is verified:{

λN ≥ UN (t∗−DN−taN)+KF +KE+CN−t∗
UN

λN ≤ t∗ − νNTN −DN − taN
(22)

where KF and KE are defined in Lemma 8.

Proof: Following the definition of function dbfN (t), if
t∗ ≥ ∆N + νNTN + DN then dbfN (t∗ −∆N) corresponds
to a value in the linear part of the function. Rewriting the
latter inequality by expanding ∆N = taN + λN , it follows

that λN ≤ t∗ − νNTN −DN − taN . Under such a condition,
dbfN (t∗−∆N) = CN +UN (t∗−∆N −DN); hence, by also
expanding ∆N , Equation (14) becomes

CN + UN (t∗ − taN − λN −DN) +KF +KE ≤ t∗.

The lower bound on λN reported in the lemma statement is
obtained by solving the latter inequality with respect to λN .
Hence, the lemma follows.

The above four lemmas are finally combined into an
algorithm for computing an approximate admission delay
for τN .
Implementation and complexity. Figure 5 reports the AADT
(Approximated Admission Delay for Transients) algorithm.
The AADT algorithm starts by initializing λN = 0 (and other
auxiliary variables) and by setting ξoth as the set of check-
points that are not originated by τN . Then, it proceeds by
deriving the lower bounds on λN by the check-points in ξoth,
which is accomplished by Lemmas 8 and 9 (lines 6-7). In
the reported algorithm, functions LEMMA 8 and LEMMA 9
return the minimum value of λN that satisfies the system of
equations in the corresponding lemmas (a value representing
infinity is returned when a solution does not exist). By
construction of these two lemmas (which match mutually-
exclusive scenarios), both the obtained solutions are valid
lower-bounds for λN : hence, the minimum solution is taken.
To obtain a solution that is valid for all the check-points in
ξoth, the maximum admission delay obtained by the lemmas
is stored in λ(1)

N (line 8).
Similarly, the subsequent for loop processes all the check-

points originated by τN (set ξ(τN)) by deriving a lower
bound for λN according to Lemma 6 (line 11). Again, to cope
with all such check-points, the maximum admission delay
is stored in λ(2)

N (line 12). Finally, the algorithm refines the
solution by iteratively applying Lemma 7 for x times (as
previously discussed below the presentation of the lemma),
where x ∈ N≥0 is an input parameter for the algorithm. At
every iteration, the solution is updated in the variable λN ,
which is finally returned at the end of the algorithm.

Assuming that each check-point can be processed in con-
stant time (e.g., by storing the sum of demand-bound func-
tions in an incremental fashion whenever a new task joins the
system), the AADT algorithm has O(|ξoth|+ (x+ 1)|ξ(τN)|)
complexity. The cardinality of the involved sets is given by
the number of check-points adopted in Theorem 4, hence the
algorithm complexity isO(

∑
τi∈Γ∗(νi+1)+(x+1)(νN +1)),

with Γ∗ = ΓF (S) ∪ Γe(S) \ {τN}. The complexity is hence
polynomial in the involved parameters.

6 HANDLING MODE CHANGES

Although the previous sections were focused on dynamic
workloads, the analysis proposed in Section 4 can also be
adopted to analyze static task sets that exhibit mode changes.
To this end, some additional notation and assumptions are
needed.
Notation and assumptions. This section considers a system
that can be subject to an arbitrary number nmc of mode
changes, whereMc = {mc1,mc2, . . . ,mcnmc} denotes the
set of all possible mode changes. The hth mode change is
defined by a tuple mch = {Ma

h ,M
b
h, t

mc
h , δmch } where tmch

11

1: procedure AADT(ΓF (S), Γe(S), τN , x)
2: λN ← 0, λ(1) ← 0, λ(2) ← 0;
3: ξoth ←

⋃
τi∈{ΓF (S)\{τN}}∪ΓE(S) ξ(τi);

4:
5: for t ∈ ξoth ∧ t ≥ taN do
6: λ′ ← LEMMA 8 (ΓF (S), Γe(S), τN);
7: λ′′ ← LEMMA 9 (ΓF (S), Γe(S), τN);
8: λ(1) ← max(λ(1),min(λ′, λ′′));
9: end for

10: for t ∈ ξ(τN) do
11: λ′ ← LEMMA 6 (ΓF (S), Γe(S), τN);
12: λ(2) ← max(λ(2), λ′);
13: end for
14: λN ← max(λ(1), λ(2));
15: for i = 1, . . . , x do . Admission delay improvement
16: λubN ← λ(2);
17: λ(2) ← 0;
18: for t ∈ ξ(τN) do
19: λ′ ← LEMMA 7 (ΓF (S), Γe(S), τN , λ

ub
N));

