
1

Spatio-Temporal Optimization of Deep Neural
Networks for Reconfigurable FPGA SoCs

Biruk Seyoum, Student Member, IEEE, Marco Pagani, Student Member, IEEE, Alessandro Biondi,
Member, IEEE, Sara Balleri, and Giorgio Buttazzo, Fellow, IEEE

Abstract—This paper proposes a technique for optimizing the timing performance and the resource consumption of hardware
accelerators for deep neural network (DNN) inference on FPGA-based system-on-chips (SoC). When required, the accelerators are
decomposed into chunks, each exploiting at best the available FPGA area, and dynamic partial reconfiguration (DPR) is leveraged to
schedule such chunks at run-time. To this end, the paper presents accurate models of the resource consumption and timing of DNN
accelerators provided by the Xilinx FINN framework. The models are then used to formulate an optimization problem that computes the
optimal decomposition of DNN accelerators (and their configuration) by minimizing the inference time while ensuring area constraints
on the FPGA. Experimental results on Zynq-7000 platforms demonstrate that the proposed technique provides consistent
improvements with respect to both stock configurations of the accelerators and other configurations that can be obtained with a static
FPGA allocation.

F

1 INTRODUCTION

Over the last few years, deep neural networks (DNNs)
reached impressive performance in several application sce-
narios such as image processing, data analysis, and con-
trol [1]. Due to these developments, DNNs are increasingly
taken in consideration for developing new functionality in
cyber-physical systems (CPS) such as automated vehicles [2],
[3], next-generation factory automation [4], [5] advanced
robotics [6], [7], and anomaly detection in edge devices [8].
As DNNs are characterized by a high computational com-
plexity, some form of hardware acceleration is required to
use them in real time. System-on-chips (SoC) that integrate
both classical multiprocessors and a field-programmable
gate array (FPGAs) are promising candidates to build
CPS that require hardware-accelerated DNNs. Indeed, they
allow deploying flexible, powerful, time-predictable, and
energy-efficient hardware accelerators on the FPGA fabric.

Two major approaches have been proposed [9] to ac-
celerate DNNs on FPGAs. One consists in deploying a
series of accelerators that can perform the fundamental
mathematical operations required by DNNs (such as con-
volutions) in an efficient way. The other one consists in
deploying the entire DNN on the FPGA, i.e., with a series
of pipelined accelerators specialized for a given network
structure, even already including the DNN’s weights. The
latter is clearly less flexible but tends to provide better
efficiency as network-specific optimized accelerators can be
synthesized. The FINN framework [10] by Xilinx follows
this second approach and is the focus of this paper. The
accelerators produced by FINN can be tuned to trade FPGA

• B. Seyoum, M. Pagani, A. Biondi and G. Buttazzo are with the
TeCIP Institute of the Scuola Superiore Sant’Anna, Pisa 56124,
Italy. E-mail: {biruk.seyoum, marco.pagani, alessandro.biondi,
giorgio.buttazzo}@santannapisa.it.

• M. Pagani is also with with the Embedded Real-Time Adaptative System
Design and Execution (Émeraude) team from the Centre de Recherche en
Informatique, Signal et Automatique (CRIStAL) based in Lille

area consumption with latency and throughput. At a high
level, being the operations performed by the accelerators
largely suitable to parallelization, performance can be im-
proved by increasing the number of processing engines
inside each accelerator. This however comes at the cost of
a larger area consumption.

Unfortunately, the area consumption of FINN acceler-
ators cannot be arbitrarily reduced. This is because they
require resources to store the DNN’s parameters and other
accessory logic that do not change when the degree of
parallelism is reduced. This originates a lower bound on
the area consumption required by FINN, with the conse-
quence that it may be impossible to deploy it on resource-
constrained systems. For instance, on PYNQ-Z1 by Xilinx,
it might be impossible to deploy a FINN-based accelerator
along with other standard IPs such as HDMI encoder and
the associated video DMA engines.

Contribution. This work addresses this issue by propos-
ing a technique to optimize the timing performance and the
resource consumption of FINN accelerators. When required,
the accelerators are decomposed into chunks such that each
chunk is configured to exploit at best the available FPGA
area. Then, dynamic partial reconfiguration (DPR) of the FPGA
is leveraged to execute the chunks at run-time. The DNN
decomposition and the configuration of the accelerators are
based on accurate models of the resource consumption and
timing for FINN that have been experimentally derived.
Both decomposition and configuration are performed by
means of a mixed-integer linear program (MILP) that aims
at optimizing the timing performance while ensuring area
constraints. The proposed technique is validated with ex-
periments on a PYNQ-Z1 by Xilinx. Experimental results
show that (i) our approach makes possible to deploy FINN
accelerators when it would be impossible without DPR, and
that (ii) it provides consistent improvements with respect
to both stock FINN configurations and other configurations
that can be obtained with a static FPGA allocation.



2

2 BACKGROUND

This section provides a concise discussion on reduced-
precision DNNs and the general architecture of the FINN
framework.

2.1 Reduced-precision DNNs

Several works have faced the problem of optimizing DNNs
to the purpose of reducing their inference time and memory
footprint: please refer to [11] for a survey on the topic. One
of the most common approaches to address this problem
consists in reducing the precision of network parameters by
optimizing the size (in bits) of the weights. While DNNs
typically come with 32-bit floating point weights, several
researches found that comparable performance can be ob-
tained if the precision of the weights is reduced, e.g., shifting
to 16-bit floating point weights by simply reducing their pre-
cision, or adopting integer representations by quantizing the
numerical domain of the weights. As an extreme application
of such an approach, several researches [10], [12], [13], [14]
also proposed to adopt DNN models with binary parameters
(i.e., weights and biases). The resulting DNNs are called
binary neural networks (BNNs) and are notably the most time-
and memory-efficient class of DNNs. The efficiency of BNNs
is originated by two main properties. On one hand, due to
the extreme reduction of the size (bit-width) of the weights,
memory access times during inference and the memory
footprint are significantly reduced. On the other hand, the
arithmetic floating-point computations required by stan-
dard DNNs can be replaced with simpler and faster bit-
wise operations, which also significantly improves power
efficiency [12]. Both these properties make BNNs well suited
for an efficient implementation on FPGA platforms, which
often have a limited on-chip memory (OCM) to store the
weights but provide a high flexibility in tailoring the acceler-
ator hardware according to the required precision. Recently,
BNNs have also achieved accuracies very close to the ones
of full-precision networks for some applications [12], [13].

2.2 The FINN framework

FINN is an experimental framework from Xilinx Research
Labs [10] to support the development of scalable accelera-
tors to perform the inference of quantized DNNs on FPGAs.
It relies on a heterogeneous streaming architecture arranged
as a pipeline, where each layer of a DNN is mapped to a
dedicated processing engine named matrix-vector-threshold
unit (MVTU). The MVTUs communicate among themselves
using data streams. The MVTU is built from parameter-
izable building blocks that can be scaled according to a
set of requirements. The majority of operations in fully-
connected BNNs can directly be expressed as matrix-vector
product of the weights and the input activations followed
by thresholding. In convolutional layers, operations can also
be reduced as matrix-matrix operations by suitably arrang-
ing the weights and the incoming feature maps in each
layer [10]. The MVTU implements fully-connected layers
as standalone components, while convolutional layers are
implemented by adding a sliding window unit that pre-
arranges the incoming feature map before performing a
matrix-matrix multiplication.

Internally, an MVTU consists of an array of process-
ing elements (PEs) that correspond to hardware neurons.
Please refer to Figure 2(a). The synapses of each neuron
are processed via single instruction multiple data (SIMD)
lanes. The MVTU in the ith layer can be represented by
the tuple < Pi, Si >, where Pi denotes the number of PEs
in the ith layer and Si denotes the number of SIMD lanes
(synapses) of each PE in the same layer. FINN accelerators
are designed such that a single PE with Si SIMD lanes can
simultaneously process Si synapses in one clock cycle. For
each layer, the parameters Pi and Si can be configured
according to the desired throughput and latency, but also
have a direct impact in terms of area consumption of the
resulting accelerator. In other words, the configuration of
the parameters Pi and Si requires facing with a trade-off
between performance (throughput and latency) and area
consumption. For instance, by increasing the number of PEs
and SIMD lanes it is possible to reduce the inference time
of the network; however, the resulting accelerator requires a
larger amount of resources on the FPGA fabric.

3 MODELING FINN ACCELERATORS

This paper considers a set of BNNs developed with the
BNN-FINN framework [15]. In particular, it focuses on
the CNVW1A1 and CNVW2A2 quantized networks [15].
Both neural networks use quantized parameters except for
the input and output layers. Despite both networks have
similar architectures, the CNVW1A1 network uses a 1-bit
precision for weights and activations parameters, while the
CNVW2A2 uses a 2-bit precision.

