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Abstract—The study of parallel task models executed with
predictable scheduling approaches is a fundamental problem for
real-time multiprocessor systems. Nevertheless, to date limited ef-
forts have been spent in analyzing the combination of partitioned
scheduling and non-preemptive execution, which is arguably
one of the most predictable schemes that can be envisaged to
handle parallel tasks. This paper fills this gap by proposing an
analysis for sporadic DAG tasks under partitioned fixed-priority
scheduling where the computations corresponding to the nodes of
the DAG are non-preemptively executed. The analysis has been
achieved by means of segmented self-suspending tasks with non-
preemptable segments, for which a new fine-grained analysis
is also proposed. The latter is shown to analytically dominate
state-of-the-art approaches. A partitioning algorithm for DAG
tasks is finally proposed. By means of experimental results,
the proposed analysis has been compared against a previously-
proposed analysis for DAG tasks with non-preemptable nodes
managed by global fixed-priority scheduling. The comparison
revealed important improvements in terms of schedulability
performance.

I. INTRODUCTION

Parallel task models have been introduced to cope with
the increasing hardware parallelism offered by multiprocessor
platforms. Such models are typically expressed with directed
acyclic graphs (DAGs) where nodes represent sequential com-
putations, also called sub-tasks, and edges represent prece-
dence constraints between sub-tasks.

Among the possible approaches to schedule parallel tasks
on a multiprocessor, global scheduling approaches are found
at one extreme, where sub-tasks are dispatched to the available
processors from a centralized (logical) ready queue, whereas
partitioned scheduling approaches are found at the other
extreme, for which each sub-task is statically allocated to one
of the available processors. Global scheduling benefits from
automatic load balancing of the workload at run-time, but
complicates worst-case execution time (WCET) analysis, tends
to introduce larger run-time overheads [1], and leads to numer-
ous challenges when predictable access to shared resources
(e.g., data objects stored in memories) is required. The main
challenge though, is that state-of-the-art analysis techniques
for global scheduling are still far from being effective even for
simpler sporadic sequential tasks [2]. Conversely, partitioned
scheduling requires finding a suitable partitioning of the tasks
(typically done off-line), which, if not properly performed, may
under-utilize the computing platform. However, it benefits of
a simplified WCET analysis, limited run-time overhead, and
many approaches to control memory contention on multipro-
cessors have been developed atop partitioned scheduling [3]–
[5].

Besides the different strategies to dispatch sub-tasks to
processors, scheduling algorithms can also be differentiated
by the way the processors are contended. When priority-
based algorithms are adopted, scheduling strategies can be
classified into preemptive and non-preemptive: the former
allows a task to take over the execution of another task, and
hence tend to contain the latencies incurred by high-priority
workload, whereas the latter allows running each sub-task until
completion after the access to the processor has been granted.
Intuitively, non-preemptive scheduling tends to decrease the
system schedulability when long sub-tasks are present [6], [7].

Nevertheless, the combination of partitioned scheduling
with non-preemptive execution is likely one of the most pre-
dictable solutions that can be envisaged to schedule workload
on a multiprocessor. To mention just a relevant characteristic
of this scheduling scheme, note that tasks can preload data in
local memories (such as scratchpads) before to start executing,
and then be sure that such data will not be evicted since
preemptions are forbidden (e.g., as proposed in [8]).

To better understand what could be a suitable choice to
schedule realistic complex parallel workloads, we performed
an analysis of the parallel execution graph generated by
Tensorflow, a popular framework for machine learning devel-
oped by Google, when inferring a state-of-the-art deep neural
network named InceptionV3 [9] on a 8-core Intel i7 machine
running at 3.5GHz1. The resulting graph is composed of
more than 34000 nodes (i.e., unitary sequential computations),
where only about 400 nodes (less than the 1.2% of the total
nodes) have execution times larger than 100 microseconds.
In this particular context of extreme parallelism, dispatching
the computations of such large parallel graphs by following
a global scheduling policy may result in large scheduling
overheads, especially if worst-case latencies are concerned.
Furthermore, the fact that such graphs tend to be composed
of a large number of nodes where most of them have a very
small execution time, suggests that a non-preemptive execution
may not be harmful for the system schedulability.

Unfortunately, besides being a fundamental problem of
high practical relevance, no results are available to analyze a
set of parallel tasks with complex precedence constraints under
partitioned fixed-priority scheduling without preemptions.

Paper contributions. This paper fills this gap by proposing
an analysis for the sporadic DAG task model [10] under
partitioned fixed-priority scheduling where each node (i.e.,
a sub-task) executes in a non-preemptive manner. As it is
illustrated in Figure 1, the proposed analysis studies each

1The stock Tensorflow configuration relying on the eigen library has been
used.



DAG task as a set of segmented self-suspending tasks [11]
where each execution segment is non-preemptively executed.
For this reason, a new fine-grained analysis for non-preemptive
self-suspending tasks is also proposed, which analytically
dominates the only existing and very recent result for this
model [12].

Furthermore, a partitioning algorithm is proposed to found
suitable allocations of the tasks to the available processors. The
algorithm is general enough for being integrated with multiple
fitting and task selection heuristics.

Finally, the proposed analysis approach has been compared
in an experimental study with previous work targeting global
scheduling of DAG tasks without preemptions. The collected
results show huge improvements in terms of schedulability.
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Figure 1. Illustration of the analysis framework proposed in this paper.

Paper Organization. The rest of this paper is organized as
follows. Section II presents the system model. Section III
reviews the related work. Section IV presents a schedulabil-
ity test for non-preemptive segmented self-suspending tasks,
developed by combining two different analyses. Section V
shows how to analyze DAG tasks by means of self-suspending
tasks leveraging the results of the previous section. Section VI
presents the partitioning algorithm. Section VII reports the
experimental results and Section VIII concludes the paper.

II. SYSTEM MODEL

The system considered in this paper consists of a set Γ
of n real-time tasks, each modelled as a directed acyclic
graph (DAG) [10]. Tasks are released sporadically and are ex-
ecuted on a multiprocessor platform composed of M identical
processors p1, . . . , pM . Each task τi = (Vi, Ei, Ti, Di, πi) is
characterized by a set Vi of nodes (or vertices), a set of directed
edges Ei, a minimum inter-arrival time Ti, a relative deadline
Di ≤ Ti, and a priority πi. The j-th node of task τi is denoted

by vij ∈ Vi and is statically allocated to processor P(vij). The
subset of nodes allocated to pk is denoted with Vi(k) ⊆ Vi. A
node vij is a sub-task of τi and is characterized by a worst-case
execution time (WCET) Cij . Nodes are connected by edges.
Edge eij,z ∈ Ei connects node vij to node viz of τi and defines
a precedence constraint between the two nodes, i.e., viz can
start executing only after the completion of vij . A task is said
to be pending when it has at least one released but uncompleted
node, while it is said to be self-suspended on a core pk when it
is pending and none of the uncompleted nodes of τi allocated
to pk have their precedence constraints satisfied.

Each task τi releases an infinite sequence of instances
(jobs) with a minimum inter-arrival time Ti. Each of such
jobs must execute all nodes in Vi within Di units of time after
its release. Each job of task τi must respect the precedence
constraints between its nodes given by the edges in Ei. All the
nodes execute with the same priority πi and are simultaneously
released when their job is released, although some of them may
not be ready due to precedence constraints.

Tasks are executed under partitioned fixed-priority schedul-
ing, where each node executes in a non-preemptive fashion.
Note that the fact that nodes are non-preemptive does not
prevent a high priority task to delay the execution of a lower
priority task.

