
1

Task Splitting and Load Balancing of Dynamic
Real-Time Workloads for Semi-Partitioned EDF

Daniel Casini Member, IEEE , Alessandro Biondi Member, IEEE , Giorgio Buttazzo, Fellow, IEEE

Abstract—Many real-time software systems, such as those commonly found in the context of multimedia, cloud computing, robotics, and
real-time databases, are characterized by a dynamic workload, where applications can join and leave the system at runtime. Global
schedulers can transparently support dynamic workload without requiring any off-line task-allocation phase, thus providing advantages to
the system designer. Nevertheless, such schedulers exhibit poor worst-case performance when compared to semi-partitioned schedulers,
which instead can achieve near-optimal schedulability performance when used in conjunction with smart task splitting and partitioning
techniques, and they are also lighter in terms of run-time overhead. This paper proposes an approach to efficiently schedule dynamic
real-time workloads on multiprocessor systems by means of semi-partitioned scheduling. A linear-time approximation scheme for the
C=D splitting algorithm under partitioned EDF scheduling is proposed. Then, a load-balancing algorithm is presented to admit new
real-time workloads with a limited number of re-allocations. The paper finally reports on a large-scale experimental study showing that (i)
the linear-time approximation is characterized by a very limited utilization loss compared with the corresponding exact approach (that has
a much higher complexity), and that (ii) the whole approach allows achieving considerable improvements with respect to global and
partitioned EDF scheduling.

Index Terms—Real-time systems, dynamic workloads, semi-partitioned scheduling, schedulability analysis, load balancing, partitioning.

F

1 INTRODUCTION

Several time-sensitive applications include computational
activities (tasks) that may join and leave the system at
runtime, for instance, to respond to specific events in their
operating environment. This is common in multimedia
software systems [1] (including those widely available in
smartphones and tablets), cloud computing [2], real-time
databases, robotics systems, and open environments, in
which some components may change while the rest of the
system continue to operate. To name a concrete example, the
applications developed for the Robotic Operating System
(ROS) [3], a popular middleware layer for the rapid prototyp-
ing, development, and deployment of robots, are software
systems in which the workload can be dynamic. Indeed, ROS
allows reacting to the occurrence of specific environmental
conditions (e.g., the sudden occurrence of an obstacle in
front of the robot) by creating or killing computational nodes,
while the other nodes remain operational [4].

Furthermore, the most popular real-time operating
systems, e.g., VxWorks, QNX and Linux (with the
SCHED_DEADLINE scheduling class), provide specific system
calls (e.g., taskSpawn() in VxWorks) to create and activate
tasks at runtime. Most commonly, these systems implement
global scheduling policies such as global fixed-priority (G-
FP) and global earliest-deadline first (G-EDF), which have the
benefit of providing automatic and application-transparent
load balancing across the available processors. This benefit
likely determined the popularity of such schedulers; however,
they have been demonstrated to be not optimal and to exhibit

• D. Casini, A. Biondi, and G. Buttazzo are with the TeCIP Institute
and the Department of Excellence in Robotics & AI of the Scuola
Superiore SantAnna, Pisa, Italy. E-mail: {daniel.casini, alessandro.biondi,
giorgio.buttazzo}@santannapisa.it

poor worst-case performance due to several issues that have
been identified in the literature [5]. Optimal multiprocessor
scheduling algorithms, such as RUN [6], U-EDF [7], QPS [8],
and LLREF [9], have been proposed, but they are generally
more complex (and hence more difficult to implement)
and more expensive in terms of run-time overhead when
compared to G-FP and G-EDF.

Partitioned and semi-partitioned scheduling represent effec-
tive alternatives to global schedulers. Partitioned scheduling
relies on a static task-to-processor mapping, which for static
workloads is typically determined with an off-line design
phase. Notably, Sun and Di Natale [10] and Biondi and
Sun [11] proved that the most popular analysis techniques
for global schedulers such as G-FP and G-EDF can deem
schedulable only task sets that are also schedulable under
partitioned scheduling, hence recommending the use of the
latter. However, in the presence of dynamic workloads, parti-
tioned scheduling requires facing with on-line task allocation
issues that may not be easy to solve if a “good” schedulability
performance is desired. Furthermore, partitioned scheduling
tend to lead to poor schedulability performance in the
presence of high-utilization tasks.

Semi-partitioned scheduling builds upon partitioned
scheduling by allowing some of the tasks to be split among
multiple processors, i.e., being subject to a controlled (and
limited) migration at specific time instants during their execu-
tion. In this way, the performance of partitioned scheduling
is improved by distributing the load generated by some
tasks across multiple processors. As in the case of partitioned
scheduling, semi-partitioned scheduling algorithms typically
come with an off-line task allocation strategy, and are hence
not suitable to be used on-line with the purpose of supporting
dynamic workloads. Nevertheless, Brandenburg and Gül [12]
showed how semi-partitioned EDF scheduling via the C=D

2

splitting algorithm [13], when used in conjunction with smart
task partitioning techniques, can guarantee near-optimal
performance, while being a much simpler and lighter (in
terms of run-time overhead) approach with respect to global
schedulers. As most of the papers targeting multiprocessor
real-time scheduling, their work focused on static task sets
only. However, the relevance of such a result suggests that
also dynamic workloads may benefit of semi-partitioned
scheduling.

Nonetheless, supporting C=D semi-partitioning schedul-
ing of dynamic workloads gives rise to some non-trivial
challenges. Specifically, the C=D splitting algorithm has
a high computational complexity, which would lead to
high overheads if executed on-line, thus resulting being
not suitable for dynamic workloads. Furthermore, load-
balancing algorithms are needed to support the dynamic
allocation and splitting of incoming workloads.

Contribution. This paper makes the following three contribu-
tions. First, it proposes a linear-time approximate algorithm
for efficiently splitting workload under C=D semi-partitioned
scheduling, which enables making practically viable online
scheduling decisions. Second, it presents load-balancing
algorithms to admit new workload while performing limited
re-allocations to facilitate the admission of future workloads.
Third, it reports on two large-scale experimental studies
that have been conducted to assess the performance of the
proposed methods.
Paper structure. The rest of the paper is organized as
follows. Section 2 introduces the system model, reviews
the essential background, and presents the adopted notation.
Section 3 proposes a linear-time algorithm for performing
the C=D splitting. Section 4 presents a set of load-balancing
algorithms for admitting new workload and performing
limited workload re-allocations. Section 5 reports on the
experimental results. Section 6 discusses the related work.
Finally, Section 7 concludes the paper and illustrates some
future work.

This paper extends a preliminary conference version
of this work [14] by: (i) proposing a new mathematical
formulation of the linear-time method for C=D splitting,
which extends the previous one adopted in [14] allowing
to split constrained-deadline reservations instead of con-
sidering implicit deadlines only as in [14], (ii) simplifying
and clarifying the load balancing strategies, (Section 4), (iii)
discussing how to handle scheduling transients under semi-
partitioned scheduling (Section 4.4), and (iv) reporting new
experimental results to explore the empirical performance of
the new contributions of this paper.

2 SYSTEM MODEL AND BACKGROUND

This work addresses the problem of scheduling a dynamic
workload composed of reservation servers upon m identical
processors. A reservation ri is characterized by a tuple (Ci,
Di, Ti), where Ci is the execution time budget, Ti is the
minimum inter-replenishment time of the budget, and Di is

the relative constrained deadline1 Di ≤ Ti. Reservations may
dynamically require to join and leave the system. Upon each
join request, a schedulability-based acceptance test (detailed
later) is performed to determine whether the reservation
can be accepted. Reservations that do not pass the test are
rejected (i.e., ignored). At any point in time, R denotes
the set of currently admitted reservations. Reservations
are considered to be independent (i.e., they do not share
resources other than the processors). Each reservation can
be used for manifold purposes, including (i) serving the
execution of a single periodic/sporadic real-time task; (ii)
implementing a hierarchical scheduling framework [16], i.e.,
managing a local scheduler upon the reservation that in
turn manages a set of real-time tasks; and (iii) serving the
execution of non-real-time (i.e., best-effort) workload.

Each reservation server ri ∈ R releases a potentially-
infinite number of instances. During each instance, the server
executes for at most Ci time units and then is descheduled.
An instance of the server starts when the budget is refilled
and ri has pending workload to execute. An instance
terminates either (i) when the budget is exhausted or (ii)
the server does not have anymore pending workload to
execute. Note that the release times of the instances follow a
sporadic pattern.

The results presented in this work are not limited to
a specific reservation algorithm, but the server behavior
has to comply with the runtime requirements discussed in
Section 2.1.

A reservation ri is said to be schedulable if it can execute
its entire budget Ci before its relative deadline for any
instance of ri. The acceptance test must guarantee that all
the reservations in R are always schedulable. In this work,
the acceptance test adopts an on-line load balancing algorithm
that allocates the reservations to the processors, which is
later presented in Section 4.

The adoption of reservation servers allows guarantee-
ing temporal isolation of the workload, thus providing a
protection mechanism against tasks’ overruns or processor-
eager, best-effort computational activities. This feature is
particularly suited for systems running dynamic workloads,
for which—conversely to static, safety-critical real-time
systems—accurate estimates of the tasks’ worst-case execution
time (WCET) are often not available. Such a computational
model is also of practical relevance, as it is analogous to the
one supported by the SCHED_DEADLINE scheduling class of
Linux, today available in the main distribution of the kernel
and hence present in billions of machines and devices around
the world.

In this paper, reservations are assumed to be managed
under semi-partitioned EDF scheduling with the C=D splitting
scheme [12], [13], which is briefly reviewed in the next
section.

1. Although most of the algorithms for implementing reservation
servers consider an implicit deadline, the interest toward deadline-
constrained reservations recently arose in the context of ongoing devel-
opments of the SCHED_DEADLINE scheduling class of the Linux kernel
(see https://lkml.org/lkml/2017/2/10/611), also finding responses
from the scientific community [15].

3

2.1 C=D Semi-partitioned Scheduling of Reservations

Semi-partitioned scheduling improves the schedulability
performance of partitioned scheduling when valid static
reservation-to-processor allocations cannot be found or sim-
ply do not exist. This is done by allowing some reservations
to be split across multiple processors, thus involving the
migration of the workload executing in such reservations.
More specifically, the budget of semi-partitioned reservations
is divided into multiple portions (i.e., time chunks) that are
executed on different processors with precedence constraints.