20: λ(2) ← max(λ(2), λ′);
21: end for
22: λN ← max(λ(1), λ(2));
23: end for
24: return λN ;
25: end procedure

Fig. 5. Pseudo-code for the AADT Approximated Admission Delay for
Transients) algorithm

is the time at which a mode change from mode Ma
h to

mode M b
h is requested, and δmch represents the transition

delay, meaning that the tasks of mode M b
h are allowed to

actually join the system only at time tmch + δmch . The tasks in
the leaving mode Ma

h are allowed to complete the last job
released before or at time tmch . Each couple of modes Ma

h and
M b
h is associated with a corresponding couple of task sets Γah

and Γbh. Likewise most of the other works that targeted mode
changes (e.g., [14] and [16]), this section assumes that (i) the
transition delay δmch of each mode change mch is assumed
to be fixed, (ii) the task sets Γah and Γbh are schedulable in
steady-state conditions, and (iii) scheduling transients do
not overlap (i.e., at most one mode change per busy period).
Please refer to Appendix A.3 for a discussion on how (iii)
can be relaxed.

Analysis. Now, it is possible to proceed by showing how
mode changes can be mapped into the model based on the
sequence of events introduced in Section 3. For a given mode
change mch, the idea is to consider the first task set Γah as
the one that is present in the system before the beginning of
a sequence S that should model the mode change from Γah to
Γbh. The results of Theorem 2 can then be adopted to analyze
mch by constructing the sequence S as the concatenation of
two sub-sequences: (i) SE , which comprises the exit events of
all tasks that leave the system, i.e., those in the set Γah\Γbh, and
(ii) SA, which comprises the arrival events of all tasks that
join the system, i.e., those in the set Γbh \ Γah, thus obtaining:

• SE = {∪τi∈{Γa
h\Γb

h}
< τi, t

mc
h ,EXIT >},

• SA = {∪τi∈{Γb
h\Γa

h}
< τi, t

mc
h + δmch ,ARRIVAL >},

• S = {SE , SA}.

Analogously, the task sets introduced in Section 3 can be
defined as follows:

• ΓO = Γbh ∩ Γah;
• Γe(S) = Γah \ ΓO;
• Γa(S) = Γbh \ ΓO .

Finally, to ensure a consistent matching between the two
models, the parameters tei and λi are defined as follows:

• ∀τi ∈ Γe(S), tei = tmch , tai = 0, and λi = 0;
• ∀τi ∈ Γa(S), tai = tmch and λi = δmch .

Although this model transformation allows adopting the
results presented in the previous sections, a major issue is
still present. When performing an off-line analysis of static
task sets with mode changes, the times tmch at which mode
changes occur may not be known a priori, i.e., they may be
triggered at different times when the system is running. A
safe analysis must therefore cope with all valid values for
times tmch .

Theoretically speaking, if Theorem 2 is verified ∀tmch ≥ 0,
then the system subject to mode change mch is schedulable.
However, this approach does not allow realizing a practical
schedulability test, as the continuous domain of tmch would
have to be explored. Nevertheless, by studying the equations
involved in Theorem 2, it is possible to devise a safe domain
discretization for tmch , as it is expressed by the following
lemma.

Lemma 10. Let d̂bf
e

i (t,∆i, t
mc
h) be a simple upper bound of

function dbfei (t,∆i, t
mc
h) (defined in Equation (5)) where

ci = Ci. If Theorem 2 holds by replacing dbfei (t,∆i, t
mc
h)

with d̂bf
e

i (t,∆i, t
mc
h)

∀tmch ∈
⋃

τi∈Γe(S)

{fTi : f ∈ N≥0}, (23)

then Theorem 2 also holds ∀tmch ≥ 0.

Proof: The lemma follows by studying the dependency
of Equation (8) on tmch after replacing dbfei (t,∆i, t

mc
h) with

d̂bf
e

i (t,∆i, t
mc
h). First note that function d̂bf

e

i (t,∆i, t
mc
h)

depends on tmch by means of terms tmch = tei , which in
turn affect the definition of αi in Equation (6). Since for
all tasks τi ∈ Γe(S), ∆i = 0, then αi, and consequently
d̂bf

e

i (t,∆i, t
mc
h), changes only for tmch = fTi with f ∈ N≥0.