The WCET of each node is assumed to include a bound on
the worst-case delay incurred by the node in accessing shared
memories or to load/unload local memories (such as scratch-
pads). Note that the combination of partitioned scheduling with
non-preemptive execution significantly simplifies the WCET
analysis and allows deriving tighter bounds on memory-related
delays [13] with respect to other scheduling approaches (e.g.,
preemptive scheduling [14]–[16]).

The set of tasks that have at least one node allocated
to pk is denoted by Γk. Tasks are independent, i.e., they
do not access mutually-exclusive shared resources. Mutually-
exclusive resources shared by nodes of the same tasks are
handled with precedence constraints or wait-free mechanisms2.

For each node, the set of immediate predecessors is defined
as ipred(vis) = {vij ∈ Vi : ∃ (vij , v

i
s) ∈ Ei}, whereas the

set of immediate successors is defined as isucc(vis) = {vij ∈
Vi : ∃ (vis, v

i
j) ∈ Ei}. Similarly, the sets of predecessors

pred(vis) and successors succ(vis) denote precedence relations
that are either direct (i.e., by means of an edge) or transitive
(i.e., by means of a set of edges involving intermediate nodes).

A node without incoming edges is referred to as a source
node, whereas a node without outgoing edges is denoted as
a sink node. For the sake of simplicity, this paper assumes a
single sink and source node. Whenever this assumption does
not hold, any DAG with multiple source/sink nodes can always
be transformed into a DAG with a single source/sink node by
adding an extra dummy source/sink node with computation
time equal to zero.

A formal definition of path is also required.

Definition 1: A path λi,z = (vis, . . . , v
i
e) of a DAG task

τi is an ordered sequence of nodes in Vi where vis and vie

2Note that the relaxation of this assumption requires support for locking
protocols, which is left as future work.



are source and sink nodes, respectively, and (i) ∀vij ∈ λi,z \
vie,∃!via ∈ λi,z such that (via, v

i
j) ∈ Ei; and (ii) ∀vij ∈ λi,z \

vis,∃!via ∈ λi,z such that (vij , v
i
a) ∈ Ei.

Informally, a path is an ordered sequence of nodes starting
from a source and ending in a sink where there is a direct
precedence constraint between any two adjacents nodes. The
set of all paths of a task is denoted by paths(τi).
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Figure 2. Example scheduling of a DAG task partitioned onto two processors.
Nodes v1, v2, v4, v5, and v7 are allocated to p1, while nodes v3 and v6
are allocated to p2. Note that the task is self-suspended on a processor pk
whenever, due to uncompleted predecessors on remote processors, there are
no nodes allocated to pk that are ready for being executed.

Figure 2 reports a sample schedule of a single task τi with
6 nodes partitioned onto two processors. Note that the task
is self-suspended in a processor whenever there are no ready
nodes to be executed due to unsatisfied precedence constraints.

To help the reader in following the adopted notation,
Table I reports the main symbols introduced in the system
model.

Table I. TABLE OF SYMBOLS

Symbol Description
pk k-th processor
Γk set of tasks with at least one node allocated on pk
τi i-th task
πi priority of τi
Di relative deadline of τi
Ti min. inter-arrival time of τi
vij j-th node of τi
Ci

j WCET of vis
Vi set of nodes of τi
Vi(k) subset of nodes of τi allocated to pk
λi,z z-th path of τi
paths(τi) set of all paths of τi
P(vis) processor in which vis is allocated to
ipred(vis) immediate predecessors of vis
isucc(vis) immediate successors of vis
pred(vis) predecessors of vis
succ(vis) successors of vis

III. RELATED WORK

The problem of executing real-time parallel tasks upon a
multiprocessor platform has been addressed in many works
during the last decade, also considering different task models.
For instance, in the fork-join task model [17], [18], tasks are
composed of interleaved sequences of sequential and parallel

segments, where each segment has a precedence constraint
with respect to preceding one. The DAG task model, intro-
duced by Saifullah et al. [10], reduces the above restriction
by representing each task by means of a direct acyclic graph.
Most of the works targeting the DAG model addressed global
preemptive scheduling. Three notable examples are the works
by Bonifaci et al. [19], Baruah [20] and Fonseca et al. [21], in
which a schedulability test for EDF and Deadline Monotonic
is proposed and improved, respectively. To the best of our
knowledge, the only (not flawed) work explicitly targeting
DAG tasks scheduled under partitioned fixed-priority policy
has been recently proposed by Fonseca et al. [22]. In their
work, the authors proposed a response time analysis based on
self-suspending task theory. Concurrently, Fonseca et al. [23],
Melani et al. [24] and Baruah et al. [25] introduced the
conditional DAG model, in which each task can consider
different execution flows.

Much closer to this work, Serrano et al. [26] provided
an analysis for limited-preemptive globally-scheduled DAG
tasks. Note that the authors denoted with limited-preemptive
scheduling the case in which each node of the DAG tasks
is non-preemptively executed (i.e., the same execution model
assumed here). The main difference with respect to this paper
is that they considered global scheduling in place of partitioned
scheduling.

Concerning non-preemptive uniprocessor scheduling,
Davis et al. [27] proposed a revised analysis for the CAN
bus (a notable example of non-preemptive scheduling),
individuating the self-pushing phenomenon. Later, Bril et
al. [28] found the same phenomenon when studying deferred
preemptions, providing a revised response time analysis. Yao
et al. [29] considered the problem of analyzing the feasibility
of a task set under uniprocessor fixed priority scheduling with
fixed preemption points. Nasri and Brandenburg [30] presented
an effective and practical implementation of non-preemptive
scheduling. Nasri et al. [7] proposes a schedulability test for
job sets scheduled under global non-preemptive scheduling.
It drastically improves the accuracy of the analysis in
comparison to the state-of-the-art, but requires to know the
arrival times of each jobs. Further information about limited
preemptive scheduling is reported in the survey by Buttazzo
et al. [31].

The problem of scheduling parallel tasks has also been
addressed in the context of distributed systems, which man-
dates partitioned scheduling. One of the first work is due to
Fohler and Ramamritham [32], which proposed an approach to
achieve a static schedule composed of tasks with precedence
constraints. In the context of non-static scheduling, a seminal
work is due to Tindell and Clark [33], who presented a holistic
schedulability analysis for sequences of events called trans-
actions, preemptively scheduled with fixed priorities. Later,
Palencia et al. refined their analysis, considering offsets [34]
and precedence relations [35]. Finally, Jayachandran and Ab-
delzaher [36] addressed the problem of transforming a single
DAG task scheduled in a distributed system in an equivalent
uniprocessor task set, providing a job-level analysis for the
end-to-end delay.

Note that this work also builds upon results for self-
suspending tasks. The interested reader can refer to the survey



of Chen et al. [37], while specific references are accordingly
provided in the following sections.

IV. ANALYZING NON-PREEMPTIVE SELF-SUSPENDING
TASKS

Following the results presented in [22], a parallel task
scheduled under partitioned scheduling can be analyzed by
means of segmented self-suspending tasks. For instance, con-
sider the example shown in Figure 2. By looking at the
scheduling of the parallel task separately on each core, it is
easy to observe that the resulting behavior is essentially the
one of a self-suspending task, i.e., a computational activity
that alternates execution phases (in this case, the execution of a
node) with self-suspension phases (in this case, the waiting for
a precedence constraint to be satisfied). The analysis of self-
suspending tasks is therefore fundamental for analyzing the
timing behavior of parallel tasks under partitioned scheduling.