The C=D scheme proposed by Burns et al. [13] has been
found to be a particularly effective method to split the
budget. According to this approach, the budget is split into
n ≥ 2 chunks, each to be executed on a different processor.
That is, each instance of a reservation with split budget
starts executing the first chunk of budget on a processor,
then migrates to another processor to executed the second
chunk of budget, and so on until the budget is finished.
When executing the first n − 1 chunks, the reservation is
scheduled with C=D, i.e., with a relative deadline equal to
the corresponding duration of the portion. In this way, such
chunks have always zero laxity. Conversely, when executing
the last chunk of budget, the reservation is scheduled with
a deadline greater than or equal to the duration of the
chunk (D ≥ C). Brandenburg and Gül [12] proposed an
extension of the original Burns et al.’s approach where the
deadline assignment is reversed. This approach allows taking
advantage of slack reclamation, which in turn provides the
benefit of reducing the number of migrations in the average
case. The latter scheme is the one considered in this paper as
the run-time scheduling mechanism.
Run-time scheduling mechanism. As soon as a server is
admitted, its budget is immediately replenished to maximum
value Ci. If an instance of a server ri starts at a time t, the
next budget replenishment is set at time t+Ti. Each instance
of ri beginning at time t is scheduled with absolute deadline
t + Di. The servers execute without self-suspensions: i.e.,
the budget is discharged if the server has pending workload
that is not ready to execute and is depleted when the server
stops having pending workload. For each processor P , at
each point in time the reservation allocated to P that has (i)
a pending instance and (ii) the earliest absolute deadline is
selected for being executed.

Under semi-partitioned scheduling, some reservations
servers never migrates across processors, i.e., they are
statically partitioned. Such reservations are referred to as
partitioned reservations, while the others are referred to as
semi-partitioned reservations.

Given a semi-partitioned reservation ri whose budget Ci
is split into two portions, say Ct and Ch such that Ci = Ct +
Ch, the first portion of budget is scheduled on a processor
P ′ with relative deadline Dh = Di −Ct and minimum inter-
replenishment time Ti, while the second one is scheduled on
a different processor P ′′ 6= P ′ with relative deadlineDt = Ct
and minimum inter-replenishment time Ti. This split gives
rise to two sub-reservations, denoted as head reservation and
tail reservation, respectively.

At run-time, the execution of the workload executing
upon a semi-partitioned reservation ri is subject to the
following rules. Consider an instance of ri released at time t

and suppose that the server has always pending workload
to execute. The first Ch units of budget of ri are served by its
head reservation, i.e., on processor P ′. Then, every time the
budget Ch is exhausted, the workload executing upon ri is
migrated to processor P ′′, where it will be served by the tail
reservation of ri. If the head reservation is schedulable within
its relative deadline Dh, this event is guaranteed to happen
at a time t′ ≤ t+Dh. The head reservation is de-scheduled
and its budget will be replenished at time t+ Ti.

If the tail reservation is schedulable within its relative
deadline Dt = Ct, the C=D approach [12] ensures that Ct
units of time are served before time t + Di, thus guaran-
teeing the schedulability of ri. Once the budget of the tail
reservation is exhausted, also this server is de-scheduled
and its budget will be replenished at time t′′ + Ti, where
t′′ is the starting time of its last instance. The pending
workload upon ri will then be able to restart the execution
from processor P ′ (thus involving another migration) at
time t + Ti. Note that, although the two sub-reservations
have the same minimum inter-replenishment time, their
replenishment times are generally not synchronized.

The approach generalizes to the case in which the budget
is divided in more than two parts by splitting a reservation
into one head reservation and multiple tail reservations.
Example. Consider a reservation ri with Ci = 10 and
Ti = Di = 20 that is split into: (i) one head reservation
configured with Ch = 5 andDh = 15; (ii) one tail reservation
configured with Ct = 5, Dt = 5. A possible schedule of such
sub-reservations is illustrated in Figure 1, together with the
evolution of their budgets over time (indicated by functions
chead(t) and ctail(t), respectively).

head

t5 15 20 25 30 35 45 50 55

tail

t5 10 15 20 25 30 35 40 45 50 55 60

t

chead(t)

5 10 15 20 25 30 35 40 45 50 55 60
0

1

2

3

4

5

t

ctail(t)

5 10 15 20 25 30 35 40 45 50 55 60
0

1

2

3

4

5

preemption

server execution

ri

Figure 1: H-CBS Reservations : Schedule Example

1

Fig. 1. Example of semi-partitioned scheduling of a reservation ri (Ci =
10, Di = Ti = 20) under C=D splitting. The budget of ri is split into two
budget chunk of 5 time units each, to be executed on two processors.
Up-arrows denote the beginning of an instance of the servers. Down-
arrows denote the absolute deadlines of each instance. Dotted arrows
denote the migration of the workload executing upon ri across the two
processors.

It is worth observing that the C=D approach implicitly
poses the limitation that no more than one tail reservation can
be allocated on each processor.
How to split and allocate the reservations? The two main
issues with semi-partitioned scheduling consists in (i) de-
ciding how to size the budget portions of semi-partitioned
reservations, i.e., selecting a splitting algorithm, and, (ii)
determining how to allocate reservation, e.g., by means
of bin-packing heuristics (such as variants of first-fit and
worst-fit). Previous work assumed a static workload and

4

leveraged an off-line design phase to solve this problem.
The next section briefly reviews the C=D splitting algorithm
proposed by Burns et al. [13], which has also been adopted
by Brandenburg and Gül in [12].

2.2 Burns et al.’s C=D Splitting Algorithm

Whenever a reservation ri cannot be statically allocated to
a single processor, Burns et al. [13] proposed to accomplish
the splitting with the following two-phase approach:
(i) Given a processor Pk, an algorithm is used to compute the
maximum Ct < Ci for which a tail reservation with budget
Ct, deadline Dt = Ct, and minimum inter-replenishment
time Ti can be allocated to Pk such that all the reservations
running on Pk are schedulable.
(ii) The remaining portion of budget Ch = Ci − Ct is then
allocated to another processor Px 6= Pk following a bin-
packing heuristic (or is in turn selected for being split).

The core of their proposal consists in the algorithm
adopted in phase (i). Such an algorithm starts from the value
of C ′′i for which the selected processor Pk is fully utilized
(i.e., such that

∑
ri∈Rk Ci/Ti = 1) after allocating the tail

reservation; then, it allocates the tail reservation to Pk and
applies the following steps:

1) Perform the Quick convergence Processor-demand Anal-
ysis (QPA) [17] to determine whether the set of reserva-
tions allocated to Pk is schedulable.

2) If not, recompute a reduced value of Ct by means of a
fixed-point iteration based on the failure point of the QPA
(please refer to [13] for further details). Then, re-iterate
the procedure from step 1 until the QPA does not fail.

3) If, at any iteration, the computed value of Ct reduces
to 0, then the tail reservation cannot be allocated to
processor Pk.

This algorithm is optimal, in the sense that it finds the
maximum value of Ct for which a tail reservation can
be safely allocated to processor Pk. However, it suffers
from a high computational complexity. The QPA has a
pseudo-polynomial time complexity when the utilization
of the analyzed processor is strictly lower than one, while
has exponential complexity in the case of a fully-utilized
processor. Note that the latter case corresponds to the starting
condition of the algorithm and that the QPA is applied
multiple times. In addition, it requires the execution of fixed-
point iterations that further increase the algorithm complexity.
To the best of our knowledge, the actual complexity of
this algorithm is unknown: anyway, it is clearly unsuitable
for performing on-line decisions concerning the splitting of
the reservations, especially if multiple alternatives for the
splitting must be evaluated by a load balancing algorithm—
which is the primary objective of this work.

2.3 Notation and Table of Symbols

The m processors are referred to as P1, P2, . . . , Pm. The set of
nk reservations allocated to processor Pk (both statically or
resulting from a split) is denoted by Rk, with

⋂m
k=1Rk = ∅.

The utilization of a reservation ri is denoted as Ui = Ci/Ti.
Two functions tail(Pk) = {true, false} and head(Pk) =
{true, false} are used to indicate whether a tail and a head
reservation is allocated to Pk, respectively. If tail(Pk) = true,

then rt,k denotes the (only) tail reservation allocated to Pk.
Similarly, if head(Pk) = true, then rh,k denotes the head
reservation allocated to Pk with the largest utilization. For the
sake of simplicity, the subscript k is omitted when referring
to an arbitrary processor or it is clear from the context.

The set of nPk partitioned reservations allocated to Pk is
denoted as RPk ⊆ Rk. Given a tail reservation rt,k (resp.,
head reservation rh,k), the father reservation that has been
split is denoted as F(rk,t) (resp., F(rk,h)). Finally, P(ri)
denotes the processor to which reservation ri is allocated
to. The main notation adopted throughout the paper is
summarized in Table 1.

TABLE 1
Main notation adopted throughout the paper.

Symbol Description
R set of reservations admitted into the system
Pk k-th processor
Rk set of reservations allocated to processor Pk
RPk set of partitioned reservations allocated to processor Pk
nk number of reservations allocated to processor Pk
nPk number of partitioned reservations allocated to processor Pk

ri ith reservation
Ci budget of ri
Ti minimum inter-replenishment time of ri
Di relative deadline of ri
Ui utilization of ri

rh,k head reservation allocated to Pk
rt,k tail reservation allocated to Pk
F(ri) father reservation of a tail or head reservation ri
P(ri) processor in which ri is allocated

3 AN APPROXIMATE ALGORITHM FOR C=D SPLIT-
TING

This section proposes a new algorithm for computing a lower-
bound to the maximum zero-laxity (C=D) portion of budget
that can be allocated to a processor, thus allowing to compute
an approximate solution to the C=D splitting discussed in
Section 2.2. The algorithm has been designed to have a linear
time complexity in order to be efficiently applied for on-line
load balancing.

First, an approximate sensitivity analysis is presented
in Section 3.1. Then, Section 3.2 shows how the sensitivity
analysis can be leveraged to design an algorithm that splits
the budget of a reservation. Finally, Section 3.3 discusses
some implementation issues and the algorithm complexity.

3.1 Approximate Sensitivity Analysis

The method proposed in this paper is based on the processor-
demand criterion (PDC) proposed by Baruah et al. [18]. The
PDC analysis is based on the notion of demand bound
function and provides an exact schedulability test for a set
of constrained-deadline sporadic tasks executing upon a
single processor under EDF scheduling. Since the reservation
servers considered in this work behave as sporadic tasks [12],
the schedulability of the reservations allocated to a given
processor Pk can be verified by checking the PDC as

5

t

dbf i(t)

0 Di Ti +Di

Ci

2Ci

(a)

t

dbf i(t)

0 Di Ti +DiTi

Ci

2Ci

(b)

σ Q Q+ σ 2Q 2Q+ σ

t

dbf i(t)

•
•

(d)

0 Ti 2Ti

Ci

2Ci

3Ci

σ Q Q+ σ 2Q 2Q+ σ

t

dbf i(t)

•
•

(d)

0 Ti 2Ti

Ci

2Ci

3Ci

1

t

dbf i(t)

0 Di Ti +Di

Ci

2Ci

(a)

t

dbf i(t, C
LB
t)

0 Di Ti +DiTi

Ci

2Ci

(b)

σ Q Q+ σ 2Q 2Q+ σ

t

dbf i(t)

•
•

(d)

0 Ti 2Ti

Ci

2Ci

3Ci

σ Q Q+ σ 2Q 2Q+ σ

t

dbf i(t)

•
•

(d)

0 Ti 2Ti

Ci

2Ci

3Ci

1

Fig. 2. Illustrations of the demand bound functions introduced in Section 3
(solid lines) with νi = 1. The dashed lines in inset (a) depict the functions
dbfi(t), while the dashed line in inset (b) depicts function dbf i(t). Inset
(b) considers function dbfi(t, CLBt) with CLBt = 0.