L
0:

 C
N

V
 3

x3
x6

4

L
1:

 C
N

V
 3

x3
x6

4

L
2:

 M
A

X
PO

O
L 

2x
2

L
3:

 C
N

V
 3

x3
x1

28

L
4:

 C
N

V
 3

x3
x1

28

L
5:

 M
A

X
PO

O
L 

2x
2

L
6:

 C
N

V
 3

x3
x2

56

L
7:

 C
N

V
 3

x3
x2

56

L
8:

 F
C

 5
12

L
9:

 F
C

 5
12

L
10
: F

C
 6

4

R
G

B
 Im

ag
e 

32
x3

2x
3

O
ut

pu
t 6

4 
16

-b
it

Fig. 1. Illustration of the CNVW1A1 BNN from Xilinx. The characteristics
of each layer are specified by the numbers with which they are labeled.
For example, CNV 3x3x64 denotes a convolutional layer with a 3x3
filter and 64 channels, FC 512 denotes a fully-connected layer with 512
neurons, and MAXPOOL 2x2 denotes a max-pooling layer that works
with a 2x2 window.

Figure 1 illustrates the CNVW1A1 network, whose
topology is inspired by the VGG-16 architecture and consists
of 6 convolutional layers (CNV in the figure), 2 max-pooling
layers (MAXPOOL in the figure), and 3 fully connected
layers (FC in the figure). All layers are implemented in
hardware through a feed-forward dataflow architecture.
The parameters of all layers are stored inside the FPGA
on-chip memory. In these implementations, all layers are
quantized except for the input and the output layers. The
former performs a fixed-precision convolutional operation
on a 32x32 image with 8-bit RGB channels, while the latter
produces output values with a 16-bit representation. The
network can be trained to classify up to 64 classes.
Number of operations in each layer. In the following we
denote by inference operation (IOP) the computation required



3

to process a synapse. The number of IOPs performed by
each layer depends on the type of the layer. If the ith

layer is convolutional, it can be represented by the tuple
< Ki, IFMi,OFMi, IFM CHi,OFM CHi >, where Ki is the
size of the convolutional kernel, IFMi is the size of the input
feature map, OFMi is the size of the output feature map,
and IFM CHi and OFM CHi are the number of channels
in the input and the output of the layer, respectively. Hence
the total number #IOPsi of IOPs performed by the ith layer
is given by (please refer to [15] for details)

#IOPsi = K2
i ·OFM2

i · IFM CHi ·OFC CHi. (1)

If the ith layer is fully connected, it can be represented
by the tuple < Hi,Wi >, where Hi denotes the number of
neurons of the layer (height), and Wi denotes the number
of synapses per each neuron in the layer (width). Hence the
total number #IOPsi of IOPs performed by the ith layer is
given by

#IOPsi = Hi ·Wi. (2)

The max-pooling layer in FINN is implemented with just
a boolean OR operator (it does not expose the configuration
parameters Pi and Si). The IOPs performed by max-pooling
layers are independent of the configuration of the other lay-
ers. Furthermore, their contribution to the overall inference
latency has been experimentally found to be negligible via
profiling. For this reason, the number of IOPs performed by
max-pooling layers is not modeled here.
Folding. To explain folding, let us consider the case of the
CNVW1A1 network (similar considerations apply to the
CNVW2A2 network). To make the network fully parallel,
i.e., to process one input image every clock cycle at each
layer, the MVTUs in each layer must be configured with a
number of PEs and SIMD lanes equivalent to the number of
neurons and synapses in the corresponding layer. Clearly,
this results in a very large demand of FPGA resources
(area). If the FPGA resources available on a platform are not
enough to deploy a fully-parallel configuration of the net-
work, the number of PEs and SIMD lanes in each layer must
be reduced to implement an accelerator that performs time-
multiplexed computations within each layer. In this case,
the neurons and the synapses must be correctly partitioned
between the PEs inside the layer to implement a correct
matrix-vector multiplication. This partitioning is called fold-
ing and must be performed according to the configuration
of PEs and SIMDs. The number of PEs and SIMD lanes in
each layer are also called the folding parameters of the layer.

To demonstrate the effect of folding on latency and
throughput, let us consider a simple example. Figure 2(b)
shows two layers, L0 and L1, of a sample fully-connected
binary network. Remember that each PE in the ith layer
can process Si IOPs in one clock cycle. Also, in each layer
multiple neurons can be served in parallel depending on
the number of available PEs. If P1 = 2 (number of PEs in
L1) and S1 = 3 (number of SIMD lanes for each PE in L1),
as shown in Figure 2(e), then the throughput of L1 will be
6 IOPs every clock cycle. If the number of SIMD lanes on
each PE is reduced to S1 = 1 as in Figure 2(d), then the
throughput of L1 is reduced to 2 IOPs every clock cycle. As
another example, if P1 = 1 and S1 = 1 as in Figure 2(c),
the throughout of the layer is reduced to just 1 IOP every

clock cycle. In general, the latency lati of the ith layer in
clock cycles is inversely proportional to the product Pi · Si.
Given the ith layer, the relationship between its latency (in
clock cycles), the number of IOPs per layer, and the folding
parameters of the layer can be formalized as follows. Note
that the product of Pi and Si denotes the number of IOPs
that can be processed in parallel by the ith layer. Hence, as
each IOP takes one clock cycle, the latency introduced by
the ith layer (either a convolutional or fully connected layer)
is given by

lati =

⌈
#IOPsi

(Pi · Si)

⌉
. (3)

The additional computations required to compute the out-
put of each neuron after processing the synapses is already
accounted within the per-IOP clock cycle due to internal
pipelining of MVTUs.

5

(a)

3
1

6
4
2

6
4
2
5
3
1

PE

1
2
3

4
5

6

(b)

(c) (e)

In
. b

uf
fe

r PE

PE

O
ut

. b
uf

fe
r

Input
stream

SIMD lanes (S)

Output 
stream

(d)
PE PEPE PE

1 3 5 4 5 6

L0 L1

Fig. 2. Inset (a) illustrates an MVTU, while inset (b) shows an example
two-layer network. Insets (c), (d), and (e) illustrate three different imple-
mentations of layer L1.

Due to the pipelined architecture of FINN accelerators,
the total throughput of the network depends on the layer
with the highest latency [10]. Let N be the total number
of layers in the network. The maximum latency among all
layers is given by

latmax = max{lat1, . . . , latN}, (4)

while the total latency to perform the inference of one input
image is given by lattot =

∑N
i=1 lati.

To perform the inference of a batch of B images, the total
throughput th of the network can finally be computed as

th =
B

(B − 1) · latmax + lattot
. (5)

As it can be observed from the above equation, maxi-
mizing the throughput of the network requires minimizing
the latency of the slowest layer, i.e., minimizing latmax. This
is equivalent to increasing the number of PEs and SIMDs
in the slowest layer at cost of a larger demand of FPGA
resources.
Demand of FPGA resources. The range of variation of
the folding parameters (PEs and SIMDs) that control the



4

PEs0 10 20 30 40 50 60SIM
Ds 0

10
20

30
40

50
60

L
U
T
s

0

2000

4000

6000

8000

10000

12000

L3 CNV LUTs

PEs0 10 20 30 40 50 60SIM
Ds 0

10
20

30
40

50
60

B
R
A
M
s

0
10
20
30
40
50
60
70

L3 CNV BRAMs

PEs0 10 20 30 40 50 60SIM
Ds 0

10
20

30
40

50
60

L
U
T
s

0
1000
2000
3000
4000
5000
6000
7000

L6 FC LUTs

PEs0 10 20 30 40 50 60SIM
Ds 0

10
20

30
40

50
60

B
R
A
M
s

0
10
20
30
40
50
60
70

L6 FC BRAMs

Fig. 3. Plots of functions fi,t(Pi, Si) for some representative layers and resource types (see the captions above the plots).

throughput of the network is limited by the total num-
ber of available resources in the area of the FPGA where
the BNN will be deployed. This can be mathematically
stated as follows. Let t denote the type of a resource in
the FPGA fabric where t ∈ {CLB, BRAM, DSP, FF}. Fur-
thermore, let Rt denote the total number of resources of
type t in the FPGA fabric, and let ci,t denote the number
of resources of type t demanded by the ith layer. To be
feasibly deployed on a given FPGA fabric, a network con-
figuration must satisfy the following necessary condition:
∀t ∈ {CLB, BRAM, DSP, FF},

∑N
i=1 ci,t ≤ Rt.

Note that, in each layer, ci,t depends on parameters Pi and
Si (the larger their values the larger the resource demand).
This means that for every resource type t, it is possible
to derive a function ci,t = fi,t(Pi, Si) to characterize the
dependency between parameters Pi and Si, and the re-
source demand of each layer. In this work, the dependency
between the resource demand and the parameters Pi and
Si has been experimentally derived for each layer by (i)
varying the two parameters, (ii) automatically synthesizing
the resulting configuration of the FINN accelerator, and
(iii) finally profiling the corresponding resource demand.
Technical details on how this experimental data has been
obtained are reported in Section 3.1.