Unfortunately, all results in the literature concerning the
analysis of self-suspending tasks targeted preemptive schedul-
ing, with the only notable exception being a very recent
work by Dong et al. [12]. Analyzing tasks in the presence
of both self-suspensions and non-preemptive execution poses
significant challenges that require to be addressed with new
specialized techniques that exploit the specific characteristics
of the combination of these two features. The objective of
this section is to propose fine-grained analysis techniques
for segmented self-suspending tasks where each execution
segment is non-preemptable, which will be used in the next
section as the foundation for analyzing parallel tasks.

To make the paper self-consistent, it is necessary to begin
by introducing the segmented self-suspending task model. A
segmented self-suspending task τ ss

i is characterized by an
ordered sequence of NS

i execution segments alternated by self-
suspensions, both with bounded duration and represented by
the tuple 〈Ci,1, Si,1, . . . , Si,NS

i −1, Ci,NS
i
〉, where Ci,j denotes

the WCET of the j-th execution segment of τ ss
i and Si,j

denotes the maximum duration of the j-th self-suspension of
τ ss
i . Like the parallel tasks introduced in Section II, each self-

suspending task τ ss
i is released sporadically with minimum

inter-arrival time Ti, relative deadline Di ≤ Ti, and fixed
priority πi. The symbol lp(i) denotes the set of tasks with
priority lower than πi, whereas hep(i) denotes the set of tasks
with priority higher than or equal to πi. Once a self-suspending
task is released, the first execution segment is also released. If
the j-th segment of τ ss

i completes its execution at time t, the
(j + 1)-th segment is released after time t and no later than
time t+ Si,j .

The analysis techniques presented in the following sections
assume the knowledge of a vector R of safe response-time
bounds for each execution segment. Since the response time
of the last segment corresponds to the response-time of the task
itself, the notation Ri = Ri,NS

i
is adopted to reduce clutter.

Section IV-A presents an approach to compute the set of
low-priority execution segments that can block a task. Then,
two different approaches are presented to compute response-
time bounds of self-suspending tasks with non-preemptive
execution segments. The first one aims at bounding the re-
sponse time of the whole task with an holistic approach
(Section IV-B), while the second one is based on bounding

the worst-case response time of each individual segment
(Section IV-C). These two approaches are then combined in
an hybrid response-time analysis algorithm (Section IV-D).
Finally, Section IV-E demonstrates that the analysis proposed
in this paper analytically dominates the one proposed in [12].

A. Computing non-preemptive blocking

Since preemptions are forbidden, a task τ ss
i can be blocked

by an execution segment of a lower-priority task whenever it
releases a new execution segment. To cope with this blocking
phenomenon, we identify a superset of the lower-priority
execution segments that can potentially block task τ ss

i . To this
end, let w be a window of length t at the beginning of which
τ ss
i is released and in which τ ss

i is pending. Let LPS(t) be
the multiset of segments of tasks in lp(i) that can overlap
with w and that may block τ ss

i for their WCET. The following
lemma establishes how to compute a multiset that includes the
WCETs of such segments.

Lemma 1: The WCET of each execution segment into
LPS(t) is included into the multiset3

Ci(t,R) =
⊎

τ ss
l ∈lp(i)

NS
l⊎

j=1

{Cl,j} ⊗ ηl,j(t,R), (1)

where ηl,j(t,R) = 1 +
⌊
t+Rl,j−Cl,j

Tl

⌋
.

Proof: Let Xl,j denote the j-th execution segment of τ ss
l .

Assume that Xl,j starts executing a first job ε time units before
the start of w, where ε is infinitesimally small. Clearly, that
first job of Xl,j may block τ ss

i for Cl,j − ε time units, which
tends to Cl,j when ε tends to 0. Now, because Xl,j’s worst-
case response time is upper bounded by Rl,j , and because the
minimum inter-release time of Xl,j is Tl, the next job of Xl,j

is released at the earliest Tl − (Rl,j − Cl,j) − ε time units
away from the beginning of w. Since w has length t and Xl,j

releases jobs with minimum inter-release time Tl, execution
segment Xl,j may start executing x additional jobs in w,
where x is computed as follows x =

⌈
t−Tl+(Rl,j−Cl,j)+ε

Tl

⌉
=⌈

t+(Rl,j−Cl,j)+ε
Tl

⌉
− 1 =

⌊
t+(Rl,j−Cl,j)

Tl

⌋
.

Each of such x jobs may execute for their WCET. There-
fore, each execution segment Xl,j may have (x + 1) =

1 +
⌊
t+(Rl,j−Cl,j)

Tl

⌋
jobs whose execution overlap with w and

that may block τ ss
i for their WCET. This proves the lemma.

Since a self-suspending task can be blocked by lower-
priority segments for a bounded number of times, it is con-
venient to define Bi(k, t,R) as the multiset that includes
the k largest elements into Ci(t,R) padded with zeros if
|Ci(t,R)| ≤ k. The multiset Bi(k, t,R) will be used as a
building block for the analysis techniques presented in the
following sections.

3The operator ] represents the union between multisets, e.g., {1, 1} ]
{1, 2} = {1, 1, 1, 2}, and the product operator ⊗ multiplies the number
of instances of every element in the multiset to which it is applied, e.g.,
{1, 2, 3} ⊗ 3 = {1, 1, 1, 2, 2, 2, 3, 3, 3}.



B. Approach A: holistic analysis

A first lemma is provided to compute the maximum lower-
priority blocking incurred by a self-suspending task.

Lemma 2: The maximum blocking incurred by a non-
preemptive self-suspending task τ ss

i in an arbitrary time win-
dow of length t is bounded by∑

b∈Bi(NS
i ,t,R)

b.

Proof: A self-suspending task τ ss
i can be blocked by a

lower-priority task every time it releases an execution segment,
and hence no more than NS

i times. By Lemma 1 and the
definition of Bi(k, t,R), multiset Bi(NS

i , t,R) includes the
NS
i largest execution segments of lower-priority tasks that can

overlap with τ ss
i while the latter is pending in a time window

of length t. Therefore, the sum of the elements in Bi(NS
i , t,R)

yields a safe bound on the blocking incurred by τ ss
i .

Then, a bound on the high-priority interference suffered
by a self-suspending task in a time window of length t is also
established.

Lemma 3: The maximum interference Ii(t) suffered by a
non-preemptive self-suspending task τ ss

i in an arbitrary time
window of length t is bounded by

Ii(t) = min

{ ∑
τ ss
h∈hep(i)

NS
h∑

r=1

(⌊
t+Rh,r − Ch,r

Th

⌋
+ 1

)
Ch,r ;

∑
τ ss
h∈hep(i)

(⌊
t+Rh − Ch

Th

⌋
+ 1

)
Ch

}
.

(2)

where Ch =
∑NS

h
r=1 Ch,r.

Proof: For fixed priority non-preemptive and limited-
preemptive task sets, the worst-case interference generated by
a higher-priority task τh in a window of length t is upper-
bounded by the maximum amount of workload that τh may
execute in a window of length (t+ ε) where ε is an arbitrarily
small positive number [27], [28].

Let Rh be an upper bound on the worst-case response
time (WCRT) of a higher priority self-suspending task τ ss

h
with minimum inter-arrival time Th. An upper-bound on the
maximum workload it may execute in a time window of length
(t+ ε) is given by Wh(t) =

⌈
t+ε+Rh−Ch

Th

⌉
Ch. This happens

when (1) the first job of τ ss
h has its start time aligned with the

start of the window; (2) that job starts executing exactly Ch
time units before reaching its WCRT; (3) the next jobs of τ ss

h
are released as early as possible; and (4) all jobs execute for
their WCET.