∀t ≥ 0,
∑
ri∈Rk dbfi(t) ≤ t, where dbfi(t) is the demand

bound function of ri and is defined as

dbfi(t) =

⌊
t+ Ti −Di

Ti

⌋
Ci. (1)

To design the approximate splitting algorithm, the de-
mand bound function of each reservation is first approx-
imated by an upper bound. Following the results in [19],
the demand bound function of any reservation ri ∈ Rk is
upper-bounded by

dbf i(t) =

{
dbfi(t) if t < νiTi +Di

Ci + Ui(t−Di) otherwise.
(2)

where the parameter νi ≥ 0 denotes the number of steps of
the original demand bound function that are retained in the
approximation. Such a function is illustrated in Figure 2(a).
Leveraging this bound, it is possible to formulate a sufficient
PDC-based condition to verify the schedulability of the
reservations allocated to a processor, which is provided by
the following theorem.
Theorem 1 (From [19]). A set of reservations Rk is EDF-

schedulable on a single processor if
∑
ri∈Rk Ui ≤ 1 and

∀t ∈
⋃

ri∈Rk

ξ(ri),
∑
ri∈Rk

dbfi(t) ≤ t (3)

where
ξ(ri) = {sTi +Di}, s = 0, . . . , νi (4)

With the above theorem in place, it is possible to formu-
late the following optimization problem.
Problem definition. Consider a set of reservations Rk
allocated to a processor Pk that does not already include
a tail reservation. By Theorem 1, a safe budget Ct for a tail
reservation rt with minimum inter-replenishment time Tt,
such that rt can be safely allocated to Pk, can be computed
by solving the following optimization problem:

maximize Ct

subject to
∑
ri∈Rk

Ci
Ti

+
Ct

Tt
≤ 1∑

ri∈Rk

dbf i(t) + dbf t(t) ≤ t,

∀t ∈
⋃

ri∈{Rk∪rt}

ξ(ri)

This optimization problem can be manipulated to obtain
a sub-optimal solution in a closed form. Given a lower-
bound CLB

t ≥ 0 to the zero-laxity budget of rt, the problem

is rewritten by means of J + 1 constraints of the form Ct ≤
Vj(Rk, Tt, CLB

t) (with j = 0, . . . , J), whose left-hand side
terms are independent of Ct, so that the solution can be easily
computed as Ct = minj=0,...,J {Vj(Rk, Tt, C

LB
t)}. In other

words, given the parameters of the reservations in set Rk
and the minimum inter-replenishment time Tt of the tail
reservation, the expressions Vj(Rk, Tt, CLB

t) must be constant
terms.

First of all, note that the constraint
∑
ri∈Rk

Ci
Ti

+ Ct
Tt
≤ 1

(corresponding to a very simple necessary condition for
feasibility) originates a trivial upper bound on the value of
Ct, that is

Ct ≤ CMAX
t =

1−
∑
ri∈Rk

Ui

Tt. (5)

Leveraging the bound CMAX
t , the terms Vj(R, Tt, CLB

t)
can be derived by considering the constraints originated by
the PDC check-points in the set

⋃
ri∈{Rk∪rt} ξ(ri). First, note

that functions dbf i(t) are piece-wise defined in intervals that
depend on the check-point t. Also, by looking at Equation 4,
observe that the check-points of the tail reservation depend
on the optimization variable Ct = Dt.

Therefore, when considering any of the check-points
t of the tail reservations (i.e., those in the set ξ(rt)), the
value of functions dbf i(t) for the other reservations cannot
be expressed in a closed form as their value depend on
Ct, which is unknown. This issue introduces a sort of
circular dependency in the equations that is solved via
approximations by the following lemma.

Lemma 1. If the conditions
Ct ≤ minri∈Rk{Di} − ε (a)∑
ri∈Rk dbfi(jTt + CMAX

t) + (j + 1)Ct ≤ jTt +Dt,

for j = 1, . . . , νi (b)
(6)

hold (with ε > 0 arbitrary small), then

∀t ∈ ξ(rt),
∑
ri∈Rk

dbf i(t) + dbf t(t) ≤ t. (7)

Proof: Each of the conditions above corresponds to one
element of the set ξ(rt). Condition (a) verifies the constraint∑
ri∈Rk dbf i(Dt) + dbf t(Dt) ≤ Dt. If the tail reservation

(configured with Ct = Dt) does not have the smallest
deadline among the reservations allocated to Pk, then it
may be preempted, thus inevitably missing its deadline.
Therefore, a solution exists only if Ct = Dt < minri∈Rk(Di),
which then gives

∑
ri∈Rk dbf i(Dt) = 0 and the constraint

for point Dt is implicitly verified. Condition (b) verifies
the constraint

∑
ri∈Rk dbf i(t) + dbf t(t) ≤ t for points

t = jTt + Dt with j = 1, . . . , νi. Since functions dbf i(t)
are monotonic non-decreasing in t and Ct ≤ CMAX

t , then
dbf i(jTt +Dt) ≤ dbf i(jTt + CMAX

t). The lemma follows by
noting that, for points t = jTt + Dt, the value of dbf t(t)
corresponds to (j + 1)Ct.

Before proceeding with the constraints originated by the
check-points of the head and partitioned reservations, it
is necessary to introduce a new demand bound function
dbf t(t), which is explicitly conceived to deal with the
contribution originated by the tail reservation. This function

6

TABLE 2
List of terms Vj(Rk, Tt, CLB

t) (j = 0, . . . , J) for Theorem 2, where J = |
⋃

{ri∈Rk ξ(ri)|+ |ξ(rt|).

Constraint for point t = Dt

V0 = min
{
CMAX

t ,minri∈Rk{Di} − ε
}

Constraints for points t = sTt +Dt, s = 1, . . . , νt
Vs(Rk, Tt) = Tt − 1

s

∑
ri∈Rk dbfi

(
sTt + CMAX

t

)
Constraints for points t = sTi +Di, s = 0, . . . , νi,∀ri ∈ Rk with i = 1, . . . , nk

Vz+s(Rk, Tt, C
LB
t) =


1
j+1 (t−

∑
ra∈Rk dbfa(t)) if jTt + CLB

t ≤ t < (j + 1)Tt + CLB
t ,

j = 0, . . . , νt − 1
Tt

t+Tt−CLB
t

(
t−

∑
ra∈Rk dbfa(t)

)
if t ≥ νtTt + CLB

t ,

where z = (νt + 1) +
∑i−1
x=1(νx + 1)

is illustrated in Figure 2 (b) and allows removing the circular
dependency that would have been introduced by the use of
dbf t(t), which again depends on the value of the (unknown)
optimization variable Dt = Ct.
Lemma 2. It holds

∀t ≥ 0, dbf t(t, C
LB
t) ≥ dbf t(t),

where

dbf t(t, C
LB
t) =


0 if t < CLB

t

(j + 1)Ct if t ≥ CLB
t + jTt ∧

t < CLB
t + (j + 1)Tt

Ct + Ut(t− CLB
t) if t ≥ νtTt + CLB

t ,
(8)

for j = 0, . . . , νt − 1, and CLB
t is a lower bound to Ct.

Proof: Let us separately consider the three cases in
which dbf t(t, C

LB
t) is defined.

Case t < CLB
t . As dbf t(t) = 0 for t < Ct = Dt, being

CLB
t ≤ Ct, then also dbf t(t, C

LB
t) = 0.

Case CLB
t + jTt ≤ t < CLB

t + (j + 1)Tt, (j = 0, . . . , νt − 1).
Being CLB

t ≤ Ct = Dt, in this case dbf t(t) can be either equal
to jCt, when t < Dt + jTt, or (j + 1)Ct, when t ≥ Dt + jTt.
Hence, dbf t(t) is always upper-bounded by (j + 1)Ct.
Case t ≥ νtTt + CLB

t . Analogously as for the previous case,
in this one dbf t(t) can be either equal to (i) νtCt, when
t < νtTt + Dt, or (ii) Ct + Ut(t −Dt), when t ≥ νtTt + Dt.
Note that in both the sub-cases dbf t(t) is upper-bounded by
Ct +Ut(t−Dt). Being, CLB

t ≤ Ct = Dt, it holds Ct +Ut(t−
CLB

t) ≥ Ct + Ut(t−Dt).
Hence the lemma follows.

Thanks to this upper bound, it is now possible to remove
the circular dependency in the constraints originated by the
check-points of the head and partitioned reservations.

Lemma 3. If the inequality∑
ri∈Rk

dbf i(t) + dbf t(t, C
LB
t) ≤ t (9)

holds ∀t ∈ {
⋃
ri∈Rk ξ(ri)}, then∑
ri∈Rk

dbf i(t) + dbf t(t) ≤ t

also holds ∀t ∈ {
⋃
ri∈Rk ξ(ri)}.

Proof: The lemma directly follows from Lemma 2 and
the definition of the set ξ(ri).

Finally, the results of Lemma 1 and Lemma 3 are com-
bined in the following theorem, which provides a closed-form
expression for computing a safe bound on Ct.

Theorem 2. A set of reservations {Rk ∪ rt} composed of
nk partitioned and/or head reservations, and one tail
reservation rt with minimum inter-replenishment time
Tt, can be safely EDF-scheduled on a single processor Pk
if

Ct = Dt = minj=0,...,J

{
Vj(Rk, Tt, C

LB
t)
}

where V0(Rk, Tt, C
LB
t), . . . , VJ(Rk, Tt, C

LB
t) are defined

as in Table 2, and 0 ≤ CLB
t ≤ Ct.

Proof: The set of reservations {Rk ∪ rt} is schedulable
if the conditions of Theorem 1 hold. Note that Lemma 1 and
Lemma 3 can be combined to obtain sufficient conditions for
which Theorem 1 holds. The terms in Table 2 are obtained
by simple algebraic transformations of the conditions of
such lemmas, which have been reformulated in the form
∀j = 0, . . . , J, Ct ≤ Vj(Rk, Tt, C

LB
t). Specifically, each check-

point in the set
⋃
ri∈{Rk∪rt} ξ(ri) originates a constraint

Vj(Rk, Tt, C
LB
t). All of such constraints are verified if Ct =

minj=0,...,J{Vj(Rk, Tt, C
LB
t)}. The algebraic transformations

to obtain such constraints are the following.