To enable the encoding of such functions in a mathemat-
ical optimization framework (see next section), the collected
data has then been fitted to piece-wise linear functions with
four pieces of the following form. The demand for resources
of type t by the ith layer is expressed as:

fi,t(Pi, Si) =


f1
i,t(Pi, Si) if Pi ≤ PEt

th ∧ Si ≤ SIMDt
th

f2
i,t(Pi, Si) if Pi > PEt

th ∧ Si ≤ SIMDt
th

f3
i,t(Pi, Si) if Pi ≤ PEt

th ∧ Si > SIMDt
th

f4
i,t(Pi, Si) if Pi > PEt

th ∧ Si > SIMDt
th
(6)

where PEt
th and SIMDt

th are constant thresholds to deter-
mine the various pieces f1

i,t(Pi, Si), . . . , f
4
i,t(Pi, Si) of each

t type of resource. Each piece fpi,t(Pi, Si) is expressed as
fpi,t(Pi, Si) = ξpi,t · Pi + %pi,t · Si + υpi,t, where ξpi,t, %

p
i,t,

and υpi,t are coefficients empirically determined by fitting
experimental data as explained above.

3.1 Profiling FINN accelerators

As anticipated above, the resource demand and timing per-
formance of the layers of the two considered networks, i.e.,
CNVW1A1 and CNVW2A2, have been profiled by varying
the folding parameters. For each network, the profiling was
performed by disabling all the layers in the network, except

TABLE 1
Mean average percentage error (MAPE) of the resource estimation

model fi,t(Pi, Si) obtained via linear regression.

MAPE (%)
Network LUT BRAM FF
CNVW1A1 4.85 2.99 4.2
CNVW2A2 5.11 1.88 5.7

the one that was profiled, by modifying the C++ HLS code
of the accelerator. The HLS synthesis of each configuration
and the updating of the folding parameters was automated
using a bash script. After the completion of each HLS
synthesis, the script was also responsible for synthesizing
the generated RTL in Vivado and logging the synthesis
reports. The profiling of the layers (HLS synthesis + RTL
synthesis) was performed using Vivado 2018.3 running on
a machine with Ubuntu Linux 18.04, and equipped with 26
Intel Xeon cores @2.20 GHz and 132 GB of RAM. Then, for
each network, a piece-wise linear regression of the logged
data was performed with Matlab to build the functions of
Equation (6). Note that the resource consumption model
in Equation (6) also accounts for the resources utilized for
storing intermediate data, i.e., the on-chip streaming FIFO
buffers. The plot of the obtained resource models for some
representative layers are reported in Figure 3, while the mean
average percentage error (MAPE) of the model for each type
of network is reported in Table 1. The latency of each layer
of the networks has also been profiled with the purpose of
validating Equations (1)-(5).

3.2 Beyond FINN

It is worth noticing that, despite the analysis in this section
is focused on the VGG-inspired quantized accelerators from
the FINN framework, other types of DNN accelerators com-
posed of regularly stacked convolutional and/or fully con-
nected layers, such as AlexNet [16], YOLO [17], SEGNet [18],
etc., can also be modeled using the same approach, provided
that they have a pipelined hardware implementation with
scalable computational units in each layer. In fact, to make
the modeling applicable for such networks, we only need to
modify Equation (3) as:

lati =

⌈
#IOPsi · n
(Pi · Si)

⌉
. (7)

where n denotes the number of clock cycles per IOP.



5

4 PROBLEM DEFINITION

This paper proposes a method to optimize the timing per-
formance and resource consumption of FINN accelerators
under constrained FPGA resources. As it emerges from the
model presented in the previous section, the throughput
and resource consumption of a FINN accelerator vary as
a function of the folding parameters (Pi and Si) of each
layer. Clearly, under constrained FPGA resources, configur-
ing such parameters requires facing with a throughput vs.
area trade-off.

A possible solution to optimize a FINN accelerator con-
sists in configuring the folding parameters of each layer
such that (i) the throughput is maximized, and (ii) the uti-
lization of the FPGA resources is maximized (provided that
a synthesis of the resulting accelerator is actually possible).
This optimization problem is solved by this work as a spe-
cial case of a more general approach (see the next sections)
but, unfortunately, the implied solution is likely to have
evident limits. Indeed, note that FINN accelerators must
include memories to store the parameters of the neurons
(weights, biases, and thresholds) and comprise accessory
logic that is independent of the folding parameters. Hence,
even setting the lowest possible values for parameters Pi

and Si, a FINN accelerator is characterized by a consid-
erable resource demand. For instance, with a target clock
frequency of 100MHz for the FPGA, by setting Pi = 1 and
Si = 1 for each layer, the post-synthesis resource require-
ment of the CNVW1A1 network amounts to 2358 LUTs,
92 BRAMs, and 3145 FFs (obtained with Vivado 2018.3).
This resource demand may not be satisfiable, especially
on resource-constrained FPGAs or when the area is used
to deploy other modules, e.g., other FINN neural network
accelerators.

To address this issue, this work proposes to oppor-
tunistically split the network pipeline into chunks that are
dynamically configured at run-time by means of DPR. For
instance, if an accelerator is split into two chunks, e.g., as it
is illustrated in Figure 4, the inference process works by (i)
configuring and executing the first chunk, and then (ii) re-
configuring the FPGA with the second chunk and execute
the latter. This approach allows working with accelerators
that require less resources than the minimal ones demanded
by a stock FINN accelerator, hence enabling the deployment
of FINN accelerators in platforms in which it would be
impossible. Clearly, this comes at the cost of larger latencies
due to reconfiguration times.

4.1 The optimization problem addressed in this work
Optimizing FINN accelerators under the more general ap-
proach based on DPR requires facing with additional chal-
lenges: deciding how many chunks an accelerator has to be
split and where it has to be split. Contextually, the folding
parameters of the layers must be optimized to better exploit
the available FPGA area on which the chunks are config-
ured, with the end of maximizing the throughput (taking
reconfiguration times into account). To address this chal-
lenge, the following section proposes a formulation of the
problem as a mixed-integer linear program (MILP). Instead of
developing a custom heuristic algorithm to solve the prob-
lem, a MILP formulation allows leveraging well-established

FPGA fabric

L0: CNV 3x3x64

L1: CNV 3x3x64

L2: MAXPOOL 2x2

L3: CNV 3x3x128

L4: CNV 3x3x128

L5: MAXPOOL 2x2

L6: CNV 3x3x256

L7: CNV 3x3x256

 L8: FC 512

L9: FC 512

L:10 FC 64

System
DDR memory

Mem. buffer 0

Mem. buffer 3

Mem. buffer 2

Mem. buffer 1

Fig. 4. Block diagram illustrating the execution flow of a network split into
two chunks.

and powerful optimization algorithms developed by experts
of optimization (mature commercial solvers such as CPLEX
and Gurobi are available, while open-source solutions such
as GLPK are also effective, both with APIs for popular
programming languages such as C and C++). Furthermore,
MILP formulations come in a form that is modular, hence
easier to extend, validate, and maintain.

4.2 Preliminary considerations

Before presenting our solution, it is necessary to discuss
a few aspects related to the timing performance of FINN
accelerators. In stock implementation of FINN accelera-
tors [15], the parameters of the neurons are loaded by the
software support into the hardware accelerator from DRAM
memory at run-time. The software is also responsible for
pre-processing a batch of input images for classification as
well as the result of the classification when the inference
is completed. Therefore, the total execution time of the
inference is composed of three phases: (i) loading of neuron
parameters from memory, (ii) image pre-processing, and
(iii) hardware inference. For example, by profiling the stock
configuration of the CNVW1A1 network running on the
PYNQ-Z1 platform by Xilinx and operating on a batch of
256 CIFAR-10 images, we found that the loading of the
parameters of the neurons can take up to 450.3 ms, while
the longest observed time to perform the inference took
about 85.8 ms. We have also found that, despite its low
memory footprint, loading the parameters of the FINN
accelerators takes a large portion of the total execution time
due to unoptimized memory transfers. However, in the case
in which a FINN accelerator is configured only once, and
then used for multiple inferences, such overhead may be
acceptable as it corresponds to an initialization phase of
the accelerator that has to be done only once at the system
startup. Conversely, it becomes a severe disadvantage if the
FPGA area is subject to DPR as proposed by our approach.
Indeed, every time an area hosting a chunk is reconfigured,
all the neuron parameters would be lost.