Using properties of the floor and ceil operators, we can
rewrite that equation as Wh(t) =

(⌊
t+Rh−Ch

Th

⌋
+ 1
)
Ch and

getting rid of the ε term. Summing the contribution of all
higher-priority tasks, this proves the second term in the min
operator of Equation (2).

Similarly, each execution segment Xh,r of a task τ ss
h

may be modelled as an independent sporadic task. Therefore,

applying the same argument then above, we have that the
maximum workload Xh,r may execute in a window of length
(t+ ε) is given by

(⌊
t+Rh,r−Ch,r

Th

⌋
+ 1
)
Ch,r, where Rh,r is

an upper bound on the WCRT of Xh,r.

Therefore, summing the contribution of all execution seg-
ments of all higher priority tasks, we prove the first term of
Equation (2). Hence concluding the proof.

Finally, the results of Lemma 2 and Lemma 3 can be
combined in the following theorem to bound the response time
of a self-suspending task.

Theorem 1: The response-time of a self-suspending task
τ ss
i is bounded by

Ri = R′i + Ci,NS
i
, (3)

where R′i is given by the least positive fixed point of the
following recursive equation:

R′i =

NS
i −1∑
j=1

(Ci,j + Si,j) +
∑

b∈Bi(NS
i ,R

′
i,R)

b+ Ii(R
′
i), (4)

where Ii(t) is given by Lemma 3.

Proof: Since segments are executed in a non-preemptive
manner, the response time of a task is equivalent to the latest
release time of its last segment (relative to the task release),
plus the WCET of that segment. Note that the release time of
the last segment is determined by the sum of (i) the WCETs
of the preceding segments, (ii) the sum of the maximum
duration of the task suspensions, and (iii) the maximum
cumulative delay incurred by all segments. The first term in
Equation (4) accounts for (i) and (ii). Then, analogously to
standard response-time analysis, a recursive equation can be
formulated to cope with (iii), provided that safe bounds are
adopted for the low-priority blocking and the high-priority
interference that the task can incur.

Given a tentative response-time R′i for τ ss
i , by Lemma 2

the second term of Equation (4) provides a bound on the
maximum low-priority blocking. By Lemma 3, the third term
of Equation (4) provides a bound on the maximum high-
priority interference. The WCET of the last segment is finally
accounted for in Equation (3). Hence the theorem follows.

Corollary 1: The response time of the j-th execution seg-
ment of task τ ss

i is upper-bounded by

Ri,j = Ri −
NS

i∑
k=j+1

Ci,k −
NS

i −1∑
k=j

Si,k (5)

where Ri is given by Theorem 1.

Proof: After the j-th execution segment of task τ ss
i

completes, τ ss
i must still execute all subsequent suspension

and execution segments. Therefore, if by contradiction we
were to assume that the j-th execution segment of τ ss

i were to
complete at time t > Ri,j , then τ ss

i would complete no earlier
than t+

∑NS
i

k=j+1 Ci,k +
∑NS

i −1
k=j Si,k > Ri in the worst case.

Therefore, Ri would not be a WCRT for τ ss
i , a contradiction.



C. Approach B: segment-level analysis

Differently from the approach presented above, this section
aims at deriving an individual response-time bound for each
execution segment. To precisely identify the analysis window
for each segment, the following lemma establishes a bound on
the maximum amount of time it can last from the release of a
task and the release of one of its segments.

Lemma 4: The latest release time of the k-th segment of
τ ss
i , relative to the release time of the task itself, is upper-

bounded by

ri,k(R) =

{
0 if k = 0,

Ri,k−1 + Si,k−1 otherwise.

Proof: The first segment (k = 0) is released when the task
is released, hence ri,k(R) = 0. For the arbitrary k-th segment
to be released, with k > 0, the (k − 1)-th segment must be
completed and the suspension between the (k − 1)-th and the
k-th segment must be elapsed. The lemma follows by noting
that the (k − 1)-th segment completes no later than Ri,k−1

as the latter is by definition an upper bound on its response
time, and that the above mentioned suspension has a duration
bounded by Si,k−1.

Then, Lemma 5 below, is provided to bound the delay
incurred by a segment in the presence of both low-priority
blocking and high-priority interference.

Lemma 5: Assuming that an execution segment of τ ss
i is

blocked by a low-priority task for b time units, a bound
∆i(b,R) on the maximum time it can be delayed from its
release up to the time it starts executing is given by the least
positive fixed point of the following recursive equation:

∆i = b+ Ii(∆i), (6)

where Ii(t) is given by Lemma 3.

Proof: It directly follows from the standard response-
time analysis for non-preemptive tasks [27] after recalling
Lemma 3.

Note that Lemma 5 is independent from the actual segment
of τ ss

i that is delayed. It is because segments of τ ss
i are non-

preemptive. Hence, different from the preemptive case, the
delay they suffer does not depend on their execution time.

Lemmas 4 and 5 are then combined in the following
theorem to bound the response time of an execution segment.

Theorem 2: The response-time of the k-th segment of a
self-suspending task τ ss

i is bounded by

Ri,k =

k∑
j=1

Ci,j +

k−1∑
j=1

Si,j +
∑

b∈Bi(k,ri,k(R),R)

∆i(b,R), (7)

where ri,k(R) is given by Lemma 4 and ∆i(b,R) is the fixed-
point given by Lemma 5.

Proof: The response-time of the k-th segment is given by
the sum of (i) the WCET of the k first segments of τ ss

i , (ii)
the sum of the maximum duration of the suspensions preceding
the k-th segment, and (iii) the maximum delay incurred by the
first k segments. The first two terms in the equation above

account for (i) and (ii). By Lemma 4, ri,k(R) upper-bounds
the latest release of the k-th segment, hence by Lemma 1
multiset Bi(k, ri,k(R),R) includes the k largest WCETs of the
low-priority execution segments that can potentially block the
first k segments of τ ss

i . By leveraging the results of Lemma 5
applied for each blocking term into Bi(k, ri,k(R),R) we get
a bound on the delay incurred by each of the k first execution
segments. These delays are summed up in the third term of
the above equation. Hence the theorem follows.

Clearly, to compute a bound on the response-time of a self-
suspending task τ ss

i it is sufficient to use the above theorem for
its last segment (i.e., the NS

i -th execution segment). However,
ri,NS

i
(R) is recursively defined (see Lemma 4) and depends

on the response time of all other segments of τ ss
i . Therefore,

Theorem 2 must be called for all execution segments of τ ss
i

starting from the first one.

Both Theorem 1 and Theorem 2 offer safe response-time
bounds for each task τ ss

i and its execution segments: hence,
the minimum of the two is still a safe response-time bound.

It is worth mentioning that the analysis of non-
preemptive periodic/sporadic tasks without self-suspensions
usually requires to deal with the (so-called) self-pushing phe-
nomenon [27]. Yet, none of the above theorems make specific
assumptions concerning self-pushing: this is due to the fact
that Lemma 3 provides a conservative bound on the number of
interfering high-priority jobs that holds as long as fixed-priority
scheduling is used, i.e., independently of whether preemption
is enabled or not. More precisely, this is possible due to the
use of the jitter-like term Ri,k − Ci,k, which, in this case, is
conservative enough to cope with both (i) the self-suspending
behavior [37] and (ii) possible task self-pushing.

D. Response-time analysis algorithm

This section shows how Theorem 1 and Theorem 2 can
be combined to implement a schedulability test for segmented
self-suspending tasks whose segments are non-preemptively
executed. The main idea is to increasingly refine the response-
time bounds in R with an iterative algorithm that always takes
the minimum of the response-time bounds provided by the two
theorems.