Second, observe that function dbfi(t −∆i) depends on
tmch by means of ∆i = tmch + δmch and that such a function
is non-increasing in ∆i. Hence, fixed a time t and for a
given interval [fTj , (f + 1)Tj), dbfi(t −∆i) is maximal in
tmch = fTj . Consequently, if Equation (8) holds in tmch = fTj ,
then it cannot be violated for tmch ∈ (fTj , (f + 1)Tj). Finally,
note that the term t∗(τi) in Theorem 2 also changes for
tmch = fTi with f ∈ N≥0. Hence, the lemma follows.

Since all scheduling transients are exhausted at the first
idle-time, the mode-change times tmch considered in the
previous lemma can be limited to the length of longest busy-
period [37] of Γah.

Figure 6 reports the MCA (Mode-Change Analysis)
algorithm, which exploits Lemma 10 to implement a schedu-
lability test.

12

1: procedure MCA(Mc)
2: for mch ∈Mc do
3: ΓO ← Γbh ∩ Γah;
4: Γe(S)← Γah \ ΓO;
5: Γa(S)← Γbh \ ΓO ;
6: ΓF (S) = ΓO ∪ {Γa(S) \ Γe(S)};
7: sched← LEMMA 10 (ΓF (S), Γe(S));
8: if sched is FALSE then
9: return FALSE;

10: end if
11: end for
12: return TRUE;
13: end procedure

Fig. 6. Pseudo-code for the MCA (Mode-Change Analysis) algorithm.

7 EXPERIMENTAL RESULTS

This section presents the results of two experimental studies
that have been conducted to evaluate the proposed ap-
proaches. The first one is aimed at assessing the performance
of the ADT and AADT algorithms proposed in Section 5, com-
paring the admission delays provided by the two algorithms
in the context of dynamic real-time workloads. The second
experimental study is aimed at evaluating the schedulability
analysis for task sets with mode changes proposed in
Section 6 (algorithm MCA), which is compared against the
SUBI algorithm proposed by Fisher and Ahmed [14] and
against the schedulability analysis proposed by Lee and Shin
in [16].

7.1 Dynamic workload: ADT vs. AADT

This experimental study has been performed by simulating
the protocol presented in Section 5. The protocol has been
stimulated by synthetic sequences of events, which represent
the arrival and the exit of tasks at randomly-generated times.
The experimentation aims at computing the average of the
admission delay bounds (computed with the algorithms
presented in the previous section) incurred by tasks during
such sequences. To ensure a meaningful comparison, the
measured admission delays are normalized to the task
periods, i.e., for an arbitrary task τi, the parameter λi/Ti
is measured.

Sequence generation. Let UF be a configurable generation
parameter that represents the steady-state utilization of the
system. First, a task set Γ is generated, which contains the
tasks that are present in the system at the beginning of the
sequence. These tasks are considered to be simultaneously
released at t = 0, where the busy-period under analysis starts.
Given a number of tasks n = |Γ| and a target utilization
UF /2, the utilization of each task τi ∈ Γ has been generated
using the UUnifast algorithm [40]. Then, a sequence S of
N events was generated by alternating exit and arrival
events. When generating an arrival event, the utilization
of the corresponding task τi was generated to keep the total
utilization UF constant. To enable a meaningful comparison
between the ADT and AADT algorithms, the generation
discards the tasks that do not lead to a schedulable system
in steady-state according to Theorem 4, where the parameter
νi has been set to νi = 2 for all tasks. Exit events were

generated by selecting a random task as the one that leaves
the system: to avoid inconsistencies in the comparison, only
the tasks in Γ are selected, otherwise the two algorithms
would be subject to different sequence of events2. For all
tasks, periods were generated in the interval [1, 1000] ms
with uniform distribution, and the WCETs were obtained
as Ci = UiTi. Relative deadlines have been generated with
uniform distribution in the interval [Ci + β(Ti − Ci), Ti],
where β ∈ [0, 1] is another generation parameter. The times
tk at which the exit events occur have been proportionally
generated with respect to the tasks’ periods, i.e., tk = xTAVG,
where TAVG is the average period of tasks for which an exit
event has not yet been generated, and x is a real number
that was randomly generated with uniform distribution in
[0, 1]. Similarly, the times tk in which arrival events occur
have been generated as tk = σxTAVG, where the additional
parameter σ was introduced to better regulate the distance
from the last generated event. The generation of a sequence
terminates when all the tasks in the set Γ are exited.

Admission delays. The algorithms ADT and AADT have
been compared with a multidimensional exploration of
the parameters that control the workload generation. In
particular, the generation parameters have been varied as
follows:

• UF ∈ [0.5, 0.95], with step 0.5;3

• n from 2 to 20, with step 1;
• β in the set {0.1, 0.3, 0.6, 0.9}; and
• σ in the set {0.001, 0.05, 0.15}.