To address this issue, the stock FINN accelerators of both
networks have been modified to embed the neuron parame-
ters directly into the accelerator during the generation of the
bitstream. In this way, the loading of the parameters can be
skipped, and, once configured on the fabric, the accelerator



6

is ready to run. Despite this reduces flexibility, as a new
accelerator has to be synthesized every time the network
parameters are changed, we argue that it does not represent
a critical limitation at the stage of deployment, when the
network is likely not to change unless a major update of
the system is performed. We have also experimentally con-
firmed that embedding the parameters into the accelerators
has a negligible effect on the reconfiguration time, since the
total memory footprint of the parameters of the networks is
in the order of a few kilobytes, while the size of the partial-
bitstream is usually in the order of a few megabytes. Under
this choice, the time required to perform the inference is
given by the sum of the times to execute the chunks and the
corresponding accesses to memory. Both these times are re-
lated to the inputs and outputs of the network, and the ones
required to write and read the intermediate data that flow
on the cut between the chunks. The input to the network
are 32x32 RGB images, each amounting to 3 KB, while the
output of the network comprises 64 16-bit values, for a total
of 128 bytes. On a PYNQ-Z1, using the high-performance
memory ports and on for a batch of 256 images, the total
memory transfers for such inputs and outputs require less
than 1 ms. Since the reconfiguration and inference times are
in the order of a few tens of milliseconds, the time required
by such memory transfers tend to be negligible. The size
of the intermediate data that are written and read from
memory is proportional to the size of the feature map at
the split point. An analysis of FINN accelerators revealed
that the largest feature map has a size of 57600 bits (it
corresponds to the link between the first and the second
layers). The corresponding memory access times amount
to about 16 µs and are hence also negligible. Overall, our
profiling revealed that the inference time can be effectively
approximated as the sum of the execution times of the
chunks plus their reconfiguration times. For instance, the
inference time with an accelerator split into two chunks can
be expressed as Tsplit = Tacc1 + Tacc2 + 2Treconf, where Tacc1
and Tacc2 are the execution times of the chunk, and Treconf is
the reconfiguration time of the FPGA slot in which the two
chunks are programmed.

5 MILP FORMULATION

This section presents the proposed MILP formulation. The
inputs of the optimization problem are the structure of
the BNN, the functions that model its resource demand
presented in Section 3, and the amount of available FPGA
resources. The MILP variables and the constraints that
define the optimization problem are then presented as a
function of such inputs. The constraints are categorized
into (i) general constraints, (ii) resource constraints, and (iii)
latency constraints. The outputs of the optimization problem
are the values of the folding parameters for each layer and
the chunks into which the BNN accelerator is split. The
objective is to maximize the throughput.

5.1 Optimization variables

To begin, note that the folding parameters Pi and Si cannot
take arbitrary values, but rather only powers of two (this is
imposed by FINN). This observation is useful to efficiently

formulate the optimization problem. That is, instead of
directly modeling parameters Pi and Si as a pair of integer
variables for each layer, we adopt a set of binary variables to
identify the powers of two of the corresponding parameter
value.

The largest value allowed for parameters Pi and Si is
2M+1 = 64 (with M = 5). Hence, for each layer i and ∀m =
1, . . . ,M , we define: (i) βi,m ∈ {0, 1}, a binary variable such
that βi,m = 1 if and only if Pi = 2m+1; and (ii) δi,m ∈ {0, 1},
a binary variable such that δi,m = 1 if and only if Si = 2m+1.

For each layer i, we also define τi ∈ Z≥1 as an integer
variable that represents the product of the folding parame-
ters in the ith layer i.e., τi = Pi · Si, which is particularly
useful to deal with the latency of the layer (see Eq. (3)).
Consequently, for each layer i and ∀m = 1, . . . , 2M + 1, we
define a binary variable λi,m ∈ {0, 1} such that λi,m = 1 if
and only if τi = Pi · Si = 2m+1.

Other variables are required to encode the cuts and the
grouping of layers in chunks. To this purpose, for each
layer i we define a binary variable xi ∈ {0, 1} such that
xi = 1 if and only if there is a cut between the ith layer
and the (i+ 1)

th layer (for consistency, we implicitly set
xN = 0 as no cuts are possible after the last layer). Note
that the maximum number of chunks that can be obtained
by optimization cannot be larger than the total number N
of layers, i.e., in the limit case, each chunk includes just
one layer. Hence, also the number of chunks is bounded by
N . This observation allows defining the following variables.
For each chunk j we define (i) a binary variable yi,j ∈ {0, 1}
for each layer i, such that yi,j = 1 if and only if the ith

layer belongs to the jth chunk; and (ii) two real variables
Φmax

j ∈ R≥0 and Φtot
j ∈ R≥0 that model the maximum and

the total latency of the chunk, respectively.
Some of the following constraints make use of a numeri-

cal constantM that denotes a very large positive number to
represent infinity (in our implementation we setM = 109).

5.2 General constraints
A set of constraints are required to impose certain restric-
tions on the values taken by the optimization variables in
order to guarantee the consistency of their definition.

First of all, we define a simple constraint to limit the
upper bounds of Pi and Si. As stated above, the folding
parameters can only take values in {1, 2, 4, 8, 16, 32, 64}.
Hence, to enforce the consistency of variables βi,m and δi,m,
the following constraint is provided:
Constraint 1. ∀i = 1, . . . , N

Pi =
M∑

m=1

2(m+1) · βi,m ∧
M∑

m=1

βi,m = 1 (8)

Si =
M∑

m=1

2(m+1) · δi,m ∧
M∑

m=1

δi,m = 1 (9)

In Eq. (8), the first term connects variable βi,m to Pi,
while the second term enforces the fact that Pi can have one
and at most one of the powers of two as its value. That is, in
the range m = 1, . . . ,M , variables βi,m are always 0 except
once. The same holds for Eq. (9) with respect to variables
δi,m and Si.



7

Remember that τi was defined as the product of the
folding parameters of the ith layer, i.e., τi = Pi · Si. This
definition is enforced by the following constraint:
Constraint 2. ∀i = 1, . . . , N, ∀m = 1, . . . ,M

τi ≥ 2(m+1) · Si − (1− βi,m) · M,

τi ≤ 2(m+1) · Si + (1− βi,m) · M.
(10)

Constraint 2 is an efficient encoding of the product of Pi

and Si as MILP formulation allows linear constraints only,
i.e., they cannot contain products between optimization
variables. Its rationale is the following. For each value of
m for which βi,m = 0, the constraint reduces to τi ≥ −∞
and τi ≤ ∞, and hence enforces no restrictions. For the only
value of m such that βi,m = 1, it holds Pi = 2(m+1), and
hence the constraint reduces to τi ≥ Pi · Si and τi ≤ Pi · Si,
which is equivalent to τi = Pi · Si.

The consistency of variables τi and λi,m can be enforced
exactly as done for Constraint 1.

According to the definition of chunks, each layer must
be a member of one and only one chunk. With respect to the
optimization variables, this is equivalent to say that each
layer i has variable yi,j = 1 only for one j. This is enforced
using the following constraint:

Constraint 3. ∀i = 1, . . . , N,
∑N

j=1 yi,j = 1.

Unless there is a cut between the ith layer and the
(i+ 1)

th layer, i.e., xi = 1, the two (consecutive) layers must
always belong to the same chunk, i.e., yi,j = yi+1,j only
for the same j. The following constraint enforces this simple
property:
Constraint 4. ∀i = 1, . . . , N − 1, ∀j = 1, . . . , N

yi,j ≤ yi+1,j + xi · M,

yi+1,j ≤ yi,j + xi · M.
(11)

The rational behind Constraint 4 is the following. When
xi = 0, i.e., when there is no cut between the ith layer
and the (i+ 1)

th layer, Constraint 4 reduces to yi,j ≤ yi+1,j

and yi+1,j ≤ yi,j , which is equivalent to yi+1,j = yi,j . This
correctly forces the two layers to belong to the same chunk.
Conversely, when xi = 1, i.e., when there is a cut between
the ith layer and the (i+ 1)

th layer, the constraint reduces to
yi,j ≤ ∞ and yi+1,j ≤ ∞, hence posing no restrictions.

Meanwhile, if there is a cut between the ith layer and the
(i+ 1)

th layer, then the two consecutive layers should never
be in the same chunk. The following constraint is used to
enforce this property:
Constraint 5. ∀j = 1, . . . , N, ∀i = 1, . . . , N − 1,

yi,j + yi+1,j ≤ 1 + (1− xi) · M. (12)

If xi = 1, i.e., there is a cut between the ith layer and
the (i+ 1)

th layer, then the above constraint is reduced to
yi,j + yi+1,j ≤ 1. This effectively prohibits the case in which
both the layer i and i+1 belong to the jth chunk. Conversely,
if xi = 0, i.e., there is no cut between the ith layer and the
(i+ 1)

th layer, then the constraint reduces to yi,j + yi+1,j ≤
∞, hence posing no restrictions.

It should be noted that Constraint 4 and Constraint 5 are
not sufficient to guarantee a correct allocation of the layers

into chunk. Indeed, we still need some constraint to prevent
different chunks from ending up being modeled by the same
index j, i.e., to avoid that layers that belong to different non-
adjacent chunks have variables yi,j set for the same j. Such
a restriction can be achieved by noting that, once there is
a cut along the network pipeline, a layer on the left cannot
belong to any of the chunks hosting the layers on the right.
This property is enforced as follows:
Constraint 6. ∀j = 1, . . . , N, ∀i = 1, . . . , N,

N∑
k=i+1

yk,j ≤ (1− xi) · M+ (1− yi,j) · M. (13)

Constraint 6 is based on two conditions: (i) there is a cut
between the ith layer and the (i+ 1)

th layer (xi = 1), and (ii)
the layer to the left of the cut, i.e., the ith layer, belongs to the
jth chunk (yi,j = 1). If both these conditions are true, then
the constraint is reduced to

∑N
k=i+1 yk,j ≤ 0, effectively

asserting that all the layers to the right of the cut cannot be
members of the jth chunk, i.e., ∀k = i+ 1, . . . , N, yk,j = 0.
If any of the two conditions is false (xi = 1 and/or yi,j = 1),
the constraint is reduced to

∑N
k=i+1 yk,j ≤ ∞, hence posing

no restrictions.