Algorithm 1 reports the pseudo-code for the proposed
approach. First, the response-time bounds R are initialized
(line 3) for each segment to ensure a sufficient condition for
schedulability, i.e., by setting them equal to the deadline of the
task minus the sum of the WCETs of the following segments.
If a segment was to finish later than that time, then the system
would not be schedulable since the task WCRT would then
be larger than its deadline (see Corollary 1). Then, within
a while loop the algorithm computes the response time of
each task by leveraging Theorem 1, and for each segment by
leveraging Theorem 2. The minimum between that last bound
and the bound defined in Corollary 1 is then taken as an upper
bound for the response time of each segment (line 12). The
algorithm terminates as soon as the obtained response-time
bounds allow deeming the system schedulable (line 16). If at
least one of the new response-time bounds obtained from this
step is lower than those in R, then the algorithm continues
to iterate; otherwise no further improvement is possible and
hence the system is deemed unschedulable. Finally, at every



iteration, the algorithm updates the bounds in R for which
an improved bound has been found (line 21). Convergence of
the algorithm is guaranteed by the fact that all the formulas
involved in Theorems 1 and 2 are monotone in the components
of vector R.

Algorithm 1 Schedulability test for segmented self-suspending
tasks with non-preemptable execution segments.

1: procedure ISSCHEDULABLE(Γss)
2: ∀τ ss

i ∈ Γss,∀j = 1, . . . , NS
i ,

3: Ri,j = Di −
∑NS

i
k=j+1 Ci,k −

∑NS
i −1

k=j Si,k.
4: atLeastOneUpdate ← TRUE
5: while (atLeastOneUpdate==TRUE) do
6: atLeastOneUpdate ← FALSE
7: for all τ ss

i ∈ Γss do
8: RA

i ← Theorem 1
9: for j = 1, . . . , NS

i do
10: RB

i,j ← Theorem 2

11: Ri,j = min
{
RB

i,j , R
A
i −

∑NS
i

k=j+1 Ci,k

12: −
∑NS

i −1

k=j Si,k

}
13: if Ri,j < Ri,j then
14: atLeastOneUpdate ← TRUE
15: end if
16: end for
17: end for
18: if ∀τi ∈ Γss, Ri,NS

i
≤ Di then

19: return TRUE
20: end if
21: ∀τi ∈ Γss, ∀j = 1, . . . , NS

i , Ri,j ← min{Ri,j , Ri,j}
22: end while
23: return FALSE
24: end procedure

E. Analytical dominance

This section demonstrates that the response-time bound
provided by Theorem 1 analytically dominates the jitter-based
analysis recently proposed by Dong et al. [12], which is
reported in the following lemma.

Lemma 6: [Lemma 4 in [12]] The response time of a self-
suspending task is bounded by the solution of the following
recursive equation:

Ri = Ci + Si +NS
i × CLP

MAX +
∑

τh∈hep(i)

⌈
Ri+Dh−Ch

Th

⌉
Ch, (8)

where Ci =
∑NS

i
j=1 Ci,j , Si =

∑NS
i −1

j=1 Si,j , and CLP
MAX the

maximum amount of delay incurred by τi when it is blocked
by a low-priority task.

Lemma 7 proves that Theorem 1 dominates Lemma 6.

Lemma 7: The response time bound that can be obtained
by solving Equation (3) is always smaller than or equal to the
bound obtained with Equation (8).

Proof: Let us rewrite Ri by injecting Equation (4) into
Equation (3), we obtain

Ri = Ci,NS
i

+

NS
i −1∑
j=1

(Ci,j + Si,j)

+
∑

b∈Bi(NS
i ,R

′
i,R)

b+ Ii(Ri − Ci,NS
i

). (9)

To prove the lemma we show that all the terms of Equa-
tion (9) are lower than or equal to those of Equation (8), hence
establishing a dominance relationship between the correspond-
ing fixed points.

Since Ci =
∑NS

i
j=1 Ci,j and Si =

∑NS
i −1

j=1 Si,j , note
that the first two terms in Equation (9) are equal to the
first two terms in Equation (8). Furthermore, since a task
is schedulable only if its response time is smaller than Di,
we have Rh ≤ Dh. Assuming Ci,NS

i
> 0, we thus have∑

τh∈hep(i)

⌈
t+Dh−Ch

Th

⌉
Ch ≥

∑
τh∈hep(i)

⌈
t+Rh−Ch

Th

⌉
Ch ≥∑

τh∈hep(i)

(⌊
t+Rh−Ch−Ci,NS

i

Th

⌋
+ 1

)
Ch ≥ Ii(t − Ci,NS

i
),

where Ii(·) is defined as in Equation (2) (note the second term
in the minimum). Finally, by definition Bi(NS

i , R
′
i,R), is the

multiset that contains the WCETs of the NS
i largest execution

segments that can block τi. Recalling the definition of CLP
MAX

provided by Dong et al. (Lemma 6), it follows that the sum
of the elements into Bi(NS

i , R
′
i,R) is lower than or equal to

NS
i × CLP

MAX. Hence the lemma follows.

V. ANALYSIS OF DAG TASKS WITHOUT PREEMPTIONS

As discussed in Section IV, when partitioned scheduling is
adopted, each core perceives the execution of a DAG task as
an interleaved sequence of execution and suspension regions.
Indeed, each path λi,z (i.e., a valid sequence of nodes) of the
DAG describing τi can easily be mapped to a corresponding
self-suspending task, provided that the first and the last node of
the path are allocated to the same core pk. In this case, nodes
in λi,z executing on pk can be seen as execution regions, while
the execution of the nodes mapped on other cores correspond
to suspension regions.

The major issue in following this approach resides in
the fact that the inter-core dependencies among nodes must
correctly be reflected to the parameters of self-suspending
tasks—specifically to their suspension times. In fact, given
a path with nodes that span across different processors, the
suspension times seen on a processor pk depend on the
response times of the nodes allocated to the other processors
6= pk, which in turn may be delayed by nodes executing on
pk hence originating a circular dependency.

A methodology to overcome such dependency has been
recently proposed by Fonseca et al. [22], who studied this
problem in the context of preemptive DAG tasks. In this paper
we build upon the results presented in [22] to enable the
analysis of DAG tasks without preemptions.

To make the paper self-consistent, it is necessary to con-
cisely recall the method presented in [22].



A. Summary of the method by Fonseca et al. [22]

The method proposed in [22] separately computes the
response time R(λi,z) of each path λi,z , and derives the overall
response time of each DAG task τi as:

Ri = max
λi,z∈paths(τi)

{R(λi,z)} . (10)

Each path is independently studied with the recursive
algorithm reported in Appendix A (Algorithm 5). At a high
level, the algorithm recursively divides a path into smaller ones
for which the suspension time is calculated first. The recursion
stops (base case) when the analyzed sub-path contains only
nodes allocated to a single processor (line 7). The response
time for such sub-path can be directly computed as it can be
modelled as self-suspending tasks with null suspension times.
In our case, Theorems 1 and 2 can be applied to analyze the
resulting self-suspending tasks. Each time the response time of
a sub-path is found, it is propagated in a global data structure
(denoted by RTs) that will be used to assign suspension times
(see Section V-B) of sub-paths analyzed at a shallower level of
the call tree of recursive Algorithm 5. Then, whenever a sub-
path that represents a valid self-suspending task is found (i.e.,
the first and the last node are allocated to the same processor),
the corresponding response time can be computed. The last
step is reached by the algorithm only when all sub-paths have
been explored, and hence the corresponding suspension times
of the initially analyzed path λi,z are certainly known. The
WCRT of λi,z can then be computed with Theorems 1 and 2.