For each configuration of the parameters, 10000 sequences
of events have been generated. Each sequence has been
then processed with both the ADT and AADT algorithms
averaging the normalized admission delays incurred by tasks.
Different variants of the AADT algorithm have been com-
pared, considering 0, 1, 3, 5, 10 and 15 iterations for Lemma 7.
In the following, the notation AADT(k) is used to denote that
the AADT algorithm is adopted with k iterations for Lemma 7.
When processing a sequence with a given algorithm, the
admission delays are not computed whenever a task arrival
event occurs after the length of the corresponding longest
busy-period: such events are also assigned with an admission
delay equal to zero.

The experimental results for six representative configura-
tions are reported in Figure 7, where the dependency of the
admission delay on various parameters can be observed.

At a high level, the ADT algorithm always provides very
limited admission delays. The same holds for the AADT(k)
when k ≥ 10. For instance, this can be observed as a
function of the utilization UF from Figure 7(a) and 7(b),
where different values for n, β and σ have been adopted.

Figure 7(c) illustrates the average admission delay as a
function of the parameter β, which has been used to control
the generation of relative deadlines. From the plot, it emerges
that the tighter the deadline, the higher the admission delays

2. Note that, at a given time t, a task that requested to join the system
at a time t1 < t may not be actually admitted (i.e., when t1 + ∆i > t)
and hence it may not be eligible for leaving the system. This depends
on the admission delays and then on the adopted algorithm.

3. A preliminary experimental study showed that for UF < 0.5 the
admission delays are very low (close to zero) with both the proposed
algorithms.

13

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

1

2

UF

A
V

G
λ
N
/
T
N

(a) n = 10, β = 0.3, σ = 0.05

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

1

2

3

UF

A
V

G
λ
N
/
T
N

(b) n = 2, β = 0.1, σ = 0.001

0.1 0.3 0.6 0.9
0

1

2

3

4

β

A
V

G
λ
N
/
T
N

(c) U = 0.95, n = 14, σ = 0.001

0 0.05 0.14
0

1

2

3

σ

A
V

G
λ
N
/
T
N

(d) U = 0.95, n = 12, β = 0.3

2 4 6 8 10 12 14 16 18 20
10−4

10−3

10−2

10−1

100

n

A
V

G
λ
N
/
T
N

(e) U = 0.8, β = 0.1, σ = 0.001

2 4 6 8 10 12 14 16 18 20

10−8

10−6

10−4

10−2

100

n

A
V

G
λ
N
/
T
N

(f) U = 0.7, β = 0.6, σ = 0.001

ADT AADT(0) AADT(1) AADT(3) AADT(5) AADT(10) AADT(15)

Fig. 7. Average normalized admission delay (with respect to the period of each admitted task) obtained by using the ADT and AADT(k) algorithms
as a function of the number of tasks (insets (e) and (f)), the utilization UF (insets (a) and (b)), and the parameters σ and β (insets (c) and (d),
respectively).

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

2

4

6
·10−3

UF

A
V

G
λ
N
/
T
N

(a) n = 14, β = 0.1, σ = 0.05

ADT

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.5

1

1.5

2

UF

A
V

G
λ
N
/
T
N

(b) n = 8, β = 1, σ = 0.05

ADT AADT(0) AADT(15) Buttazzo*

Fig. 8. Average normalized admission delay (with respect to the period of each admitted task) obtained by using the ADT and AADT(k) algorithms as
a function of the utilization UF , and the parameters σ and β. Inset (a) reports only the performance of the ADT algorithm, and hence uses Theorem 1
as admission test. Inset (b) compares the proposed approaches with [3] for implicit-deadline tasks.

obtained with all the algorithms. A similar trend can be
observed in Figure 7(d), where the distance in time between
arrival and exit events has been varied by controlling the
parameter σ. Finally, Figures 7(e) and 7(f) show that, when
adopting a low number of iterations k, the admission delays
obtained with the AADT(k) remain almost constant as the
number of tasks increases. Conversely, for the more precise
algorithms, the admission delays decrease as the number
of tasks increases, also showing a saturation to extremely
low delays at some cut-off values of n. Note that these two
figures have a logarithmic scale.