5.3 Resource constraints

This section presents the constraints required to enforce that
the amount of resources demanded by each chunk does
not exceed the available resources on the FPGA fabric (or
either a given slot on the fabric). As discussed in Section 2.2,
the resource demand of each layer depends on the folding
parameters Pi and Si.

The amount of resources ci,t of type t demanded by
the ith layer is given by the piece-wise linear functions
fi,t(Pi, Si) in Equation (6). Here, the challenge consists in
efficiently encoding such functions in the MILP formula-
tion. To this end, we define two auxiliary binary variables,
αt
i ∈ {0, 1} and γti ∈ {0, 1}, whose value will be determined

by Pi and Si, respectively, and whose combination will be
used to determine which of the four pieces of Equation (6) is
used by a given pair of the folding parameters. In essence,
variables αt

i and γti are used to achieve a binary encoding
of the index of the four pieces, i.e., 00, 01, 10, or 11. The
following constraint is hence enforced:
Constraint 7. ∀i = 1, . . . , N,∀t ∈ {CLB, BRAM, DSP, FF}

ci,t ≥ f1
i,t(Pi, Si)− (αt

i + γti) · M
ci,t ≥ f2

i,t(Pi, Si)− (1− αt
i + γti) · M

ci,t ≥ f3
i,t(Pi, Si)− (1 + αt

i − γti) · M
ci,t ≥ f4

i,t(Pi, Si)− (2− αt
i − γti) · M

(14)

For example, if γti = 1 and αt
i = 0, all sub-constraints

will have no effect on ci,t except the third one, which is
equivalent to the third piece in Equation (6).

The problem is now how to assign suitable values to
the auxiliary variables αt

i and γti such that the ranges of
each piece is reflected. In other words, their values must be
constrained in such a way that αt

i = 1 if and only if Pi > PEt
th,

and similarly γti = 1 if and only if Si > SIMDt
th. In this

way, all four combinations of the values of the auxiliary



8

variables can reflect the ranges of the four pieces as in
Equation (6). This is achieved by means of the following
auxiliary constraint.

Constraint 8. ∀i = 1 . . . , N, ∀t ∈ {CLB, BRAM, DSP, FF}

Pi − ε ≥ PEt
th −M · (1− αt

i) ∧ Pi − ε ≤ PEt
th +M · αt

i (15)

Si − ε ≥ SIMDt
th −M · (1− γti) ∧ Si − ε ≤ SIMDt

th +M · γti (16)

where ε > 0 is an arbitrarily-small positive number (e.g.,
0.0001).

Eqs. (15) and (16) have the same form, hence it suffices to
discuss one of them. There are two cases when constraining
the values of αt

i according to PEt
th in Eq. (15). If Pi > PEt

th,
then αt

i = 1 and the equation becomes Pi− ε ≥ PEt
th, which

matches the definition of αt
i, and Pi − ε ≤ ∞, which is

always true. If Pi ≤ PEt
th, then αt

i = 0, and the equation
becomes Pi − ε ≥ −∞, which is always true, and Pi − ε ≤
PEt

th, which matches the definition of αt
i.

The total amount of resources Ct
j of type t in the jth

chunk is equivalent to the sum of the demand of resources
of type t by all the layers that are part of the chunk. As
variables yi,j denote whether a layer is part of a chunk or
not, Ct

j can be expressed as follows: Ct
j =

∑N
i=1 c

t
i · yi,j .

Note that this equation is not a linear and hence cannot be
directly encoded in a MILP constraint. In order to linearize
it, we define an auxiliary real variable ati,j ∈ R≥0 such that
ati,j = cti · yi,j and enforce the following set of auxiliary
constraints.

Constraint 9. ∀j = 1, . . . , N, ∀i = 1, . . . , N, ∀t ∈
{CLB, BRAM, DSP, FF}, ati,j ≤ cti and

ati,j ≤ yi,j · M ∧ ati,j ≥ cti − (1− yi,j) · M (17)

Here, ati,j denotes the amount of resources of type t
demanded by the ith layer when placed in the jth chunk.
There are two cases to consider: yi,j = 0 and yi,j = 1, i.e.,
when the ith layer is not a member of the jth chunk and
when it is, respectively. If yi,j = 0, the constraint enforces
ati,j ≤ cti, a

t
i,j ≤ 0 and ati,j ≥ −∞, which are equivalent to

ati,j = 0. This effectively forces the ith layer not to contribute
to the resource consumption of the jth chunk. Meanwhile,
when yi,j = 1, the constraint reduces to ati,j ≤ cti, ati,j ≤ ∞,
and ati,j ≥ cti, which, when combined, are equivalent to
ati,j = cti, hence quantifying the correct resource demand
of the layer. In this way, Ct

j can be expressed in a linear
form as just Ct

j =
∑N

i=1 a
t
i,j . Hence, it is finally possible to

enforce the main constraint to impose that the amount of
resources demanded by the chunks must not be larger than
those available on the FPGA (terms Rt).

Constraint 10. ∀j = 1, . . . , N , ∀t ∈ {CLB, BRAM, DSP, FF}
Ct

j ≤ Rt.

5.4 Latency constraints

Thanks to the definition of variables λi,m, the latency lati of
each layer (as given by Equation (3)) can be directly encoded
as a MILP constraint as follows:

Constraint 11. ∀i = 1, . . . , N , ∀m = 1, . . . , 2M + 1

lati ≥
#IOPsi
2m+1

− (1− λi,m) · M,

lati ≤
#IOPsi
2m+1

+ (1− λi,m) · M.

(18)

The above constraint is due to the following reason. First,
by profiling the layers, we found that #IOPsi is always a
power of two, hence Equation (3) can be safely used without
the ceiling operator d e. Second, remember that, given the
ith layer, only one binary variable λi,m is set for a given
m, such that Pi · Si = 2m+1. Hence, when λi,m = 1, the
constraint reduces to Equation (3). Conversely, for all the
other values of m such that λi,m = 0, the constraint reduces
to lati ≥ −∞ and lati ≤ ∞, hence imposing no restrictions.

The total latency of the jth chunk, modeled by variable
Φtot

j , is the sum of the latency of each layer in the chunk,
and can be expressed as Φtot

j =
∑N

i=1 yi,j · lati. Similarly,
the maximum latency among the layers in the jth chunk,
modeled by variable Φmax

j , can be encoded by enforcing the
following condition: ∀i = 1, . . . , N , Φmax

j ≥ yi,j · lati.
Note that both the latter equations are not linear as they

comprise products of optimization variables. Hence, they
must be linearized to be encoded in a MILP formulation.
This can be accomplished as done in Constraint 9.

Thanks to the above results, it is finally possible to
formulate the throughput th of the accelerator.
Constraint 12.

th = B∑N
j=1((B−1)·Φmax

j +Φtot
j )+Treconf·(Γ+

∑N
k=1 xk)

. (19)

This constraint is obtained by rewriting Equation (5) as
a function of the optimization variables and by adding
the additional latency originated by the reconfiguration of
the chunks. Here, Γ is an auxiliary variable that denotes
whether the network is cut at least once (Γ = 1) or not
(Γ = 0), which is defined Γ = maxk{xk} and expressed
in an equivalent form via the following auxiliary constraint:
∀k = 1, . . . N,Γ ≥ xk. Note that

∑N
k=1 xk gives the number

of cuts. Hence, (Γ +
∑N

k=1 xk) gives the number of chunks.
The total reconfiguration time can be computed by simply
accounting a reconfiguration time Treconf for each of such
chunks. The computation of Treconf depends on the amount
of available FPGA resources and is discussed in the next
section.

5.5 Objective function
The objective of the optimization problem is to maximize
the throughput of the accelerator for a given batch size B.
Hence, the objective function of the optimization problem is
maximze {th}, with th being defined as in Constraint 12.

5.6 Extending the MILP formulation
Note that the MILP formulation presented in this section
is not limited to the FINN accelerators only, but can also
be applied to optimize the performance of other DNN
accelerators with regularly stacked convolutional and/or
fully connected layers as mentioned in Section 3.2. The



9

main prerequisite is the availability of the resource and
latency models of the accelerators as the ones derived for
FINN in this paper. With a few additional constraints, the
proposed MILP optimization can also support the opti-
mization of networks with irregular architecture, such as
GoogLeNet [19], Resnet [20] etc., using a coarse-grained
approach for splitting layers into chunks. For example, we
can reduce the architectural irregularity of a GoogLeNet
architecture by forcing the optimizer to always put layers
inside an inception unit of the network into the same chunk,
i.e., by considering an inception unit as indivisible into dif-
ferent chunks. Similarly, we can reduce the irregularity of a
ResNet-like architecture by constraining the optimizer not to
split the residual blocks into different chunks. Despite both
of these approaches increase the granularity of a layer and
therefore reduce the search space, they extend the domain of
DNN accelerator architectures that can be optimized by our
approach and consequently allow the deployment of such
types of networks on FPGAs with constrained resources.