B. Generating self-suspending tasks from paths

Our objective is to integrate the analysis presented in
Section IV with the path analysis algorithm discussed above,
which must also be properly wrapped within the iterative
response-time procedure reported by Algorithm 1. These con-
tributions were not part of [22] as the authors considered
preemptive scheduling and different analysis techniques for
self-suspending tasks (i.e., using mathematical programming).

As a prerequisite, it is necessary to formalize how a self-
suspending task can be instantiated from a given path of a DAG
task, paying careful attention to the fact that nodes are executed
non-preemptively. The adopted strategy is summarized by the
pseudo-code reported in Algorithm 2. The algorithm takes as
input a path λi,z that must begin and end with nodes allocated
to the same processor pk (also specified as input). It then
returns a self-suspending task modelling the execution of λi,z
on pk, and an upper bound on the total suspension time that
the self-suspending task may incur.

Algorithm 2 is used in Algorithm 5 to create a self-
suspending task whenever a sub-path that begins and end on
the same processor is found. It then computes the WCRT of
that equivalent self-suspending task using Theorems 1 and 2.

Algorithm 2 works as follows. For each node vij in the path
(iterated at line 5), if vij is allocated on pk then the algorithm
creates a corresponding execution segment with length equal
to the WCET Cij of the node (line 11); otherwise, it creates
a suspension region with length equal to the response-time
bound of the node (line 14). Furthermore, if two consecutive
nodes in the path are allocated on the same processor, the
algorithm inserts a suspension region with length zero (line 9):

under non-preemptive scheduling this case is important as it
will correspond to a scheduling event in which the execution
of the path can be delayed by high-priority workload.

Finally, to bound the cumulative suspension time that the
generated task can incur (i.e., an upper bound on the total
suspension time S =

∑NS−1
j=1 Sj), the remote interference

suffered by λi,z from each processor 6= pk is computed at
lines 19–23 of Algorithm 2. In Algorithm 2, P(λi,z) denotes
the set of processors to which at least one node of path λi,z
is assigned.

Algorithm 2 Constructing the self-suspending task τ ss corre-
sponding to path λi,z .

1: global variables RTs(vij , vis), bound on the remote interference
suffered by sub-paths starting with vij and ending with vis

2: end global variables
3: procedure DERIVESSTASK(λi,z, τi, pk)
4: flag ← false
5: for each vij ∈ λi,z do
6: pj ← P(vi,j)
7: if pj = pk then
8: if flag then
9: Add a suspension region to τ ss of length 0

10: end if
11: Add an execution region to τ ss of length Ci

j

12: flag ← true
13: else
14: Add a suspension region to τ ss of length RTs(vij , v

i
j)

15: flag ← false
16: end if
17: end for
18: SUB ← 0
19: for each pj ∈ P(λi,z) \ pk do
20: vis ← first node of λi,z allocated to pj
21: vie ← last node of λi,z allocated to pj
22: SUB ← SUB +RTs(vis, v

i
e)

23: end for
24: return (SUB, τ ss)
25: end procedure

C. Integrating with the analysis of self-suspending tasks

After a self-suspending task is constructed with Algo-
rithm 2, it remains to show how both Theorems 1 and 2 can be
applied to study the response time of a path. Two major aspects
must be considered: (i) how to account for the interference and
blocking incurred by a path (and hence by the corresponding
self-suspending task); and (ii) how to exploit the cumulative
suspension bound SUB offered by Algorithm 2.

A first observation for (i) is that the nodes that are either
predecessors or successors of those in the path under analysis
cannot interfere with the path itself. The remaining nodes
constitute the (so-called) self interference of a DAG task [22],
whose contribution can be bounded as follows.

Lemma 8: Given a path λi,z of task τi that starts and ends
with nodes vis and vie, respectively, both allocated onto the
same processor pk, let self(λi,z) be the set of self-interfering
nodes defined as

self(λi,z) = Vi(k) \ λi,z \ {prec(vis) ∪ succ(vie)}.



The self interference of λi,z on pk is then bounded by

SI(λi,z) =
∑

vij∈self(λi,z)

Cij .

Proof: Since tasks have constrained deadlines, only one
instance of τi can be pending at a time. Hence at most one
instance of the nodes of τi allocated to pk (i.e., in the set Vi(k))
can interfere with λi,z when executing on pk. Furthermore, the
nodes preceding the first node in λi,z are already completed
when λi,z executes, while the successors of the last node in
λi,z cannot execute while λi,z executes since their precedence
constraints are not yet satisfied. Finally, λi,z does not generate
interference on itself. Hence, self(λi,z) establishes a super-set
of the nodes that can interfere with λi,z on pk and the lemma
follows.

Besides self-interference, a path executing on a processor
pk can also suffer the interference generated by nodes of
higher-priority tasks and be blocked by nodes of lower-priority
tasks. Coping with these two phenomena does not require
introducing additional terms with respect to those reported in
Theorems 1 and 2. In fact, note that both the blocking and
interference terms used in those two theorems do not rely on
the structure of high- and low-priority tasks, but rather on their
WCET, response-time bound, and period only. Consequently,
when analyzing a path of a DAG task τi, we only need to keep
track of a safe upper bounds Rk,l on the response time of each
node of the other DAG tasks 6= τi.

As detailed in [22], each node vis of high-priority DAG-
tasks can be modeled as a self-suspending task with a single
execution region, whose interference is accounted by means
of Equation (2). Such nodes can be subject to release jitter
due to the precedence constraints in the corresponding DAGs:
note that this phenomenon is already accounted in Equation (2)
by means of the jitter terms Ri,j − Ci,j . Nodes of low-
priority DAG-tasks can be modeled in the same manner, so
that the corresponding blocking times can be accounted by
means of Lemma 1. It is worth observing that both such ways
of accounting for high-priority interference and low-priority
blocking are conservative, but they can carry pessimism in
the analysis as they do not exploit the information provided
by the precedence constraints into the DAGs. Indeed, due
to precedence constraints, there may exist some mutually-
exclusive groups of nodes that can delay the path under
analysis, while in our case all of them are considered to
contribute to the worst-case response-time. The exploitation
of this observation is left as future work.

Overall, to study the response time of a path λi,z as a self-
suspending task, the only extension required to the analysis
presented in Section IV consists in coping with the self-
interference SI(λi,z), which corresponds to workload with
the same priority of the task under analysis. To support
arbitrary priority tie-breaking, self-interference can conserva-
tively accounted as high-priority interference, hence summing
SI(λi,z) to both Equations (4) and (6). Also in this case,
note that the analysis could be further improved by deriving
segment-specific bounds for the self-interference to be used in
Theorem 2: this improvement is not discussed here due to lack
of space and is left as future work.

Finally, recalling aspect (ii) mentioned above, it is worth

observing that the suspension bound SUB offered by Algo-
rithm 2 can be used to tighten the response-time of a path by
simply taking the minimum between SUB and the sum of the
suspension times considered by Theorems 1 and 2.

D. Response-time analysis for a DAG

The analysis of each path described in the previous sections
can be now integrated within the iterative scheme proposed in
Algorithm 3. The main idea is to traverse the paths of the
DAG tasks under analysis multiple times, iteratively refining
the response-time bounds of the nodes. First, the matrix Ri,j
containing response time upper bounds for each node vij ∈ Vi
is initialized to Di −

∑
vik∈succ(v

i
j):P(vij)=P(vik) Ci,k (line 3).