Constraint for point t = Dt. It directly follows from
Equation (5) and condition (a) in Lemma 1.

Constraints for points t = sTt +Dt: Following condition (b)
of Lemma 1, the inequality∑

ri∈Rk

dbfi(sTt + CMAX
t) + (s+ 1)Ct ≤ sTt +Dt

needs to be satisfied. Recalling that Ct = Dt and solving
with respect to Ct, the inequality can be rewritten as

sCt ≤ −
∑
ri∈Rk

dbfi(sTt + CMAX
t) + sTt,

and then as,

Ct ≤ Tt −
1

s

∑
ri∈Rk

dbfi(sTt + CMAX
t).

7

Constraints for points t = sTi + Di. By Lemma 3, the
following inequality needs to be satisfied:∑

ri∈Rk

dbf i(t) + dbf t(t) ≤ t.

The three cases in which dbf t(t, C
LB
t) is defined are individ-

ually discussed next.
Case t < CLB

t . Since dbf t(t, C
LB
t) = 0, no constraint is

needed in this interval.
Case jTt + CLB

t ≤ t < (j + 1)Tt + CLB
t , j = 0, . . . , νt − 1.

Since dbf t(t, C
LB
t) = (j + 1)Ct, the inequality becomes∑
ri∈Rk

dbf i(t) + (j + 1)Ct ≤ t,

which by solving with respect to Ct = Dt can be rewritten as

Dt ≤
1

j + 1

t− ∑
ri∈Rk

dbf i(t)

 .
Case t ≥ νtTt +CLB

t . Since dbf t(t, C
LB
t) = Ct + Ut(t−CLB

t),
the inequality becomes∑

ri∈Rk

dbf i(t) + Ct + Ut(t− CLB
t) ≤ t.

Recalling that Ut = Ct/Tt and by solving with respect to Ct,
the inequality can be rewritten as

Ct

(
Tt + t− CLB

t

Tt

)
≤ t−

∑
ri∈Rk

dbf i(t),

and then as

Ct ≤
Tt

Tt + t− CLB
t

t− ∑
ri∈Rk

dbf i(t)

 .
The right-hand sides of such inequalities are the terms
reported in Table 2. Hence the theorem follows.

With Theorem 2 in place, an algorithm to compute a
refined bound for the zero-laxity budget Ct is proposed next.

3.2 Algorithm for Approximate C=D

The results of Theorem 2 can be used to implement an
algorithm that efficiently computes a safe value for Ct via
iterative refinements, which is is reported in Figure 3.

1: procedure APPROXIMATEC=D(Rk, Tt, λ)
2: CLB

t ← 0;
3: for i = 1, . . . , λ+ 1 do
4: Compute constraints Vj(Rk, Tt, CLB

t) by Table 2
5: CLB

t ← minj=0,...,J

{
Vj(Rk, Tt, CLB

t)
}

;
6: end for
7: return CLB

t ;
8: end procedure

Fig. 3. Pseudo-code for computing a lower bound for Ct with iterative
refinement.

The algorithm inputs the set Rk of reservations already
allocated to processor Pk, the period Tt of the tail reservation
to be allocated on Pk, and a number λ of refinement iterations.
As a first step, the lower bound CLB

t is initialized to zero,

which is clearly a safe value. Then, at each iteration, the
constraints Vj(Rk, Tt, CLB

t) of Table 2 are computed and a
new lower bound for Ct is obtained by leveraging Theorem 2.
This lower bound can then be used as a new value for CLB

t
to further refine the bound provided by Theorem 2, which
is monotone non-decreasing with CLB

t . Hence, the algorithm
also generates a non-decreasing sequence of lower bounds
for Ct. Surprisingly, the experiments reported in Section 5.1
show that just two refinement iterations (λ = 2) provide
a significant improvement with respect to the adoption of
Theorem 2 with CLB

t = 0 (λ = 0, no bound refinement).

3.3 Implementation and Complexity

In this work, the methods proposed in the previous sections
were derived to be used on-line for admitting a new reser-
vation by means of C=D splitting. Therefore, considering
the case in which a set of reservations Rk is already
allocated to Pk, the value of Ct has to be computed for
evaluating the possibility of allocating a tail reservation
to Pk. In this case, the approach presented in Section 3.1
allows implementing a linear-time algorithm for computing
the C=D splitting. In fact, all the terms in the constraints
Ct ≤ Vj(Rk, Tt, C

LB
t) (see Table 2) that do not depend on

Tt can be pre-computed and stored in a table each time a
reservation (partitioned or head) is allocated to Pk (e.g., as
using dynamic programming): this operation can be done
in O(

∑
ri∈{Rk∪rt}(νi + 1)) = O(nk) time, which is linear in

the number of tasks as soon νi is constant ∀ri ∈ {Rk ∪ rt}.
Then, to implement Theorem 2, it is required to compute
(i) the upper bound CMAX

t , which can be done in con-
stant time, (ii) the sum of demand bound functions in
V1(Rk, Tt, C

LB
t), . . . , Vνt(Rk, Tt, C

LB
t), which can be done in

O(nk) time, and (iii) the minimum among the constraints,
which can be done in O(nk) time. The APPROXIMATEC=D
algorithm computes the bound of Theorem 2 for λ+ 1 times.
Hence, the algorithm has complexity O((λ+ 1)nk), which is
again linear until λ is constant.

4 LOAD BALANCING

This section presents a load balancing algorithm for manag-
ing the allocation and the splitting of the reservations under
C=D semi-partitioned scheduling. The algorithm has been
designed to be as simple as possible (to be practically used
online) and employs a limited number of re-allocations of
the reservations. At a high level, the algorithm reacts to
two events: (i) the arrival of a new reservation, where its
admission must be evaluated by finding a proper allocation;
and (ii) the exit of a reservation, which consists in performing
some re-allocations in order to favor the admission of future
reservations.

The following two sections discuss how to handle the
arrival and the exit of a reservation. Then, Section 4.3
discusses how it is possible to increase the performance
of the load balancing algorithm, at the cost of performing
a single reallocation of an already-partitioned reservation.
Finally, Section 4.4 discusses how to handle the scheduling
transients originated by a reservation that leaves the system
or that is reconfigured.

8

4.1 Admission of a New Reservation
Whenever the system receives a request for admitting a new
reservation ri = (Ci, Di, Ti), the following operations are
performed:

1) First, the algorithm tries to find a static allocation of ri to
a processor (i.e., as with standard partitioned scheduling)
by using a partitioning heuristic. In particular, according
to our experiments, the best-fit heuristic has been found
to perform best. If a valid allocation is found, then ri is
admitted into the system.

2) If step 1) fails, then ri is split into a head reservation rh
and a number tail reservations r1t , . . . , r

x
t , with x < m,

by the algorithm reported in Figure 4. The algorithm
works as follows. First, for each processor Pk, a safe
bound on the maximum budget of a tail reservation
allocated to Pk is computed by means of the APPROXI-
MATEC=D algorithm (line 4). The pairs (Sk.C, Sk.P) of
budgets and processors are recorded in an ordered list
S. Then, S is sorted in descending order with respect to
the budget of each pair. Then, the maximum index x is
computed such that the sum of the largest x elements in
S does not exceed the budget Ci of the reservation to be
split. Subsequently, for each of the x first elements in S,
a tail reservation rjt is defined with budget and deadline
Sj .C, period Ti (line 9), and allocated to processor
Sj .P (line 10), with j = 1, . . . , x. The same partitioning
heuristic used in step 1) is then applied to allocate the
head reservation rh: if the allocation succeeds, then the
algorithm also succeeds; otherwise the algorithm fails
and the reservation ri is rejected.

1: procedure MULTISPLIT(ri, λ)
2: Let S be an ordered list of elements (Sk.C, Sk.P)
3: ∀Pk, (k = 1, . . . ,m)
4: Sk.C ← APPROXIMATEC=D(Rk, Ti, λ)
5: Sk.P ← Pk
6: Sort S according to Sk.C in decreasing order
7: x← max

{
x |
∑x
j=1 Sj .C < Ci ∧ x < m

}
8: for all j = 1, . . . , x do
9: rjt ← (Sj .C, Sj .C, Ti)

10: Allocate rjt to Sj .P
11: end for
12: Ch = Ci −

∑x
j=1 Sj .C

13: Dh = Di −
∑x
j=1 Sj .C

14: rh ← (Ch, Dh, Ti)
15: Try to allocate rh on a processor with a partitioning

heuristic
16: if rh has been allocated then
17: return SUCCESS
18: else
19: ∀j = 1, . . . , x, remove rjt from Sj .P
20: return FAIL
21: end if
22: end procedure

Fig. 4. Pseudo-code of the algorithm for splitting and allocating reserva-
tions.

Note that both the steps require evaluating whether a
reservation can be safely allocated to a processor, which can
be performed by leveraging Theorem 1 with computational
cost O(nk). As discussed in Section 3.3, algorithm AP-
PROXIMATEC=D has O(nk) complexity. Hence, the overall
computational cost of the above operations is O(m · nMAX),

where nMAX = maxk=1,...,m{nk}. Note that this is the same
complexity of the approach described in [14].

4.2 Handling the Exit of a Reservation
Whenever a partitioned reservation ri ∈ RPk (i.e., allocated
to processor Pk) leaves the system, if tail(Pk) = true let
rt,k be the (only) tail reservation allocated on Pk, and let
rj = F(rt,k). Then, the algorithm tries to allocate rj to Pk
after removing all head and tail reservations related to rj
from the corresponding processors. That is, the algorithm
tries to re-assemble the semi-partitioned reservation rj by
allocating it as a partitioned reservation of Pk. Conversely,
if tail(Pk) = false but head(Pk) = true, let rh,k be head
reservation with the highest utilization allocated on Pk. Then,
the algorithm tries to re-assemble rj = F(rh,k) on Pk as
above. Whenever a semi-partitioned reservation ri ∈ R \
RPk leaves the system, let P(ri) be the set of processors in
which at least a tail or head reservation of ri was allocated.
Then, for each processor Pk ∈ P(ri), the same procedure
described above for the exit of a partitioned reservation is
performed. These operations require checking at most m
times (the maximum number of splits) whether a reservation
can be allocated to a processor, which can be performed in
O(m · nMAX) time.

4.3 Re-allocate Partitioned Reservations
Whenever the algorithm does not find a valid allocation
for a new reservation ri, the chances of admitting ri can
be increased by trying to re-allocate a previously-allocated
partitioned reservation. In particular, the following heuristic
has been found to be effective while employing minimal
re-allocations limited to a single reservation.