6 EXPERIMENTAL EVALUATION

This section presents a set of experiments that were con-
ducted to assess the effectiveness of the proposed optimiza-
tion technique on a real hardware platform.

The experiments were conducted in two sessions. The
objective of the first session is to show how the pro-
posed approach can improve the throughput of the stock
CNVW1A1 and CNVW2A2 FINN accelerators without
splitting them, i.e., no DPR was used. To this end, we
disabled the MILP constraints related to splitting (which
is equivalent to forcing the number of chunks to 1),
hence generating optimal folding parameters only. From
here on, we will refer to such types of optimal config-
urations of the CNVW1A1 and CNVW2A2 networks as
static OPT CNVW1A1 and static OPT CNVW2A2, respec-
tively. The inference time and overall resource utilization
of both static OPT CNVW1A1 and static OPT CNVW2A2
were compared against their respective stock configura-
tions provided by FINN [15], and against heuristic (man-
ual) optimizations, which are taken as a baseline. The
latter are referred to as static baseline CNVW1A1 and
static baseline CNVW2A2, and work by simply halving the
folding parameters of the CNVW1A1 and CNVW2A2 net-
works (starting from their values in their stock configura-
tion) until it is possible to deploy the accelerators on a given
area.

In the second experimental session, we compared
the timing performance of the static OPT CNVW1A1 and
static OPT CNVW2A2 approaches against the cases in
which the networks are split into chunks, henceforth re-
spectively referred to as dynamic OPT CNVW1A1 and dy-
namic OPT CNVW2A2, under different amounts of FPGA
resources. The objective of the second experimental session
is specially targeted at determining the optimal settings, i.e.,
both the folding parameter configurations and the chunk
splitting, when the networks are to be deployed on FPGAs
with constrained resources.
Experimental setup. The experimental evaluation has been
performed using the PYNQ-Z1 board as the reference plat-
form. The PYNQ board is built around the Zynq-7020 SoC

from Xilinx, which includes a dual-core Cortex-A9 processor
coupled with an Artix-7 family FPGA fabric. The FPGA fab-
ric of the Zynq-7020 comprises RCLB = 53200 CLBs, RBRAM
= 140 BRAMs, RDSP = 220 DSPs, and RFF = 106400 FFs. The
SoC is connected to a shared DRAM memory of size 512MB.
This evaluation uses an implementation of the CNVW1A1
network [15] trained with the CIFAR-10 dataset provided by
FINN. The network has been configured to process a batch
ofB = 256 images on each run. The hardware inference pro-
cess performed by the accelerator is supported by a software
support layer written in Python and C++. The MILP-based
optimization has been implemented using Gurobi v. 7.0.2
via its C++ API. The different MILP optimization strategies
and techniques inside the solver, such as presolve, cutting
planes, heuristics, etc., were set to their default parameters.
Meanwhile, the integer feasibility tolerance of the solver was
set to 1e−9 and the optimization timeout was set to 1800
seconds. The optimizer was executed on a machine with an
8-core Intel i7 CPU @4.5 GHz. In all the experiments, the
accelerators are implemented to run at 100 MHz.

6.1 Results

The notion of FPGA scaling factor is introduced to study the
cases in which only a fraction of the total FPGA resources
are available. We say that the amounts of FPGA resources
are scaled by σ ∈ [0, 1] (also expressed as a percentage in
the following) if the resource availability for each resource
of type t ∈ {CLB, BRAM, DSP, FF} is bσ × Rtc. The FPGA
scaling factor is also correlated to the FPGA area subject
to partial-reconfiguration, hence it can be used to model
the reconfiguration time. As a preliminary experiment, the
reconfiguration time of the FPGA fabric has been profiled
as a function of the FPGA scaling factor σ: the profiling
revealed that the reconfiguration time can be safely modeled
as a linear function Treconf(σ) = 48087 × σ + 951 µs. This
linear model is used in Constraint 12.

First experimental session. The stock accelerators for the
CNVW1A1 and CNVW2A2 networks have a total LUT,
BRAM, and FF utilization that amounted to {37%, 87%,
27%} and {68.1%, 100%, 48.7%} of the total resources avail-
able on the Zynq-7020, respectively, and an inference time
of 85.8 ms and 86.34 ms, respectively, on a batch of 256
images. Note that the stock accelerators are characterized
by an evident asymmetry in resource utilization, as BRAMs
are highly utilized in both accelerators, while other types of
resources are utilized less. This asymmetry, which is caused
by the sub-optimal configuration of the folding parameters
in each layer, limits the throughput of the accelerators.
In particular, we found that FINN accelerators tend to
consume a lot of BRAMs, while underutilizing the other
types of FPGA resources. With our approach, it is possible
(via static OPT CNVW1A1 and static OPT CNVW2A2) to
produce optimal accelerators with maximal throughput that
can be deployed on the same area: this is achieved thanks to
the optimal configuration of the folding parameters, which
enables a more balanced utilization of the resources.

For instance, by scaling the amount of FPGA resources
to the 87% (the maximum of the three per-resource-type
utilizations of the stock configuration of the CNVW1A1
network), the static OPT CNVW1A1 approach produced a



10

configuration with optimal throughput that required the
85.8%, 85.9%, and 81.6% of LUTs, BRAMs, and FFs, respec-
tively. The corresponding inference time of the accelerator is
reduced to 18.60 ms, which corresponds to an improvement
of more than 4x. Similarly, by scaling the amount of FPGA
resources to 100% (the maximum of the three per-resource-
type utilizations of the stock configuration of the CNVW2A2
network) the inference time of the static OPT CNVW2A2
approach was reduced to 48.75 ms, which corresponds to an
improvement of 1.7x. In this case, the static OPT CNVW2A2
utilized 95.6%, 100% and 76.8% of LUTs, BRAMs and FFs,
respectively. The same strategy has been applied for FPGA
scaling factors in {0.3, 0.35, 0.45, . . . , 1.0}: the results are
reported in Figure 5. No data were reported in the case in
which it was not possible to produce a feasible configuration
(i.e., below a scaling factor of 70%).

To also provide a taste of what one can achieve with
an empirical optimization of the folding parameters of
the CNVW1A1 and CNVW2A2 networks, the results of
the static baseline CNVW1A1 and static baseline CNVW2A2
approaches are also reported in Figure 5, by halving five
times all folding parameters of the stock configuration of
each network. As it can be observed from the figure, the
results clearly show the benefits of using an optimization-
based approach for both networks rather than a heuristic
configuration. Figure 6(a) shows the LUT utilizations un-
der different BRAM utilizations for static OPT CNVW1A1
and static baseline CNVW1A1 approaches, while Figure 6(b)
shows the same comparison for static OPT CNVW2A2
and static baseline CNVW2A2 approaches. In both cases,
the optimized networks, i.e., static OPT CNVW1A1 and
static OPT CNVW2A2, have demonstrated a balanced re-
source utilization against their respective unoptimized
counterparts. For instance, in Figure 6(a), for a BRAM uti-
lization (on the x-axis) of 73.5%, the solution produced by
static baseline CNVW1A1 required 30% of the LUTs, while
72.9% of the LUTs are required by the one generated by
static OPT CNVW1A1. Such a difference in resource uti-
lization provides a large difference in inference time: as it
can be seen from Figure 5, the accelerator generated by
static baseline CNVW1A1 requires 4745 ms, while the one
generated by static OPT CNVW1A1 requires just 73.94 ms.
In a similar manner, in Figure 6(b), a 79% BRAM utilization
in static baseline CNVW2A2 results in a 56% LUT utiliza-
tion, whereas the LUT utilization in static OPT CNVW2A2
is 76%. Also in this case, the resource utilization asymmetry
leads to a difference in inference time: from Figure 5, the
accelerator generated by static baseline CNVW2A2 requires
6125 ms, while the one generated by static OPT CNVW2A2
requires 107 ms.