Note that it is a safe necessary condition for schedulability,
as in the worst-case the successors of vik running on the same
processor have to be sequentially executed for their WCETs.
Then, within a loop, the algorithm starts analyzing all paths of
all DAG tasks into Γ (line 9). Each time a path is analyzed,
the maximum response-time bound of the corresponding task
is updated (line 12), as the WCRT of a DAG task is determined
by the maximum response times among its paths (see Eq. (10)).

Note that the same node vij can be encountered multiple
times when traversing all paths of a DAG task. To update the
corresponding response-time bound Ri,j , it is then necessary
to keep track of the maximum response-time Ri,j of vij
experienced in all paths, which can be extracted from the
global data structure RTs populated by Algorithm 5. This is
performed with auxiliary variables R∗i,j managed at line 13.

Similarly as discussed in Section IV-D, the algorithm
terminates as soon as the response-time bounds obtained at
one iteration allow deeming the task set schedulable. If the
task set cannot be deemed schedulable but at least one of the
response-time bounds Ri,j can be improved (line 19), then the
algorithm continues to iterate, otherwise no improvements are
possible and the task set is deemed unschedulable.

VI. TASK PARTITIONING

This section presents an algorithm for partitioning parallel
tasks upon the various cores of a multicore platform. The
algorithm leverages the analysis presented in the previous
section and is general enough to be combined with several
partitioning heuristics such as First-Fit, Worst-Fit, and Best-
Fit, and different orderings with which the tasks are selected.

Starting from a task set Γ under analysis, the main idea
behind the algorithm consists in incrementally testing the
schedulability of a task subset Γ′ ⊆ Γ in which each node of Γ
is added one at time and assigned to processors by following
a fitting heuristic.

The pseudo-code of the proposed algorithm is reported in
Algorithm 4. The algorithm takes as input the task set Γ, a
strategy Θ to order the tasks in Γ, and a strategy Ψ to order
the M processor cores. Tasks are selected for being partitioned
by following the order provided by Θ (line 3). Then, for
each of such tasks τi, a corresponding task τ ′i is created with
the same parameters of τi but with an empty graph (line 4).
Subsequently, the nodes of τi are incrementally assigned to
τ ′i , having care of preserving the corresponding precedence
constraints. Every time a node vij

′ is added, the algorithm tries



Algorithm 3 Schedulability test for DAG tasks with non-
preemptable nodes.

1: procedure ISSCHEDULABLEDAG(Γ)
2: ∀τi ∈ Γ, ∀vij ∈ τi,
3: Ri,j ← Di −

∑
vi
k
∈succ(vi

j):P(vi
j)=P(vi

k
) Ci,k.

4: ∀τi ∈ Γ, Ri ← 0
5: atLeastOneUpdate ← TRUE
6: while (atLeastOneUpdate=TRUE) do
7: atLeastOneUpdate ← FALSE
8: ∀τi ∈ Γ,∀vij ∈ τi, R∗i,j ← 0
9: for all τi ∈ Γ do

10: for all λi,z ∈ paths(τi) do
11: RTi,z ← PathAnalysis(λi,z, τi,Γ, TRUE)
12: Ri ← max(Ri, RTi,z)
13: ∀vi,j ∈ λi,z, R

∗
i,j ← max(R∗i,j , Ri,j}

14: end for
15: end for
16: if ∀τi ∈ Γ, Ri ≤ Di then
17: return TRUE
18: end if
19: if ∃R∗i,j : R∗i,j < Ri,j then
20: atLeastOneUpdate ← TRUE
21: end if
22: ∀τi ∈ Γ,∀ vij ∈ τi, Ri,j ← min{R∗i,j , Ri,j}
23: end while
24: return FALSE
25: end procedure

to see whether the partial task set obtained up to the current
iteration (i.e., Γ′ ∪ τ ′i ) is schedulable by assigning vij

′ to a
processor pk (Algorithm 3 is used). In this step, processors
are selected according to the order provided by Ψ (line 10).
If the partial task set is schedulable by assigning vij

′ to a
particular processor pk, then the corresponding node in the
original task τi is assigned to the same processor (line 13).
Otherwise, if no allocations for vij

′ are found such that the
partial task set is schedulable, then the system is deemed
unschedulable and the algorithm terminates (line 18). Finally,
if the algorithm succeeds in allocating all the nodes, then the
system is schedulable with the partitioning found during its
execution.

Possible options for strategy Θ are order tasks by (i)
increasing or decreasing priorities, (ii) increasing or decreasing
deadlines, or (iii) increasing or decreasing utilization. Con-
cerning strategy Ψ, effective options include the adoption of
the First-fit, Worst-Fit, and Best-Fit heuristics with respect to
the processors utilizations. These options are explored in the
experimental results presented in Section VII.

VII. EXPERIMENTAL RESULTS

This section reports on an experimental study we conducted
to assess the performance of the proposed schedulability test
and partitioning algorithm for DAG tasks. Our test has been
compared against the only, at least to the best of our records,
schedulability test available for limited-preemptive parallel
tasks, which has been proposed by Serrano et al. [26]4.

DAG tasks have been generated using the generator de-
signed by the authors of [24], and originally made available

4Note that [26] corrects a previous work by the same authors that has been
found to be flawed.

Algorithm 4 Schedulability test integrated with task partition-
ing.

1: procedure ISSCHEDULABLEWITHPARTITIONING(Γ,Θ,Ψ)
2: Γ′ = ∅
3: for each τi ∈ Γ ordered by following Θ do
4: τ ′i = (∅, ∅, Ti, Di, πi)
5: for each vij ∈ Vi do
6: vij

′
= vij

7: V ′i = V ′i ∪ vij
′

8: Connect nodes in V ′i according to Ei

9: found = FALSE
10: for each pk ordered by following Ψ do
11: P(vij

′
)← pk

12: if isSchedulableDAG(Γ′ ∪ τ ′i ) then
13: P(vij)← pk
14: found = TRUE
15: break
16: end if
17: end for
18: if not found then
19: return FALSE
20: end if
21: end for
22: Γ′ = Γ′ ∪ τi
23: end for
24: return TRUE
25: end procedure

online.5 The generator presented in [24] is quite flexible and
allows to tune different parameters. For this reason, it has
also been adopted for the experimental evaluation of other
recent papers targeting the analysis of DAG tasks including
the one of Serrano et al. considered here, hence enabling a fair
comparison with respect to the results of [26]. The topology of
each DAG is originated from a simple fork-join task composed
of two nodes connected by an edge. A recursive procedure is
triggered in a probabilistic manner to expand nodes by parallel
graphs. The probability for a node to fork is set to 0.8. The
maximum number of nested forks is limited to two for all
the presented experiments. Each fork generates a number of
branches uniformly chosen in the interval [2, npar], where npar
is a generation parameter. The resulting fork-join tasks is then
converted into a DAG by randomly adding edges between
nodes with probability 0.2, avoiding the introduction of cycles.
A very similar setting of the generator has been also used
in [26]. The interested reader can refer to [24] for a more
detailed description of the generator.

The computation time of each node Ci,j is randomly
generated in the range [1, 100] with uniform distribution.
Individual task utilizations are generated with the UUnifast
algorithm [38], starting from a fixed number of tasks and a
target total system utilization U =

∑
τi∈Γ Ci/Ti, where Ci is

the sum of the WCETs of the nodes of a DAG task. Minimum
inter-arrival times are computed as Ti = Ci · Ui. All the
generated tasks have an implicit deadline, i.e., Di = Ti.