For each processor Pk (k = 1, . . . ,m), check if after de-
allocating the partitioned reservation rj ∈ RPk that has the
highest utilization (i.e., rj ∈ RPk | Uj = maxrx∈RPk Ux) it is
possible to allocate ri to Pk. If yes, then try to re-allocate rj
by following steps 1 and 2 in Section 4.1. When the first valid
re-allocation is found, rj is re-allocated, ri is allocated to Pk,
and the algorithm terminates. The computational complexity
of this extension is O(m2 · nMAX) complexity.

4.4 Handling Scheduling Transients
It is worth observing that the admission of a new reser-
vation may not be immediately performed when another
reservation leaves the system or it is reconfigured during a
re-allocation (so freeing some utilization bandwidth). This
is because the leaving (or modified) reservation may have
already affected the execution of the other reservations,
and hence the system is subject to a transient (also referred
to as mode-change by some authors). However, note that
this issue is not specifically related to semi-partitioned
scheduling, as it also occurs in uniprocessor systems [20],
[21] (and hence under partitioned scheduling) and under
global scheduling [22], [23]. Several solutions are available
for analyzing such transients [20], [22], [24] by deriving a
safe bound on the time that must be waited before admitting
a new reservation or let re-allocations to take effect.

The design of efficient methods to handle scheduling tran-
sients that are tailored to C=D semi-partitioned scheduling

9

is out of the scope of this paper and is left as future work.
This section illustrates how to apply state-of-the-art results
for partitioned scheduling to handle scheduling transients in
the setting considered in this work.

When deadline misses cannot be tolerated, it is necessary
to ensure that a newly admitted (or re-allocated) reservation
is subject to an admission delay. For example, in the case
of partitioned reservations, the AADT algorithm [24] (and
the related protocol) may be used to compute such an
admission delay in polynomial time. Nevertheless, it is
designed for uniprocessor (or multiprocessor partitioned)
scheduling, and hence it cannot be directly applied to semi-
partitioned reservations. To fill this gap, Lemma 4 establishes
a safe time to admit a semi-partitioned reservation without
incurring scheduling transients.

Lemma 4. Let ri be a semi-partitioned reservation that has
been admitted in the system at time t and split into
x < m sub-reservations r1i , . . . r

x
i . Also, let B be the set

of processors in which the sub-reservations of ri are
allocated to, i.e., B = {Pk | ∃rji ∈ Rk s.t. j = 1, . . . , x ∧
k = 1, . . . ,m}.
Then, ri can be admitted without incurring scheduling
transients at time

t+ max
j=1,...,x

{dji}, (10)

where dij is a safe admission delay for sub-reservation rji .

Proof: Reservation ri does not incur in scheduling
transients if each sub-reservation waits for its corresponding
admission delay. By definition, each delay dij is a safe time
for admitting the sub-reservation rji in the corresponding
processor. Hence, waiting for the maximum admission delay
among all sub-reservation provides a safe condition for
admitting ri.

Lemma 4 provides a simple and safe way to extend state-
of-the-art results for dealing with scheduling transients to
admit reservations that require to be split. Note that Lemma 4
can also be used in conjunction with other methods providing
safe admission delays for each of the sub-reservations (i.e.,
working under partitioned scheduling).

Nonetheless, waiting for an admission delay may not
be always acceptable. In these circumstances, a simple
and effective strategy consists in allowing the allocation
of a reservation ri only if the corresponding admission
delay is zero. For example, this method may be suitable
for reservations that need to be re-allocated in a different
processor to favor the admission of new workloads.

5 EXPERIMENTAL RESULTS

This section presents the results of two large-scale exper-
imental studies that have been conducted to evaluate the
approach presented in this paper. The first study, discussed
in Section 5.1, has been carried out to assess the performance
of the approximate C=D splitting algorithm presented in
Section 3 with respect to the exact algorithm proposed by
Burns et al. in [13]. Furthermore, the space of parameters νi
and λ (see Section 3) has been explored to determine suitable
configurations to be used at run time. The second study,
discussed in Section 5.2, has been carried out to evaluate the

performance of the load balancing algorithms presented in
Section 4 (adopted in conjunction with the C=D splitting
algorithm of Section 3), comparing them to G-EDF and
partitioned EDF scheduling under different settings.

5.1 C=D splitting: Approximate vs. Exact
The objective of this experimental study is to evaluate the
utilization loss introduced by the approximate C=D splitting
algorithm presented in Section 3 with respect to the exact
Burns et al.’s [13] method. Specifically, the study considers
a single processor on which a set of reservations is already
allocated and is based on computing with the two methods
the maximum zero-laxity budget of a tail reservation to be
allocated on the considered processor.
Reservation set generation. Given n reservations and a
target utilization U =

∑n
i=1 Ui, the individual utilizations

Ui of the n reservations are generated with the UUnifast
algorithm [25]. For each reservation, the minimum inter-
replenishment time Ti is randomly generated in the range
[1, 1000] ms with uniform distribution and the budget
is then computed as Ci = UiTi. The relative deadline
of each reservation ri is then randomly generated with
uniform distribution in the interval [Ci + β(Ti − Ci), Ti],
with β ∈ [0, 1]. Intuitively, the use of larger values for β tend
to generate deadlines closer to the corresponding periods,
where β = 1 implies Di = Ti.
Experiments. The utilization U has been varied in the range
[0.05, 0.95] with step 0.05, and the number n of reservations
has been varied from 2 to 20.2 The number of additional
steps νi of the approximate demand bound function of each
task and the parameter λ (see Algorithm 3) have been varied
in the interval [0, 9] with step one. For the sake of simplicity,
the parameter νi is set to the same value ν for all the tasks.
The parameter β, which controls the relative deadline of
the tasks, has been varied in the set {0.5, 0.75, 1}. For each
combination of these parameters, 5000 reservation sets have
been tested, for a total of almost 600 million reservation sets.
For each reservation set R, the period Tt of a tail reservation
rt has been randomly generated in the range [1, 1000] ms
with uniform distribution. Then, the value of Ct such that
the set of reservations {rt ∪R} can be safely EDF-scheduled
on a single processor has been computed by both the exact
method from [13] and the approximate method proposed in
this paper. The two methods have been compared in terms
of utilization loss: that is, given the exact value CEXA

t (by [13])
and an approximate value CAPP

t ≤ CEXA
t , the utilization

loss introduced by the approximate method is defined as(
CEXA
t /Tt

)
−
(
CAPP
t /Tt

)
.

The experimental results for six representative config-
urations are reported in Figure 5. Figures 5(a) and 5(b),
show that the improvement provided by increasing the
value of ν becomes very small for ν ≥ 2, and that the
utilization loss decreases as the utilization U increases.
Figure 5(c) shows that utilization loss slightly decreases as

2. In the special case of a single reservation (n = 1), the computation
of the exact maximum zero-laxity budget that can be safely allocated to
a processor can be computed by solving a simple equation (the details
are available in Appendix A). The number of tasks has been limited to
20 because the results show that the error introduced by the proposed
approximation decreases as the number of tasks increases, approaching
very low values for more than 20 tasks.

10

0.2 0.4 0.6 0.8
0

5

10

U

A
V

G
U

ti
liz

at
io

n
Lo

ss
(%

) (a) n = 4, λ = 0, β = 1

0.2 0.4 0.6 0.8
0

2

4

U

A
V

G
U

ti
liz

at
io

n
Lo

ss
(%

) (b) n = 18, λ = 0, β = 1

0.5 0.6 0.7 0.8 0.9 1
0

2

4

β

A
V

G
U

ti
liz

at
io

n
Lo

ss
(%

) (c) n = 10, U = 0.6, λ = 0

0 2 4 6 8
0

1

2

λ

A
V

G
U

ti
liz

at
io

n
Lo

ss
(%

) (d) n = 16, U = 0.45, β = 0.75

ν = 0 ν = 1 ν = 2 ν = 5 ν = 9

5 10 15 20
0

2

4

6

n

A
V

G
U

ti
liz

at
io

n
Lo

ss
(%

) (e) U = 0.2, ν = 2, β = 0.5

5 10 15 20

1

2

n

A
V

G
U

ti
liz

at
io

n
Lo

ss
(%

) (f) U = 0.7, ν = 2, β = 0.5

λ = 0 λ = 1 λ = 2 λ = 5 λ = 9

5 10 15 20
0

1

2

3

n

se
co

nd
s

(g) U = 0.8, β = 1

0.2 0.4 0.6 0.8
0

1

2

U

se
co

nd
s

(h) n = 10, β = 1

Exact C=D Approximated C=D (with λ = ν = 2)

Fig. 5. Average utilization loss introduced by the approximate algorithms for C=D splitting (presented in Section 3) as a function of the task-set
utilization (insets (a) and (b)), the parameters β and λ (insets (c) and (d)), the number of reservations n (insets (e) and (f)). Insets (g) and (h)
evaluates the running times of the proposed methods against the one of the exact C=D splitting algorithm.

the parameter β increases, and Figures 5(e) and 5(f) illustrate
the dependency of the utilization loss on the number of
tasks n, which improves as n increases. As for parameter ν,
also the improvement achieved by increasing the number of
refinement iterations λ becomes smaller for λ ≥ 2. Overall,
the results show that configuring the approximate C=D
algorithm with ν = λ = 2 provides an empirical utilization
loss always below 3%. This is an important result because
such low values for parameters ν and λ determine very short
running times of the approximate C=D algorithm.

Running times. Another experiment has been carried out
to evaluate the running times of the proposed methods
against the one of the exact C=D splitting algorithm. The
tests have been executed on a machine equipped with an
Intel Core i7-6700K @ 4.00GHz. The Microsoft VC++2015
compiler has been used to compile literal implementa-
tions (i.e., not designed for being extremely efficient) of
the algorithms. The approximate C=D algorithm has been
configured with ν = λ = 2. The running times of both
methods have been collected using the Windows API for
measuring the wall clock. Despite the experiments having
been performed on a dedicated processor, measurements
may include some additional overhead (e.g., execution of
services of the operating system). A preliminary experiment
excluded the possibility of using the API that measures the
execution time of the process only, as the offered precision
is comparable with the running time of Algorithm 3. As
showed in Figures 5(g) and 5(h), the exact C=D splitting
algorithm exhibited maximum running times in the order
of a few seconds, with an increasing trend as a function of
the utilization and the number of reservations, whereas the
running time of the approximate algorithm always resulted
below 30 microseconds. The maximum running times of
Algorithm 3 showed a slightly increasing trend with respect
to the number of tasks, ranging from 16 µs for n = 2 tasks,
to 29 µs for n = 20 tasks.