Additional Experiments. Additional experimental results
have been carried out to further evaluate the proposed

approach. To this aim, the ADT algorithm has been tested by
using Theorem 1 as admission test, which is possible as it
has not been compared against AADT. Albeit the adoption of
Theorem 1 in place of Theorem 3 allows testing the algorithm
with a wider range of task sets, Figure 8(a) shows that the
normalized admission delay is still very low. Finally, Fig-
ure 8(b) targets the case of task sets composed of only implicit-
deadline tasks, and compares the proposed approaches
with the methodology for computing the admission delay
proposed in [3], which is denoted in the figure as Buttazzo*.
The method proposed in [3] requires the knowledge of
the remaining execution time of the last job of each task
τi ∈ Γe(S), which is not available in our sequence-based

14

model. To enable a comparison, the remaining execution
times have been considered to be equal to the corresponding
WCETs.
Running Times. The maximum running times of the tested
algorithms have been measured during the experimental
study discussed above. The experiments have been per-
formed on a machine equipped with an Intel Core i7-6700K
@ 4.00GHz. Algorithms have been realized with literal
implementations (i.e., not designed for being extremely
efficient). The Microsoft VC++2015 compiler has been used
and running times have been measured by means of the
Windows API.4 Figure 9 shows that ADT requires a con-
siderable amount of time (up to 43 ms), thus resulting
unsuitable for online admission control. Conversely, running-
times observed with AADT(15) are always under 500µs.

7.2 Mode-change

A second experimental study has been carried out to evaluate
the proposed analysis for static task sets with mode changes
(MCA algorithm of Section 6), by comparing it with SUBI
algorithm proposed by Fisher et al. in [14] and the schedu-
lability analysis proposed by Lee and Shin [16] (referred to
as RTA_LS in the following). A MATLAB implementation of
the SUBI algorithm has been kindly provided by the authors.

This experimental study measured the schedulability
ratio, i.e., the ratio between the number of schedulable
task sets (in the presence of mode changes) and the overall
number of generated task sets.

Workload generation. The evaluation considered task sets
with two modes Ma and Mb (bi-directional mode changes
are possible). Given a target utilization UM1 of mode M1, the
corresponding task set ΓM1 was generated with UUnifast
by fixing a number of task nM1. The second task set ΓM2

was obtained by the first one by removing w1 randomly-
selected tasks and then adding w2 new tasks. The latter
were generated with UUnifast, setting a target utilization
UM2 that is randomly generated with uniform distribution
in the range [UM1 − ε, UM1 + ε], where ε is a generation
parameter. A preliminary experimental study conducted on
the implementation of SUBI showed that the running time
for a simple system composed of 4 tasks and 2 operating
modes (specifically, the one depicted in Figure 1 with the
parameters scaled by 103) is about 6 minutes. It is worth
observing that this large running time may depend on the
fact that, differently from MCA, SUBI is capable of handling
overlapping mode changes. Nevertheless, it has been found
that the running time is largely dependent on the tasks’ peri-
ods (likely because the analysis conditions are checked for all
integers within a time window), which prevented us to per-
form experiments with random periods within a given range.
To cope with this issue, the periods have been randomly
chosen from the bucket {10, 20, 25, 30, 40, 45, 50, 60, 65, 80}
ms. Relative deadlines were computed as in Section 7.1 with

4. Wall-clock has been measured by executing the experiments on a
dedicated processor. Therefore, the measurements also include some
additional overhead (e.g., execution of the kernel). A preliminary
experiment excluded the possibility of using the Windows API aimed at
only measuring the time spent in the process (e.g., GetProcessTimes()), as
the running time of the AADT algorithm is often under (or comparable
with) the precision offered by that API.

β = 0.5. The task sets that resulted not schedulable in steady-
state conditions according to Theorem 1 have been discarded.

Experiments. Note that the RTA_LS algorithm only supports
mode changes without admission delays. To allow a fair
comparison, the three algorithms have been configured to
work under the same conditions by setting δhmc = 0.

The schedulability performance of the three algorithms
has been studied as a function of the utilization UM1

.
Figure 10 reports the experimental results under two repre-
sentative configurations. As it emerges from the graphs,
the proposed algorithm (MCA) significantly outperforms
both SUBI and RTA_LS, especially for significant utilization
values (UM1

> 0.6). In particular, note that MCA reaches
a performance improvement up to 96% with respect to
RTA_LS (UM1 = 0.6) and up to 72% with respect to SUBI
(UM1 = 0.7).