Second experimental session. In this session we performed
two sets of comparisons: in the first set we compared
static OPT CNVW1A1 with dynamic OPT CNVW1A1, while
in the second set, the static OPT CNVW2A2 was compared
with dynamic OPT CNVW2A2 for the same FPGA scaling
factors tested in the first session. The results of these com-
parisons are reported in Figure 5. In the tested cases for
both sets, a static configuration (whenever it is possible) is
preferable to chunk splitting. However, as it can be seen
from the figure, below a scaling factor of 70% for the first set

and 85% for the second set, no static approach was capable
of generating a feasible configuration. This means that it is
not simply possible to statically deploy the networks under
those area constraints. Conversely, dynamic OPT CNVW1A1
is capable of producing feasible accelerators for FPGA scal-
ing factors as low as 30%, while also maintaining a pretty
much stable inference time, whereas the inference time of
accelerators produced using the dynamic OPT CNVW2A2
approach linearly increases by decreasing the FPGA scal-
ing factor. It was no longer feasible to produce acceler-
ators for dynamic OPT CNVW2A2 below an FPGA scal-
ing factor of 45%. Figure 7 also shows the breakdown
of cumulative actual inference and reconfiguration times
(i.e., coping with the contribution of all chunks) under dy-
namic OPT CNVW1A1 and dynamic OPT CNVW2A2. One
should note that, despite more chunks may be needed as
the FPGA area reduces, the reconfiguration time of each
chunk becomes shorter. Also, note that the actual inference
time can be reduced under dynamic OPT CNVW1A1 and
dynamic OPT CNVW2A2 as the largest per-layer latency and
the latency of the slowest layer can become shorter by
splitting the networks (since more computational resources
will be available for the layers when splitting), while this
may not possible under a static allocation (mainly due to
the large granularity with which the folding parameters
can be varied). To clarify this point, consider the case of
FPGA scaling factors 0.6 and 0.7 in Figure 7(a). Note that
the inference time is significantly reduced when the scaling
factor is 0.6 compared to the one when it is 0.7, mainly
due to the fact that the network has been split into two
chunks. Nevertheless, the total execution time is still large
because of the reconfiguration overhead (two chunks must
be reconfigured instead of just one). In all the tested cases,
the time required to solve the MILP formulation was never
larger than 30 seconds.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
101

102

103

104

FPGA scaling factor

in
fe

re
nc

e
ti

m
e

(m
s)

Dynamic OPT CNVW1A1 Dynamic OPT CNVW2A2
Static baseline CNVW1A1 Static OPT CNVW1A1
Static baseline CNVW2A2 Static OPT CNVW2A2

Fig. 5. Comparison of inference times (which imply throughput) as a
function of the maximum percentage of FPGA resources for different
configurations of the accelerators obtained by the three approaches
studied in the paper.

7 RELATED WORK

In recent years, deep learning has become a dominant
approach in many domains, outperforming traditional al-
gorithmic methods in several tasks, such as image clas-
sification, speech recognition, and control. However, due
to the large computational demand of DNNs, hardware



11

0.73 0.78 0.87 0.89 0.97

0.2

0.4

0.6

0.8

1

BRAM utilization

LU
T

ut
ili

za
ti

on

static baseline CNVW1A1 static OPT CNVW1A1

(a)

0.79 0.88 0.92 0.96 1.0

0.2

0.4

0.6

0.8

1

BRAM utilization

LU
T

ut
ili

za
ti

on

static baseline CNVW2A2 static OPT CNVW2A2

(b)

Fig. 6. Comparison of LUT utilizations as a function of BRAM utilization for the configurations generated by (a) static baseline CNVW1A1 and
(b) static baseline CNVW2A2.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

50

100

150

11

1223
4

61.5
60.5 49.9 59.6

48.96
28.85 30 19.34

74.01

18.63 18.21

FPGA scaling factor

in
fe

re
nc

e
ti

m
e

(m
s)

Actual inference Reconfiguration

(a)

0.5 0.6 0.7 0.8 0.9

0

100

200

300

12
3

4
5

124.9

119.2
103.8

78.8149.8
85.9 55.2 28.65

78.2

FPGA scaling factor
in

fe
re

nc
e

ti
m

e
(m

s)

Actual inference Reconfiguration

(b)

Fig. 7. Breakdown of the execution times for the configurations generated by dynamically optimized into cumulative actual inference and
reconfiguration times (a) dynamic OPT CNVW1A1 and (b) dynamic OPT CNVW2A2. The numbers above each bar indicate the number
of chunks the accelerator is split into.

accelerators are often employed to speed up their exe-
cution. In this regard, FPGA-based hardware accelerators
present an attractive solution for embedded systems as they
combine the flexibility of programmable logic and partial
reconfiguration while achieving high energy efficiency with
respect to other forms of hardware accelerations (e.g., GPG-
PUs [21]). Very efficient implementations of accelerators for
DNNs on FPGAs have been proposed by employing fine-
grained optimizations to accelerate computational-intensive
convolutional layers. Most relevant to us, Zhang et al. [22]
leveraged the roofline model for optimizing HLS-based
implementations of DNNs, whereas Ma et al. [23] performed
a fine-grained characterization of loop optimization tech-
niques for implementing convolutional layers. However,
none of them relied on mathematical optimization methods
that guarantee optimality.

Efforts [24], [25], [26] have also been spent on improv-
ing the performance of FPGA accelerators by exploring
throughput vs. memory bandwidth trade-offs. The closer
work to ours is the one by Suda et al. [24], which proposed a
genetic algorithm (GA) based on a design space exploration
methodology for optimizing DNN accelerators with 8- and
16-bit fixed-point precision. Similarly to our work, in [24]
the latencies were analytically modeled, while the resource
consumption of the layers was empirically modeled as a
function of the network parameters. Then, a GA was used
to find the parameters of each layer that minimize the total
latency. Our approach differs from the one used in [24] in
three major ways. First, our work is based on mathematical

optimization that can guarantee the optimality of the results.
Second, our work explores the possibility of deploying
DNNs under resource-constrained FPGA fabrics by chunk-
ing the accelerator pipeline and leveraging DPR. Third,
our approach allows balancing the resource utilization of
DNN accelerators (i.e., it tries to avoid that a single type of
resource causes a bottleneck for deployment), while in [24]
the authors reported the rapid exhaustion of DSP resources
while the other resources were under-utilized.

FPGAs are especially well suited for the acceleration of
quantized neural networks (QNNs) as fixed-point compu-
tations can be efficiently implemented using the primitive
logic available on FPGA fabrics, while the reduction in
precision has a limited impact on accuracy [27], [28]. Even
in the extreme case of BNNs, it is possible to achieve ade-
quate precision at the benefit of a largely reduced resource
utilization [12], [29]. In the context of FPGA-based hardware
acceleration of BNNs, some approaches rely on mapping of
the entire network on the programmable fabric [10], [14],
[30] while others implement FPGA accelerators only for the
most computationally-intensive operations [31]. Several re-
searchers have also proposed different solutions to address
the throughput vs. area trade-off of QNN accelerators under
resource-constrained FPGAs. The most common approaches
leverage partial reconfiguration. For instance, Farhadi et
al. [32] proposed an adaptive and hierarchical structure for
QNNs that takes advantage of partial reconfiguration to
address the limitation of resources on FPGA. Kästner et
al. [33] presented a co-design methodology enabling the ex-



12

ploitation of DPR to accelerate DNNs. However, none of the
proposed approaches formulates the optimal decomposition
of hardware accelerators as an optimization problem as
done in this work. Finally, differently to other design space
explorations proposed by other authors [10], [34], [35], our
work adds a new dimension to the design space exploration:
partial reconfiguration.

8 CONCLUSIONS

This work proposed an optimization-based technique to im-
prove the timing performance of BNNs under constrained
FPGA resources. Accurate modeling of latency and resource
consumption of BNN layers has been employed. Then, a
MILP formulation has been proposed to both compute the
optimal configuration of each layer and decide how to split
the network into chunks that are dynamically programmed
via partial reconfiguration. The major outcome of this work
is that the proposed technique allows deploying a BNN
in cases in which it would not be possible with standard
approaches. For instance, by leveraging partial reconfigura-
tion, it is capable of producing solutions for an FPGA area
as low as 30% of the total one available on a Zynq-7020,
while static approaches are not able to produce solutions
when the available area is less than about the 70% of the
area. As a future work we plan to extend this approach
to other frameworks for deploying neural networks and
integrate it with tools that automate the floorplanning of
the accelerators (e.g., as done in [36]).

REFERENCES

[1] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S.
Nasrin, B. C. Van Esesn, A. A. S. Awwal, and V. K. Asari, “The his-
tory began from alexnet: A comprehensive survey on deep learn-
ing approaches,” [online] Available: https://arxiv.org/abs/1803.01164,
2018.

[2] B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil,
M. Andriluka, P. Rajpurkar, T. Migimatsu, R. Cheng-Yue et al.,
“An empirical evaluation of deep learning on highway driving,”
[online] Availble: https://arxiv.org/abs/1504.01716, 2015.

[3] H. Gao, B. Cheng, J. Wang, K. Li, J. Zhao, and D. Li, “Object classi-
fication using cnn-based fusion of vision and lidar in autonomous
vehicle environment,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 9, pp. 4224–4231, 2018.

[4] T. Wang, Y. Chen, M. Qiao, and H. Snoussi, “A fast and robust
convolutional neural network-based defect detection model in
product quality control,” The International Journal of Advanced
Manufacturing Technology, vol. 94, no. 9-12, pp. 3465–3471, 2018.

[5] K. Židek, A. Hosovsky, J. Pitel’, and S. Bednár, “Recognition of
assembly parts by convolutional neural networks,” in Advances in
Manufacturing Engineering and Materials. Springer, 2019, pp. 281–
289.

[6] J. Redmon and A. Angelova, “Real-time grasp detection using con-
volutional neural networks,” in 2015 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2015, pp. 1316–1322.