5.2 Proposed Approach vs. G-EDF and P-EDF
A second experimental study has been performed to evaluate
the performance of C=D semi-partitioned scheduling man-
aged by the load balancing algorithms presented in Section 4
(that make use of the approximate splitting algorithm of
Section 3) against G-EDF and partitioned EDF (P-EDF)
scheduling. For G-EDF scheduling, a relatively favorable
condition has been considered in which the acceptance test
is performed by combining four state-of-the-art polynomial-
time tests (suitable for being executed on-line), which are:
GFB [26], BAK [27], a polynomial-time approximation of
LOAD [28] [29], and I-BCL [30] (configured with 3 iterations,
as suggested by the authors). In other words, if any of
these tests is passed, then a new reservation is admitted.
For P-EDF, three common partitioning heuristics have been
tested: first-fit, best-fit, and worst-fit (the latter with respect
to the utilizations of the reservations). The study is based on
synthetic dynamic workloads, which have been generated as
follows.
Generation of Dynamic Workload. A sequence of NE events
is generated, where each event can be of type ARRIVAL
or EXIT. An ARRIVAL event consists in a new reservation
ri that is tried to be admitted into the system. The beta
distribution [31] has been adopted to control the statistical
validity of the utilizations of the reservations, generating the
utilization values in a fixed range [Umin, Umax] = [0.01, 0.9].
In each experiment, the beta distribution has been configured
with two parameters UAVG and Uσ , controlling the average
and the variance of the generation, respectively. The mini-
mum inter-replenishment time Ti of each reservation was
generated in the range [1, 1000] ms with uniform distribution,
and the budget was then computed as Ci = UiTi. As in
Section 5.1, the relative deadline of each reservation ri has
been randomly generated with uniform distribution in the
interval [Ci + β(Ti − Ci), Ti], with β ∈ [0, 1].

The EXIT event corresponds to the exit of a reservation
that is randomly selected among those that are currently ad-
mitted in the system. Each sequence s of events is generated

11

as follows: a random real number x ∈ [0, 1] is generated
NE times with uniform distribution; each time, if x ∈ [0,Λ],
an ARRIVAL event is generated and enqueued to s, else an
EXIT event is generated and enqueued to s. The term Λ is a
variable threshold that controls the generation and has been
set to Λ = (1− Uopt/m) + ψ(Uopt/m) with the following in-
terpretation. The parameter Uopt is the current utilization that
the system would have if an optimal scheduling algorithm
would have been used to process the previously-generated
events. The first term in the definition of Λ is provided to
increase the probability of generating an ARRIVAL event
when the system load is low. The second term depends on a
parameter ψ ∈ [0, 1], which is used to control the tendency
of a sequence to load the processors; i.e., the larger ψ the
larger the average load demanded by a sequence. Figure 6
reports some details about the generated workload. Inset
(a) shows the utilization Uopt provided by the generator
as a function of the number of occurred events, when the
generator is configured with m = 8, UAVG = 0.5, Uσ = 0.3,
and ψ = 0.9. Under this configuration, the generator is
able to maintain a fairly high Uopt, and hence is capable of
properly loading the system to stimulate the tested methods.
Inset (b) corroborates the statistical validity of the generated
utilizations by showing the empirical probability distribution
function of the generated utilizations in a sequence of 10000
events.

200 400 600 800
0

2

4

6

8

Number of Events

U
o
p
t

(a)

0.3 0.4 0.5 0.6 0.7

0

10

20

30

40

U

Pr
ob

ab
ili

ty
D

is
tr

ib
ut

io
n

Fu
nc

ti
on

(%
)

(b)

Fig. 6. Analysis of the workload generated with m = 8, UAVG = 0.5, Uσ =
0.3, and ψ = 0.9. Inset (a) reports Uopt as a function of the number
of occurred events, whereas inset (b) shows the empirical probability
distribution function of the generated utilizations.

Experiments. The average utilization UAVG of the gener-
ated reservations has been varied in the range [0.2, 0.7] with
step 0.05, whereas the variance Uσ has been varied in the
range [0.10, 0.50], with step 0.05. The parameter β, which
regulates the relative deadlines, has been varied in the set
{0.5, 0.75, 1}. The number of processors m has been varied
in the set {4, 8, 16, 32} and the parameter ψ in the set {0.6,
0.7, 0.8, 0.9}. For each combination of the varied parameters,
1000 sequences of 10000 events have been generated. Each
generated sequence has been tested with G-EDF, P-EDF, and
the approaches proposed in this paper, measuring the average
load accepted by each algorithm across the whole sequence.
This measure is subsequently normalized to the hypothetical
average load that would have been accepted by an optimal
scheduling algorithm. This index expresses the quality of an
algorithm in terms of acceptance rate (the higher the better
and 100% corresponds to the performance of an optimal

algorithm).3

Figure 7 reports the results for eight representative config-
urations with ψ = 0.9. The labels P-EDF-FF, P-EDF-WF,
and P-EDF-BF in the legend indicate first-fit, worst-fit,
and best-fit partitioning, respectively; C=D-LB indicates the
proposed approach based on load balancing presented in
Section 4 configured with ν = λ = 2. As it can be observed
from Figures 7(a)-(g), the performance of the algorithms
is significantly affected by the utilization of the tested
reservations (as also previously observed in other works).
The proposed approach allows achieving high performance,
keeping the average accepted load above the 87% when
Di = Ti (i.e., β = 1), even in the presence of several reserva-
tions with high utilization. In particular, it allows achieving
a performance improvement up to 40% and 30% over G-EDF
and P-EDF, respectively. In the case of constrained deadlines
(β = 0.5, 0.75), the performance of all the various approaches
decreases: nevertheless, C=D-LB still allows keeping the
average accepted load above 84%. The algorithms based on
P-EDF show relatively good performance up to values of
UAVG that are close to 0.5. Basic partitioned scheduling with
simple heuristics has been found to always outperform G-
EDF. Figure 7(d) shows the dependency on the variance Uσ of
the utilizations: the average accepted load slightly decreases
as Uσ increases. Finally, Figure 7(h) shows the dependency
on the parameter β: for all the tested approaches, the average
accepted load decreases as β decreases.

It is worth observing that the curves tend to show a
non-monotonic behavior for the following reason. Under
large values for UAVG, the acceptance or the rejection of a
reservation corresponds to a significant difference in terms
of instantaneous accepted load. Since this phenomenon also
occurs in the case of an optimal scheduling algorithm (to
which the performance is normalized to), the processors
tend to be less loaded across a sequence, independently
of the tested algorithm, which is a situation that favors
non-optimal algorithms. The non-monotonic behavior of the
performance of G-EDF has been found to also depend on the
combination of multiple acceptance tests; in particular, the
I-BCL test tends to perform better than the others for larger
values of UAVG. Figure 8 compares different approaches to
perform semi-partitioned scheduling of dynamic workloads:
C=D-BASELINE, i.e., the approaches of Sections 4.1 and 4.2
but limiting semi-partitioned reservations to be split in at
most two chunks and without leveraging the re-allocate
partitioned reservation extensions discussed in Section 4.3,
as in the baseline load-balancing approach of [14]; C=D-MS,
which extends C=D-BASELINE allowing semi-partitioned
reservations to be split into multiple chunks (at most m);
C=D-LB, the complete approach proposed in this paper also
considered in Figure 7. These three approaches represent
three different configurations a system designer may want to
explore as a trade-off to balance complexity and performance
(in terms of average-accepted load). C=D-BASELINE and
C=D-MS have both O(m · nMAX) complexity for admitting

3. Note that the typical schedulability ratio metric makes little sense
in the presence of dynamic workload, as the behavior of the different
algorithms may significantly differ depending on the previous workload.
For instance, an algorithm may reject a lot of “small” (low utilization)
reservations because it previously accepted a “heavy” (high utilization)
reservation.

12

0.2 0.3 0.4 0.5 0.6 0.7
50

60

70

80

90

100

UAVG

A
V

G
A

cc
ep

te
d

Lo
ad

(%
)

(a) m = 4, Uσ = 0.3, β = 1

0.2 0.3 0.4 0.5 0.6 0.7
50

60

70

80

90

100

UAVG

A
V

G
A

cc
ep

te
d

Lo
ad

(%
)

(b) m = 16, Uσ = 0.3, β = 1

0.2 0.3 0.4 0.5 0.6 0.7
50

60

70

80

90

100

UAVG

A
V

G
A

cc
ep

te
d

Lo
ad

(%
)

(c) m = 32, Uσ = 0.3, β = 1

0.1 0.2 0.3 0.4 0.5
50

60

70

80

90

100

Uσ

A
V

G
A

cc
ep

te
d

Lo
ad

(%
)

(d) m = 16, UAVG = 0.45, β = 1

0.2 0.3 0.4 0.5 0.6 0.7
50

60

70

80

90

100

UAVG

A
V

G
A

cc
ep

te
d

Lo
ad

(%
)

(e) m = 8, Uσ = 0.2, β = 1

0.2 0.3 0.4 0.5 0.6 0.7
50

60

70

80

90

100

UAVG

A
V

G
A

cc
ep

te
d

Lo
ad

(%
)

(f) m = 8, Uσ = 0.2, β = 0.75

0.2 0.3 0.4 0.5 0.6 0.7
50

60

70

80

90

100

UAVG

A
V

G
A

cc
ep

te
d

Lo
ad

(%
)

(g) m = 8, Uσ = 0.2, β = 0.5

0.5 0.6 0.7 0.8 0.9 1
50

60

70

80

90

100

β

A
V

G
A

cc
ep

te
d

Lo
ad

(%
)

(h) m = 4, Uσ = 0.25, UAVG = 0.4

G-EDF P-EDF-BF P-EDF-FF P-EDF-WF C=D-LB

Fig. 7. Average accepted load obtained by different scheduling approaches as a function of the average utilization UAVG (insets (a), (b), (c), (e), (f)
and (g)), Uσ (inset (d)), and β (inset (h)). The results are related to eight representative configurations identified by the fixed parameters reported in
the caption above the graphs.

0.2 0.3 0.4 0.5 0.6 0.7
50

60

70

80

90

100

UAVG

A
V

G
A

cc
ep

te
d

Lo
ad

(%
)

(a) m = 16, Uσ = 0.2, β = 0.5

0.2 0.3 0.4 0.5 0.6 0.7
50

60

70

80

90

100

UAVG

A
V

G
A

cc
ep

te
d

Lo
ad

(%
)

(b) m = 32, Uσ = 0.2, β = 0.75

C=D-BASELINE C=D-MS C=D-LB

Fig. 8. Average accepted utilization obtained by different semi-partitioned
scheduling methods as a function of the average task utilization.

a new reservation, but C=D-BASELINE may have a lower
run-time overhead due to a lower number of migrations
(the lower the number of chunks, the lower the maximum
number of migrations), whereas C=D-LB has O(m2 · nMAX)
complexity. As expected, C=D-LB reports the highest average
accepted load, but also C=D-MS shows a good performance,
thus representing an interesting compromise when an ap-
proach with lower complexity is required.