8 CONCLUSIONS

This paper presented a schedulability analysis framework for
real-time dynamic workloads that can experience scheduling
transients under EDF scheduling. The framework is able to
deal with constrained-deadline tasks and is entirely built
upon a new modeling approach based on a sequence of
events. Leveraging this proposal, an on-line protocol has
been presented to handle the admission control of dynamic
workloads , which comes with algorithms for computing the
admission delays that new tasks must wait before joining
the system. Both pseudo-polynomial-time and polynomial-
time solutions have been proposed. Finally, the paper also
showed how the proposed analysis can be used off-line for
guaranteeing the schedulability of static task sets with mode
changes. Experimental results showed that the polynomial-
time algorithm allows reaching an empirical performance
that is close to the pseudo-polynomial-time solution, while
incurring a very limited running time. Furthermore, the
proposed approach has been also shown to be effective in
analyzing static task sets with mode changes, exhibiting a
performance improvement in terms of schedulability ratio
up to 72% over state-of-the-art methods.

Interesting research can follow from this work, including
the derivation of methods for computing admission delays
that are tailored for semi-partitioned scheduling, the study
of analysis techniques to handle overlapping mode changes
in the presence of static task sets, and the design of further
approximation schemes for the proposed approach.

ACKNOWLEDGMENTS

The authors would like to thank Masud Ahmed and Nathan
Fisher for providing the code of the SUBI algorithm [14].

REFERENCES

[1] T. Cucinotta, L. Abeni, L. Palopoli, and G. Lipari, “A robust
mechanism for adaptive scheduling of multimedia applications,”
ACM Transactions on Embedded Computing Systems, vol. 10, no. 4, p.
124, Nov. 2011.

[2] K. Konstanteli, T. Cucinotta, K. Psychas, and T. Varvarigou,
“Admission control for elastic cloud services,” in 2012 IEEE Fifth
International Conference on Cloud Computing, Honolulu, HI, USA,
June, 24-29 2012.

15

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1
·104

n

m
ic

ro
se

co
nd

s

(a) U = 0.9, β = 0.1, σ = 0.001

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

2

4

·104

UF

m
ic

ro
se

co
nd

s

(b) n = 16, β = 0.1, σ = 0.15

ADT AADT(15)

Fig. 9. Maximum observed running times (in microseconds) obtained by running ADT and AADT(15) with respect to the number of tasks (inset (a))
and the utilization UF (inset (b)).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

UM1

sc
he

du
la

bi
lit

y
ra

ti
o

(a) nM1 ∈ [5, 8], w1, w2 ∈ [2, 4], ε = 0.04

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

UM1

sc
he

du
la

bi
lit

y
ra

ti
o

(b) nM1 ∈ [6, 10], w1, w2 ∈ [2, 6], ε = 0.04

RTA_LS SUBI MCA

Fig. 10. Schedulability ratio of different schedulability analyses for mode changes with parameters uniformly distributed in: (a) nM1 ∈ [5, 8] and
w1, w2 ∈ [2, 4], (b) nM1 ∈ [6, 10] and w1, w2 ∈ [2, 6])

[3] G. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, “Elastic
scheduling for flexible workload management,” IEEE Transactions
on Computers, vol. 51, no. 3, pp. 289–302, March 2002.

[4] K. W. Tindell, A. Burns, and A. J. Wellings, “Mode changes in
priority preemptively scheduled systems,” in [1992] Proceedings
Real-Time Systems Symposium, Phoenix, AZ, USA, Dec, 2-4 1992.

[5] B. Brandenburg and M. Gul, “Global scheduling not required:
Simple, near-optimal multiprocessor real-time scheduling with
semi-partitioned reservations,” in Proceedings of the 37th IEEE Real-
Time Systems Symposium (RTSS 2016), Porto, Portugal, November
29 - December 2 2016.

[6] D. Casini, A. Biondi, and G. Buttazzo, “Semi-partitioned scheduling
of dynamic real-time workload: A practical approach based on
analysis-driven load balancing,” in Proceedings of the 29th Euromicro
Conference on Real-Time Systems (ECRTS 2017), Dubrovnik, Croatia,
27-30 June 2017.

[7] G. Fohler, “Realizing changes of operational modes with a pre
run-time scheduled hard real-time system,” Responsive Computer
Systems, pp. 287–300, March 1993.

[8] Q. Guangming, “An earlier time for inserting and/or accelerating
tasks,” Real-Time Systems, 2009.

[9] P. Rattanatamrong and J. A. B. Fortes, “Mode transition for online
scheduling of adaptive real-time systems on multiprocessors,” in
2011 IEEE 17th International Conference on Embedded and Real-Time
Computing Systems and Applications, vol. 1, Toyama, Japan, Aug
28-31 2011, pp. 25–32.