[7] J. Watson, J. Hughes, and F. Iida, “Real-world, real-time robotic
grasping with convolutional neural networks,” in Annual Confer-
ence Towards Autonomous Robotic Systems. Springer, 2017, pp. 617–
626.

[8] M. Tsukada, M. Kondo, and H. Matsutani, “A neural network-
based on-device learning anomaly detector for edge devices,”
IEEE Transactions on Computers, pp. 1–1, 2020.

[9] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “[dl] a survey of
fpga-based neural network inference accelerators,” ACM Trans.
Reconfigurable Technol. Syst., vol. 12, no. 1, pp. 2:1–2:26, Mar. 2019.
[Online]. Available: http://doi.acm.org/10.1145/3289185

[10] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong,
M. Jahre, and K. Vissers, “Finn: A framework for fast, scalable
binarized neural network inference,” in Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, ser. FPGA ’17. ACM, 2017, pp. 65–74.

[11] Y. Guo, “A survey on methods and theories of quantized neural
networks,” CoRR, vol. abs/1808.04752, 2018. [Online]. Available:
http://arxiv.org/abs/1808.04752

[12] M. Courbariaux and Y. Bengio, “Binarynet: Training deep
neural networks with weights and activations constrained to
+1 or -1,” CoRR, vol. abs/1602.02830, 2016. [Online]. Available:
http://arxiv.org/abs/1602.02830

[13] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-
net: Imagenet classification using binary convolutional neural
networks,” in European conference on computer vision. Springer,
2016, pp. 525–542.

[14] P. Guo, H. Ma, R. Chen, P. Li, S. Xie, and D. Wang, “Fbna: A fully
binarized neural network accelerator,” in 2018 28th International
Conference on Field Programmable Logic and Applications (FPL), Aug
2018, pp. 51–513.

[15] B.-P. project, “,” https://github.com/Xilinx/BNN-PYNQ, 2020,
[Online; accessed 11-January-2020].

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Advances in
neural information processing systems, 2012, pp. 1097–1105.

[17] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[18] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep
convolutional encoder-decoder architecture for image segmenta-
tion,” IEEE transactions on pattern analysis and machine intelligence,
vol. 39, no. 12, pp. 2481–2495, 2017.

[19] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 1–9.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[21] E. Nurvitadhi, J. Sim, D. Sheffield, A. Mishra, S. Krishnan, and
D. Marr, “Accelerating recurrent neural networks in analytics
servers: Comparison of fpga, cpu, gpu, and asic,” in 2016 26th
International Conference on Field Programmable Logic and Applications
(FPL). IEEE, 2016, pp. 1–4.

[22] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimiz-
ing fpga-based accelerator design for deep convolutional neural
networks,” in Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2015, pp. 161–170.

[23] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing loop opera-
tion and dataflow in fpga acceleration of deep convolutional neu-
ral networks,” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2017, pp. 45–54.

[24] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula,
J.-s. Seo, and Y. Cao, “Throughput-optimized opencl-based fpga
accelerator for large-scale convolutional neural networks,” in Pro-
ceedings of the 2016 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2016, pp. 16–25.

[25] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, S. Song et al., “Going deeper with embedded fpga plat-
form for convolutional neural network,” in Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2016, pp. 26–35.

[26] J. Zhang and J. Li, “Improving the performance of opencl-based
fpga accelerator for convolutional neural network,” in Proceed-
ings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2017, pp. 25–34.

[27] W. Sung, S. Shin, and K. Hwang, “Resiliency of deep
neural networks under quantization,” [online] Available:
https://arxiv.org/abs/1511.06488, 2015.

[28] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network
quantization: Towards lossless cnns with low-precision weights,”
[online] Available: https://arxiv.org/abs/1702.03044, 2017.

[29] M. Kim and P. Smaragdis, “Bitwise neural networks,” [online]
Available: https://arxiv.org/abs/1601.06071, 2016.

[30] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava,
R. Gupta, and Z. Zhang, “Accelerating binarized convolutional



13

neural networks with software-programmable fpgas,” in Proceed-
ings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2017, pp. 15–24.

[31] D. J. M. Moss, E. Nurvitadhi, J. Sim, A. Mishra, D. Marr, S. Sub-
haschandra, and P. H. W. Leong, “High performance binary neural
networks on the xeon+fpga platform,” in 2017 27th International
Conference on Field Programmable Logic and Applications (FPL), Sep.
2017, pp. 1–4.

[32] M. Farhadi, M. Ghasemi, and Y. Yang, “A novel design of adap-
tive and hierarchical convolutional neural networks using partial
reconfiguration on fpga,” in 2019 IEEE High Performance Extreme
Computing Conference (HPEC). IEEE, 2019, pp. 1–7.

[33] F. Kästner, B. Janßen, F. Kautz, M. Hübner, and G. Corradi,
“Hardware/software codesign for convolutional neural networks
exploiting dynamic partial reconfiguration on pynq,” in 2018 IEEE
International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW). IEEE, 2018, pp. 154–161.

[34] S. I. Venieris and C.-S. Bouganis, “fpgaconvnet: Automated
mapping of convolutional neural networks on fpgas (abstract
only),” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’17.
New York, NY, USA: ACM, 2017, pp. 291–292. [Online]. Available:
http://doi.acm.org/10.1145/3020078.3021791

[35] M. Motamedi, P. Gysel, V. Akella, and S. Ghiasi, “Design space
exploration of fpga-based deep convolutional neural networks,”
in 2016 21st Asia and South Pacific Design Automation Conference
(ASP-DAC). IEEE, 2016, pp. 575–580.

[36] B. B. Seyoum, A. Biondi, and G. C. Buttazzo, “Flora: Floorplan
optimizer for reconfigurable areas in fpgas,” ACM Trans. Embed.
Comput. Syst., vol. 18, no. 5s, Oct. 2019. [Online]. Available:
https://doi.org/10.1145/3358202

Biruk Seyoum Biruk Seyoum is a Ph.D candi-
date at the Real-Time Systems (ReTiS) Labo-
ratory of Scuola Superiore Sant’Anna. He grad-
uated in Electrical and Computer Engineering
from Addis Ababa Institute of Technology and
received M.S degree in Telecommunication and
Electronics from the University of Trento in Italy.
His research interests include building design
tools and applications for Dynamic Partially Re-
configurable platforms, FPGA-based Deep Neu-
ral Networks acceleration, tools and frameworks

for DNN auto-implementation on FPGAs.

Marco Pagani Marco Pagani is a Ph.D. can-
didate at the Real-Time Systems (ReTiS) Lab-
oratory of the Scuola Superiore Sant’Anna of
Pisa and at the Embedded Real-Time Adapta-
tive System Design and Execution (meraude)
team from the Centre de Recherche en Informa-
tique, Signal et Automatique (CRIStAL) based
in Lille. He received his M.Sc. degree in Em-
bedded Computing Systems cum Laude in 2016
jointly from Scuola Superiore Sant’Anna and the
University of Pisa. His research interests include

predictable hardware acceleration for real-time applications on hetero-
geneous computing platforms and real-time operating systems for em-
bedded platforms.

Alessandro Biondi Alessandro Biondi is As-
sistant Professor at the Real-Time Systems
(ReTiS) Laboratory of the Scuola Superiore
Sant’Anna. He graduated (cum laude) in Com-
puter Engineering at the University of Pisa, Italy,
within the excellence program, and received a
Ph.D. in computer engineering at the Scuola
Superiore Sant’Anna under the supervision of
Prof. Giorgio Buttazzo and Prof. Marco Di Na-
tale. In 2016, he has been visiting scholar at
the Max Planck Institute for Software Systems

(Germany). His research interests include design and implementation
of real-time operating systems and hypervisors, schedulability analy-
sis, cyber-physical systems, synchronization protocols, and component-
based design for real-time multiprocessor systems. He was recipient
of six Best Paper Awards, one Outstanding Paper Award, the ACM
SIGBED Early Career Award 2019, and the EDAA Dissertation Award
2017.

Sara Balleri Sara Balleri received the gradu-
ate degree in Computing Engineering at the
University of Pisa, and received the master’s
degree (cum laude) in Embedded Computing
Systems jointly offered by the Scuola Superi-
ore Sant’Anna and University of Pisa. Now, she
works in a company that operates in informa-
tion technology and provides IT solutions in the
sectors of embedded and real-time software,
software design and development for civil and
military radar system, and industrial automation.

Giorgio Buttazzo Giorgio Buttazzo is full profes-
sor of computer engineering at the Scuola Supe-
riore Sant’Anna of Pisa. He graduated in Elec-
tronic Engineering at the University of Pisa in
1985, received a M.S. degree in Computer Sci-
ence at the University of Pennsylvania in 1987,
and a Ph.D. in Computer Engineering at the
Scuola Superiore Sant’Anna of Pisa in 1991. He
is Editor-in-Chief of Real-Time Systems, Asso-
ciate Editor of the ACM Transactions on Cyber-
Physical Systems, and IEEE Fellow since 2012.

He has authored 7 books on real-time systems and over 200 papers in
the field of real-time systems, robotics, and neural networks.