6 RELATED WORK

The problem of scheduling real-time workload on a multi-
core platform has been extensively investigated. A detailed
discussion of all the results proposed in the literature is too
vast to fit in the space available in this paper and readers
interested in the topic can refer to the survey written by
Davis and Burns [5]. For this reason, this section focuses on
techniques based on semi-partitioned scheduling, which are
more relevant to the proposed approach. Semi-partitioned
scheduling has been firstly introduced by Anderson et

al. [32] in 2005. Later, numerous semi-partitioned scheduling
algorithms have been presented, including the proposals of
Andersson et al. [33] and Kato et al. [34], [35], [36].

The idea of having split tasks (i.e., reservations) executing
at zero-laxity has been originally proposed by Kato and
Yamasaki [36] in the context of fixed-priority scheduling, and
later extended by Burns et al. [13] to EDF, who proposed
the C=D scheme on which this paper builds upon. Kato and
Yamasaki [36] ensured split reservations to be executed with
the highest priority on each processor, thus guaranteeing
their budget C to be always consumed within D = C time
units from their release time.

In 2011, Bastoni et al. [37] presented a thorough com-
parison of several semi-partitioned scheduling algorithms,
illustrating their benefits with respect to other scheduling
approaches. The method described in this paper has been
motivated by a recent development due to Brandenburg and
Gül [12], who showed that, by adopting clever task-allocation
heuristics, the C=D splitting algorithm proposed by Burns
et al. [13] allows achieving a near-optimal performance in
the presence of static real-time workload. As in [12], the
proposed approach also combines C=D scheduling with
processor reservations, but in a more dynamic environment
where reservations can be created and destroyed at runtime.
Brandenburg and Gül also reports on a solid evaluation of the
overhead introduced by C=D scheduling demonstrating its
practical effectiveness. An overhead-aware analysis for semi-
partitioned scheduling algorithms has been also proposed by
Souto et al. [38]. Maia et al. [39] considered the problem of
applying semi-partitioned scheduling to fork-join tasks on a
multicore platform. George et al. [40] considered a different
approach of semi-partitioned scheduling, where different
jobs of the same task can be released on different processors,
but each job executes on a single processor only. Very recently,
Hobbs et al. [41] presented approaches for semi-partitioned

13

scheduling in the context of soft real-time systems, aimed at
guaranteeing a bounded tardiness.

The problem of taking online scheduling decisions for
real-time workload has been investigated in many works. In
particular, the difficulty of the problem has been discussed in
the seminal work of Dertouzos and Mok [42] and by Fisher
et al. [43]. Lee and Shin [23] and Nelis et al. [22] proposed
techniques for analyzing the effect of system transients
under global scheduling. Block and Anderson [44] and Block
et al. [45] addressed dynamic workload in the context of
task reweighting under partitioned and P-Fair scheduling,
respectively.

To the best of our knowledge, this work proposes the
first method to perform online admission control under semi-
partitioned scheduling and hard deadline constraints.

7 CONCLUSIONS AND FUTURE WORK

This paper proposed methods to enable C=D semi-
partitioned scheduling for dynamic workloads consisting
of reservation servers. Reservation servers can arbitrarily
join and leave the system, but each of them is subject to an
admission test before being admitted into the system.

The presented approach allows performing C=D splitting
in linear-time, thus drastically reducing the computational
complexity with respect to prior (but exact) methods [13]
characterized by very high computational complexity.

The approximate C=D splitting method has been then
leveraged to design a load balancing algorithm, which allows
dynamically allocating and splitting incoming reservations
at runtime. A method for extending state-of-art results on
scheduling transients to semi-partitioned scheduling has also
been discussed.

The contributions have been evaluated with large-scale
experimental studies. In particular, the linear-time approxi-
mation proposed to split reservations has been shown to
originate a very limited (below the 3%) utilization loss
with respect to the exact technique proposed by Burns et
al. [13]. The adoption of task splitting and load balancing
algorithms to manage dynamic workloads showed a notable
schedulability performance, with improvements over global
and partitioned EDF up to 40% and 30%, respectively. In most
of the tested cases, the proposed method allows keeping the
average system load above 87%, also in the presence of
reservations with very high utilizations, which would result
difficult to allocate using standard partitioned scheduling.

These results suggest the usage of semi-partitioned C=D
scheduling also to handle dynamic workloads.

Interesting research lines for future research include the
extension of the proposed approaches to parallel real-time
tasks and elastic reservations [20]. Furthermore, develop-
ing new protocols (and extending the existing ones) for
supporting lock-protected shared resources under C=D semi-
partitioned scheduling is also a relevant direction for future
work. In particular, the extension of protocols based on
bandwidth inheritance among dependent reservations seems
to be particularly promising. Another important direction
for future extensions is the consideration of heterogeneous
processors, where the splitting algorithm is required to
account for multiple execution profiles related to different
types of processors. Furthermore, additional load-balancing
strategies may further improve schedulability.

REFERENCES

[1] T. Cucinotta, L. Abeni, L. Palopoli, and G. Lipari, “A robust
mechanism for adaptive scheduling of multimedia applications,”
Journal ACM Transactions on Embedded Computing Systems, vol. 10,
no. 4, p. 124, November 2011.

[2] K. Konstanteli, T. Cucinotta, K. Psychas, and T. Varvarigou,
“Admission control for elastic cloud services,” in Proceedings of
the 5th International Conference on Cloud Computing (CLOUD 2012),
Honolulu, HI, USA, June, 24-29 2012.

[3] “ROS Website.” [Online]. Available: http://www.ros.org/
[4] D. Casini, T. Blaß, I. Lütkebohle, and B. B. Brandenburg, “Response-

time analysis of ROS 2 processing chains under reservation-based
scheduling,” in Proceedings of the 31th Euromicro Conference on Real-
Time Systems (ECRTS 2019), Stuttgart, Germany, July, 9-12 2019.

[5] R. Davis and A. Burns, “A Survey of Hard Real-Time Scheduling
for Multiprocessor Systems,” ACM Computing Surveys, vol. 43, no. 4,
pp. 35:1–35:44, October 2011.

[6] P. Regnier, G. Lima, E. Massa, G. Levin, and S. Brandt, “Multipro-
cessor scheduling by reduction to uniprocessor: an original optimal
approach,” Real-Time Systems, vol. 49, no. 4, pp. 436–474, November
2013.

[7] G. Nelissen, V. Berten, V. Nelis, J. Goossens, and D. Milojevic, “U-
EDF: An unfair but optimal multiprocessor scheduling algorithm
for sporadic tasks,” in Proceedings of the 24th Euromicro Conference
on Real-Time Systems (ECRTS 2012), Pisa, Italy, July, 11-13 2012.

[8] E. Massa, G. Lima, P. Regnier, G. Levin, and S. Brandt, “Quasi-
partitioned scheduling: optimality and adaptation in multiproces-
sor real-time systems,” Real-Time Systems, vol. 52, no. 5, pp. 566–597,
2016.

[9] H. Cho, B. Ravindran, and E. D. Jensen, “An optimal real-time
scheduling algorithm for multiprocessors,” in Proceedings of the 27th
Real-Time Systems Symposium (RTSS 2006), Rio de Janeiro, Brazil,
December, 5-8 2006.

[10] Y. Sun and M. Di Natale, “Pessimism in multicore global schedula-
bility analysis,” Journal of Systems Architecture, vol. 97, pp. 142–152,
August 2019.

[11] A. Biondi and Y. Sun, “On the ineffectiveness of 1/m-based
interference bounds in the analysis of global EDF and FIFO
scheduling,” Real-Time Systems, vol. 54, no. 3, pp. 515–536, July
2018.

[12] B. Brandenburg and M. Gül, “Global scheduling not required:
Simple, near-optimal multiprocessor real-time scheduling with
semi-partitioned reservations,” in Proceedings of the 37th Real-Time
Systems Symposium (RTSS 2016), Porto, Portugal, November 29 -
December 2 2016.

[13] A. Burns, R. Davis, P. Wang, and F. Zhang, “Partitioned EDF
scheduling for multiprocessors using a C=D task splitting scheme,”
Real-Time Systems, vol. 48, pp. 3–33, January 2012.

[14] D. Casini, A. Biondi, and G. Buttazzo, “Semi-partitioned scheduling
of dynamic real-time workload: A practical approach based on
analysis-driven load balancing,” in Proceedings of the 29th Euromicro
Conference on Real-Time Systems (ECRTS 2017), Dubrovnik, Croatia,
June, 27-30 2017.

[15] D. Casini, L. Abeni, A. Biondi, T. Cucinotta, and G. Buttazzo,
“Constant bandwidth servers with constrained deadlines,” in
Proceedings of the 25th International Conference on Real-Time Networks
and Systems (RTNS 2017), Grenoble, France, October, 4-6 2017.

[16] I. Shin and I. Lee, “Compositional real-time scheduling framework
with periodic model,” Journal ACM Transactions on Embedded
Computing Systems, vol. 7, no. 3, p. 139, April 2008.

[17] F. Zhang and A. Burns, “Schedulability analysis for real-time
systems with EDF scheduling,” IEEE Transactions on Computers,
vol. 58, no. 9, pp. 1250–1258, April 2009.

[18] S. K. Baruah, L. E. Rosier, and R. R. Howell, “Algorithms and
complexity concerning the preemptive scheduling of periodic, real-
time tasks on one processor,” Real-time systems, vol. 2, no. 4, pp.
301–324, October 1990.

[19] N. Fisher, T. P. Baker, and S. Baruah, “Algorithms for determining
the demand-based load of a sporadic task system,” in Proceedings
of the 12th International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA 2006), Sydney, Australia,
August, 16-18 2006.

[20] G. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, “Elastic
scheduling for flexible workload management,” IEEE Transactions
on Computers, vol. 51, no. 3, pp. 289–302, March 2002.

14

[21] J. Real and A. Crespo, “Mode change protocols for real-time
systems: A survey and a new proposal,” Real-Time Systems, vol. 26,
no. 2, pp. 161–197, March 2004.

[22] V. Nélis, J. Marinho, B. Andersson, and S. M. Petters, “Global-
EDF scheduling of multimode real-time systems considering mode
independent tasks,” in Proceedings of the 23rd Euromicro Conference
on Real-Time Systems (ECRTS 2011), Porto, Portugal, July 6-8 2011.

[23] J. Lee and K. Shin, “Schedulability analysis for a mode transition in
real-time multi-core systems,” in Proceedings of the 2013 IEEE 34th
Real-Time Systems Symposium (RTSS 2013), Washington, DC, USA,
December, 3-6 2013.

[24] D. Casini, A. Biondi, and G. Buttazzo, “Handling transients
of dynamic real-time workload under EDF scheduling,” IEEE
Transactions on Computers, vol. 68, no. 6, pp. 820–835, June 2019.