[10] B.Andersson, “Uniprocessor EDF scheduling with mode change,”
in 12th International Conference on Principles of Distributed Systems
(OPODIS 2008), Luxor, Egypt,, December, 15-18 2008.

[11] V. Nelis, J. Goossens, and B. Andersson, “Two protocols for schedul-
ing multi-mode real-time systemsupon identical multiprocessor
platforms,” in Proceedings of the 21st Euromicro Conference on Real-
Time Systems (ECRTS 2009), Dublin, Ireland, July 1-3 2009.

[12] V. Nelis, J. Marinho, B. Andersson, and S. M. Petters, “Global-
EDF scheduling of multimode real-time systems considering mode
independent tasks,” in Proceedings of the 23rd Euromicro Conference
on Real-Time Systems (ECRTS 2011), Porto, Portugal, July 6-8 2011.

[13] L. Phan, I. Lee, and O. Sokolsky, “Compositional analysis of
multimode systems,” in Proceedings of the 22st Euromicro Conference
on Real-Time Systems (ECRTS 2010), Brussels, Belgium, July, 6-9
2010.

[14] N. Fisher and M. Ahmed, “Tractable real-time schedulability
analysis for mode changes under temporal isolation,” in 9th

IEEE Symposium oN Embedded Systems for Real-Time Multimedia
(ESTIMedia), Taipei, Taiwan, Oct. 13-14 2011, pp. 130–139.

[15] N. Stoimenov, S. Perathoner, and L. Thiele, “Reliable mode changes
in real-time systems with fixed priority or EDF scheduling,” in
2009 Design, Automation Test in Europe Conference Exhibition, Nice,
France, April, 20-24 2009.

[16] J. Lee and K. Shin, “Schedulability analysis for a mode transition in
real-time multi-core systems,” in Proceedings of the 2013 IEEE 34th
Real-Time Systems Symposium (RTSS 2013), Vancouver, BC, Canada,
December 2013.

[17] A. Block and J. H. Anderson, “Accuracy versus migration overhead
in real-time multiprocessor reweighting algorithms,” in 12th Inter-
national Conference on Parallel and Distributed Systems - (ICPADS’06),
Minneapolis, USA, July, 12-15 2006.

[18] J. Real and A. Crespo, “Mode change protocols for real-time
systems: A survey and a new proposal,” Real-Time Systems, vol. 26,
no. 2, pp. 161–197, March 2004.

[19] L.Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham, “Mode
change protocols for priority-driven preemptive scheduling,” Real-
Time Systems, 1989.

[20] M. Ahmed, N. Fisher, and D. Grosu, “A parallel algorithm for
EDF-Schedulability analysis of multi-modal real-time systems,” in
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, Seoul, South Korea, Aug 19-22 2012, pp.
154–163.

[21] N. Stoimenov, L. Thiele, L. Santinelli, and G. Buttazzo, “Resource
adaptations with servers for hard real-time systems,” in Proceedings
of the Tenth ACM International Conference on Embedded Software, ser.
EMSOFT ’10, New York, NY, USA, 2010.

[22] L. Santinelli, G. Buttazzo, and E. Bini, “Multi-moded resource
reservations,” in 17th IEEE Real-Time and Embedded Technology and
Applications Symposium, Chicago, Illinois, USA, April, 11-13 2011.

[23] P. Rattanatamrong and J. A. B. Fortes, “Mode transition for online
scheduling of adaptive real-time systems on multiprocessors,”
in IEEE 17th International Conference on Embedded and Real-Time
Computing Systems and Applications, Toyama, Japan, Aug 28-31 2011,
pp. 25–32.

[24] M. Bertogna, M. Cirinei, and G. Lipari, “Schedulability analysis of
global scheduling algorithms on multiprocessor platforms,” IEEE
Transactions on Parallel and Distributed Systems, vol. 20, no. 4, pp. 553
– 566, April 2009.

[25] H. Kopetz, R. Nossal, R. Hexel, A. Krger, D. Millinger, R. Pallierer,
C. Temple, and M. Krug, “Mode handling in the time-triggered

16

architecture,” Control Engineering Practice, vol. 6, no. 1, pp. 61 – 66,
1998.

[26] F. Heilmann, A. Syed, and G. Fohler, “Mode-changes in COTS
time-triggered network hardware without online reconfiguration,”
SIGBED Review, vol. 13, no. 4, pp. 55 – 60, 2016.

[27] A. Block, J. H. Anderson, and G. Bishop, “Fine-grained task
reweighting on multiprocessors,” in 11th IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications
(RTCSA’05), Hong Kong, China, July, 17-19 2005.