[25] E. Bini and G. Buttazzo, “Measuring the performance of schedu-
lability tests,” Real-Time Systems, vol. 30, no. 1, pp. 129 – 154, May
2005.

[26] J. Goossens, S. Funk, and S. Baruah, “Priority-driven scheduling
of periodic task systems on multiprocessors,” Real-Time Systems,
vol. 25, no. 2, pp. 187 – 205, September 2003.

[27] T. Baker, “Multiprocessor EDF and deadline monotonic schedu-
lability analysis,” in Proceedings of the 24th International Real-Time
Systems Symposium (RTSS 2003), Cancun, Mexico, December, 3-5
2003.

[28] S. Baruah and T. Baker, “Global EDF schedulability analysis of
arbitrary sporadic task systems,” in Proceedings of the 20th Euromicro
Conference on Real-Time Systems (ECRTS 2008), Prague, Czech
Republic, July, 2-4 2008.

[29] N. W. Fisher, “The multiprocessor real-time scheduling of general
task systems,” Ph.D. dissertation, University of North Carolina at
Chapel Hill, 2007.

[30] M. Bertogna, M. Cirinei, and G. Lipari, “Schedulability analysis of
global scheduling algorithms on multiprocessor platforms,” IEEE
Transactions on Parallel and Distributed Systems, vol. 20, no. 4, pp. 553
– 566, April 2009.

[31] N. Balakrishnan and V. B. Nevzorov, A Primer on Statistical
Distributions. Wiley, 2003.

[32] J. Anderson, V. Bud, and U. Devi, “An EDF-based scheduling
algorithm for multiprocessor soft real-time systems,” in Proceedings
of the 17th Euromicro Conference on Real-Time Systems (ECRTS 2005),
Palma de Mallorca, Spain, July 6-8 2005.

[33] B. Andersson, K.Bletsas, and S. Baruah, “Scheduling arbitrary-
deadline sporadic task systems on multiprocessors,” in Proceedings
of the 29th Real-Time Systems Symposium (RTSS 2008), Barcelona,
Spain, November 30 - December 3 2008.

[34] S. Kato and N. Yamasaki, “Portioned static-priority scheduling on
multiprocessors,” in Proceedings of the 22nd International Symposium
on Parallel and Distributed Processing (IPDPS 2008), Miami, Florida,
USA, April, 14-18 2008.

[35] S. Kato, N. Yamasaki, and Y. Ishikawa, “Semi-partitioned schedul-
ing of sporadic task systems on multiprocessors,” in Proceedings
of the 21st Euromicro Conference on Real-Time Systems (ECRTS 2009),
Dublin, Ireland, July, 1-3 2009.

[36] S. Kato and N. Yamasaki, “Semi-partitioned fixed-priority schedul-
ing on multiprocessors,” in Proceedings of the 15th Real-Time and
Embedded Technology and Applications Symposium (RTSS 2009), San
Francisco, CA, USA, April 13-16 2009.

[37] A. Bastoni, B. B. Brandenburg, and J. H. Anderson, “Is semi-
partitioned scheduling practical?” in Proceedings of the 23rd Euromi-
cro Conference on Real-Time Systems (ECRTS 2011), Porto, Portugal,
July, 5-8 2011.

[38] P. Souto, P. B. Sousa, R. I. Davis, K. Bletsas, and E. Tovar, “Overhead-
aware schedulability evaluation of semi-partitioned real-time
schedulers,” in Proceedings of the 21st International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA
2015), Hong Kong, China, August 19-21 2015.

[39] C. Maia, P. M. Yomsi, L. Nogueira, and L. M. Pinho, “Real-time
semi-partitioned scheduling of fork-join tasks using work-stealing,”
EURASIP Journal on Embedded Systems, no. 1, p. 31, September 2017.

[40] L. George, P. Courbin, and Y. Sorel, “Job vs. portioned partitioning
for the earliest deadline first semi-partitioned scheduling,” Journal
of Systems Architecture, vol. 57, no. 5, pp. 518 – 535, May 2011.

[41] C. Hobbs, Z. Tong, and J. Anderson, “Optimal soft real-time semi-
partitioned scheduling made simple (and dynamic),” in Proceedings
of the 27rd International Conference on Real Time and Networks Systems
(RTNS 2019), Toulouse, France, November, 6-8 2019.

[42] M. L. Dertouzos and A. K. Mok, “Multiprocessor On-Line Schedul-
ing of Hard-Real-Time Tasks,” IEEE Transactions on Software Engi-
neering, vol. 15, no. 12, pp. 1497 – 1506, December 1989.

[43] N. Fisher, J. Goossens, and S. Baruah, “Optimal online multiproces-
sor scheduling of sporadic real-time tasks is impossible,” Real-Time
Systems, vol. 45, no. 1, pp. 26 – 71, June 2010.

[44] A. Block and J. H. Anderson, “Accuracy versus migration overhead
in real-time multiprocessor reweighting algorithms,” in Proceedings
of the 12th International Conference on Parallel and Distributed Systems
(ICPADS 2006), Minneapolis, USA, July, 12-15 2006.

[45] A. Block, J. H. Anderson, and G. Bishop, “Fine-grained task
reweighting on multiprocessors,” in Proceedings of the 11th Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA 2005), Hong Kong, China, July, 17-19 2005.

Daniel Casini Daniel Casini is Postdoctoral Re-
searcher at the Real-Time Systems (ReTiS)
Laboratory of the Scuola Superiore Sant’Anna
of Pisa. He graduated (cum laude) in Embed-
ded Computing Systems Engineering, a Master
degree jointly offered by the Scuola Superiore
Sant’Anna of Pisa and University of Pisa, and
received a Ph.D. in computer engineering at
the Scuola Superiore Sant’Anna of Pisa (with
honors), working under the supervision of Prof.
Alessandro Biondi and Prof. Giorgio Buttazzo. In

2019, he has been visiting scholar at the Max Planck Institute for Software
Systems (Germany). His research interests include software predictability
in multi-processor systems, schedulability analysis, synchronization
protocols, and the design and implementation of real-time operating
systems and hypervisors.

Alessandro Biondi Alessandro Biondi is Assis-
tant Professor at the Real-Time Systems (ReTiS)
Laboratory of the Scuola Superiore SantAnna.
He graduated (cum laude) in Computer Engi-
neering at the University of Pisa, Italy, within
the excellence program, and received a Ph.D.
in computer engineering at the Scuola Superiore
Sant’Anna under the supervision of Prof. Giorgio
Buttazzo and Prof. Marco Di Natale. In 2016,
he has been visiting scholar at the Max Planck
Institute for Software Systems (Germany). His

research interests include design and implementation of real-time oper-
ating systems and hypervisors, schedulability analysis, cyber-physical
systems, synchronization protocols, and component-based design for
real-time multiprocessor systems. He was recipient of six Best Paper
Awards, one Outstanding Paper Award, the ACM SIGBED Early Career
Award 2019, and the EDAA Dissertation Award 2017.

Giorgio Buttazzo Giorgio Buttazzo is full pro-
fessor of computer engineering at the Scuola
Superiore Sant’Anna of Pisa. He graduated in
Electronic Engineering at the University of Pisa
in 1985, received a M.S. degree in Computer
Science at the University of Pennsylvania in 1987,
and a Ph.D. in Computer Engineering at the
Scuola Superiore Sant’Anna of Pisa in 1991. He
is Editor-in-Chief of Real-Time Systems, Asso-
ciate Editor of the ACM Transactions on Cyber-
Physical Systems, and IEEE Fellow since 2012.

He has authored 7 books on real-time systems and over 200 papers in
the field of real-time systems, robotics, and neural networks.

15

APPENDIX A
C=D COMPUTATION FOR THE CASE OF A SINGLE
RESERVATION

Given a processor Pk to which only a reservation ri is allo-
cated, the largest zero-laxity budgetCt for a tail reservation rt
to be allocated to Pk can be computed in an exact manner by
solving a closed-form equation. This equation can be derived
by considering two cases, depending on the minimum inter-
arrival times of the two reservations. In both the cases, the
conditions under which the two reservations are schedulable
are discussed.

If Tt ≥ Ti, a tail reservation rt with Ct = Dt can interfere
with ri at most once. Therefore, ri is schedulable as long as
Ct ≤ Di − Ci. The reservation rt can be interfered by ri
only when rt is released after (or at) time Di −Dt relative to
the release of ri. To allow rt having always zero laxity (and
hence be never preempted by ri), ri must complete before
time Di −Dt, i.e., Ri ≤ Di −Dt = Di − Ct. Since, Tt ≥ Ti
at most one instance of rt can interfere with ri and, since
by assumption rt is released after or at Di −Dt, it follows
that ri is not preeempted by rt, i.e., Ri = Ci ≤ Di − Ct, and
hence Ct ≤ Di − Ci.

Now, let us analyze the case Tt < Ti. There can be two
cases: (i) the last instance of rt (relative to the beginning of
an instance of ri) released before the absolute deadline of
ri produces interference to ri, or (ii) otherwise. For each of
them, the schedulability of both ri and rt must be ensured.
Schedulability of ri in case (i). In this case, there are at
most Nu = dDi/Tte instances of rt that may interfere with
ri. They do not cause deadline misses to ri if both all of
them and ri itself complete before Di, i.e., NuCt + Ci ≤ Di.
Solving with respect to Ct, we obtain the constraint

Ct ≤ (Di − Ci)/Nu. (11)

Schedulability of ri in case (ii). In this case, there can be at
most N l = bDi/Ttc instances of rt that can interfere with ri.
Hence, ri is schedulable if N lCt + Ci ≤ Di, which gives

Ct ≤ (Di − Ci)/N l. (12)

Schedulability of rt in case (i). rt is never interfered by ri
if ri and all but the last one of the rt’s instances that interfere
with ri complete before Di − Dt, i.e., (Nu − 1)Ct + Ci ≤
Di −Dt, which gives

Ct ≤ (Di − Ci)/Nu. (13)

Schedulability of rt in case (ii). rt never suffers interference
from ri if, whenever the last instance of rt (released before
Di) is released, ri already completed its execution. The
maximum response time of ri occurs when the number of
preempting instances of rt is maximized, which requires rt
and ri to be simultaneously released. Under this scenario,
the last instance of rt is released no earlier than time N lTt
relative to the beginning of an instance of ri. By this time,
the system must have executed for Ci time units (the budget
of ri) plus N lCt time units, i.e., the total units of budget of
the instances of rt. Hence, it holds N lCt +Ci ≤ N lTt, which
gives

Ct ≤ (N lTt − Ci)/N l. (14)

Finally, by considering the logical OR between cases (i)
and (ii) we obtain:

Ct = max(
Di − Ci
Nu

,
N lTt − Ci

N l
). (15)