[28] B. Andersson and C. Ekelin, “Exact admission-control for integrated
aperiodic and periodic tasks,” in 11th IEEE Real Time and Embedded
Technology and Applications Symposium, San Francisco, CA, USA,
March 7 - 10 2005.

[29] A. Masrur, D. Mller, and M. Werner, “Bi-level deadline scaling
for admission control in mixed-criticality systems,” in 2015 IEEE
21st International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA 2015), August 19-21 2015.

[30] S. Baruah, V. Bonifaci, G. D’angelo, H. Li, A. Marchetti-Spaccamela,
S. Van Der Ster, and L. Stougie, “Preemptive uniprocessor schedul-
ing of mixed-criticality sporadic task systems,” J. ACM, vol. 62,
no. 2.

[31] X. Gu and A. Easwaran, “Efficient schedulability test for dynamic-
priority scheduling of mixed-criticality real-time systems,” ACM
Trans. Embed. Comput. Syst., vol. 17, no. 1.

[32] S. K. Baruah, L. E. Rosier, and R. R. Howell, “Algorithms and
complexity concerning the preemptive scheduling of periodic, real-
time tasks on one processor,” Real-time systems, vol. 2, no. 4, pp.
301–324, 1990.

[33] J. Lelli, C. Scordino, L. Abeni, and D. Faggioli, “Deadline scheduling
in the Linux kernel,” Software: Practice and Experience, vol. 46, no. 6,
pp. 821–839, 2016.

[34] “AUTOSAR 4.2 OS specification,” http://www.autosar.org/.
[35] K. Tindell and A. Alonso, “A very simple protocol for mode

changes in priority preemptive systems,” Universidad Politcnica
de Madrid, Tech. Rep., 1996.

[36] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, Third Edition. Springer,
2011.

[37] F. Zhang and A. Burns, “Schedulability analysis for real-time
systems with EDF scheduling,” IEEE Trans. Computers, vol. 58,
no. 9, pp. 1250–1258, 2009.

[38] M. Spuri, “Analysis of deadline scheduled real-time systems,” RR-
2772, INRIA, Tech. Rep., 1996.

[39] N. Fisher, T. P. Baker, and S. Baruah, “Algorithms for determining
the demand-based load of a sporadic task system,” in 12th
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA’06), Sydney, Australia, Aug, 16-18
2006.

[40] E. Bini and G. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time Systems, 2005.

Daniel Casini Daniel Casini is a PhD Fellow at
the Real-Time Systems (ReTiS) Laboratory of
the Scuola Superiore Sant’Anna of Pisa, work-
ing under the supervision of Prof. Alessandro
Biondi and Prof. Giorgio Buttazzo. He graduated
(cum laude) in Embedded Computing Systems
Engineering, a Master degree jointly offered by
the Scuola Superiore Sant’Anna of Pisa and
University of Pisa. His research interests include
software predictability in multi-processor systems,
schedulability analysis, synchronization protocols,

and the design and implementation of real-time operating systems and
hypervisors.

Alessandro Biondi Alessandro Biondi is Assis-
tant Professor at the Real-Time Systems (ReTiS)
Laboratory of the Scuola Superiore Sant’Anna.
He graduated (cum laude) in Computer Engi-
neering at the University of Pisa, Italy, within
the excellence program, and received a Ph.D.
in computer engineering at the Scuola Superiore
Sant’Anna under the supervision of Prof. Giorgio
Buttazzo and Prof. Marco Di Natale. In 2016,
he has been visiting scholar at the Max Planck
Institute for Software Systems (Germany). His re-

search interests include design and implementation of real-time operating
systems and hypervisors, schedulability analysis, cyber-physical systems,
synchronization protocols, and component-based design for real-time
multiprocessor systems. He was recipient of five Best Paper Awards, one
Outstanding Paper Award, and the EDAA Dissertation Award 2017.

Giorgio Buttazzo Giorgio Buttazzo is full pro-
fessor of computer engineering at the Scuola
Superiore Sant’Anna of Pisa. He graduated in
Electronic Engineering at the University of Pisa
in 1985, received a M.S. degree in Computer
Science at the University of Pennsylvania in 1987,
and a Ph.D. in Computer Engineering at the
Scuola Superiore Sant’Anna of Pisa in 1991. He
is Editor-in-Chief of Real-Time Systems, Asso-
ciate Editor of the ACM Transactions on Cyber-
Physical Systems, and IEEE Fellow since 2012.

He has authored 7 books on real-time systems and over 200 papers in
the field of real-time systems, robotics, and neural networks.