Several partitioning heuristics have been implemented and
tested. In particular, we tested the case in which the nodes
of the DAG tasks are partitioned by using the Worst-Fit,

5The generator is no more available at the link reported in [24], but the
interested reader will find it at: https://retis.sssup.it/∼d.casini/resources/DAG
Generator/cptasks.zip

https://retis.sssup.it/~d.casini/resources/DAG_Generator/cptasks.zip
https://retis.sssup.it/~d.casini/resources/DAG_Generator/cptasks.zip
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Figure 3. Schedulability ratio obtained with different scheduling approaches (global vs. partitioned) and partitioning heuristics, as function of the overall
system utilization. The results are related to four representative configurations identified in the caption of each graph.

First-Fit, and Best-Fit w.r.t. to the individual utilization of
the nodes. Then, the resulting allocation is tested with the
analysis proposed in Section V. Since only the Worst-Fit
heuristic led to reasonable schedulability performance, it is the
only utilization-based partitioning scheme that is considered
in this section. It is denoted as WF_UTIL in the follow-
ing. Furthermore, we also tested the algorithm presented in
Section VI. In the following, we report the results for the
cases where the algorithm has been applied with tasks sorted
by decreasing priorities (strategy Θ for Algorithm 4) and
the First-Fit, Best-Fit, and Worst-Fit heuristics with respect
to the processor utilizations (strategies Ψ for Algorithm 4).
Such approaches are referred to as FF_ALGO, BF_ALGO, and
WF_ALGO, respectively. To better explore the schedulability
performance that can be achieved with a typical off-line
partitioning of DAG tasks, we also consider the union of
all the partitioning schemes (i.e., the logic OR of all the
corresponding schedulability tests): this approach is denoted
as PARTITIONED. Finally, the approach of [26] is referred
to as GLOBAL.

Figure 3 reports the results of four representative con-
figurations in which the total system utilization U has been
varied. For each tested value of U , 500 task sets have been
randomly generated and analyzed. The generation parame-
ters corresponding to each configuration are reported in the
captions above the graphs. Running times are discussed in
Appendix B.

All plots in Figure 3 show that WF_ALGO performs al-
ways better than BF_ALGO and FF_ALGO (whose curves are
always overlapped in the plots). Also note that BF_ALGO
and FF_ALGO by themselves achieve worse performance
than those achieved by GLOBAL. Conversely, WF_ALGO and
WF_UTIL tend to perform way better, already improving on
GLOBAL in many cases (e.g., see Fig. 3(b) and Fig. 3(d))
reaching a performance gap up to 70%. Finally, the obtained
results show that the combination of all these partitioning
approaches is winning. Indeed, as it can be noted from all the

graphs, PARTITIONED achieves huge performance improve-
ments over GLOBAL in all the tested scenarios, reaching up to
100% improvements in some of the tested configurations (e.g.,
see Fig. 3(b) for U = 5). From the whole set of experiments
we conducted, we observed that such improvements tend to
increase as the number of processors increases.

VIII. CONCLUSION AND FUTURE WORK

This paper presented a schedulability analysis for DAG
tasks scheduled under partitioned fixed-priority scheduling
where each node is non-preemptively executed. The proposed
analysis has been built upon a fine-grained analysis for seg-
mented self-suspending tasks, also proposed in this work,
which analytically dominates the state-of-the-art analyses. A
partitioning algorithm has been also presented. The algorithm
is general enough for being integrated with several task or-
derings and fitting heuristics. Experimental results have finally
been presented comparing our partitioned approaches against
an analysis for DAG tasks under global scheduling without
preemptions. The results showed very large improvements with
performance gaps up to 100% under several configurations.

Future work should target a deeper investigation of par-
titioning strategies for parallel tasks and possibly integrate
memory contention and data communication delays in the
analysis. Furthermore, the authors believe that it is worth
studying whether the analysis precision can be improved by
carefully refining some of the approaches presented in this
work.

APPENDIX A

For the sake of completeness, the algorithm to analyze the paths
of a DAG task presented in [22], and summarized in Section V-A,
is reported in Algorithm 5. The algorithm takes as input the path
λi,k, the related DAG task τi, and the task set to which it belongs.
Algorithm 5 is a recursive function. Therefore, the parameter isRoot
is a boolean variable used to distinguish recursive calls from the



Algorithm 5 Computes the WCRT of a path λi,k of τi
1: global variables RTs(vij , vis), bound on the remote interference

suffered by sub-paths starting with vij and ending with vis
2: end global variables
3: procedure PATHANALYSIS(λi,k, τi,Γ, isRoot)
4: vifirst ← first node in λi,k

5: vilast ← last node in λi,k

6: pss ← P(vi,first)
7: if |P(λi,k)| = 1 then . Base-case
8: (SUB , τSS) ← deriveSSTask(λi,k, τi, pss)
9: R(λi,k)← WCRT(τSS , λi,k, τi,Γ, S

UB , pss)
10: RTs(vifirst, v

i
last)← R(λi,k)

11: else
12: if P(vifirst) = P(vilast) then . Valid SS task
13: λ′ ← λi,k \ {vifirst, vilast}
14: PathAnalysis(λ′, τi,Γ, false)
15: (SUB , τSS) ← deriveSSTask(λi,k, τi, pss)
16: R(λi,k)← WCRT(τSS , λi,k, τi,Γ, S

UB , pss)
17: RTs(vifirst, v

i
last)← R(λi,k)− SUB

18: else . Analyze sub-paths containing SS tasks
19: plast ← P(vilast)
20: vij ← first node vij ∈ λi,k : P(vij) = plast
21: λ′ ← nodes of λi,k from vij to vilast
22: PathAnalysis(λ′, τi,Γ, false)
23: λ′′ ← λi,k \ {vilast}
24: PathAnalysis(λ′′, τi,Γ, false)
25: end if
26: end if
27: if isRoot = TRUE then
28: RT ← 0
29: for each pj ∈ P(λi,k) do
30: vipfirst ← first node allocated to pj ∈ λi,k

31: viplast ← last node allocated to pj ∈ λi,k

32: RT ← RT +RTs(vipfirst, v
i
plast)

33: end for
34: end if
35: end procedure

first call to PathAnalysis. Starting from a path λi,k, a bound
for each of its suspension regions is derived by recursively calling
PathAnalysis on smaller paths (lines 14, 22, and 24). It is worth
noting that the recursive call at line 14 ensures that the length of
the suspension regions are known at lines 15 and 16 to convert the
sub-path λi,k into an equivalent self-suspending task and compute
its WCRT, respectively. All WCRT values computed at deeper levels
of the recursive calls of Algorithm 5 are stored into the global data
structure RTs(vij , v

i
s), which stores the cumulative response time of

all execution regions of a self suspending task that starts at node vij
and terminates at node vis. The reason to subtract SUB from R(λi,k)
is explained in [22]. DeriveSSTask is given in Algorithm 2 and
explained in Section V-B. It converts each node vij ∈ λi,k allocated to
processor pss into an equivalent execution region of a self-suspending
task, while all nodes executing on other processors are treated as
suspension regions. The duration of each suspension region is given
by the WCRT of the corresponding node in λi,k and is therefore
obtained from the global data structure RTs. The WCRT function
uses Theorems 1 and 2 to compute the WCRT of the equivalent self-
suspending task τ ss, where the nodes of the other DAG tasks are
modeled as detailed in Section V-C. Finally, lines 28-32 are used to
derive an upper-bound on the overall response time of the path, which
is given by the sum of the cumulative response time bounds on the
nodes of the inner self-suspending tasks allocated on each processor
pj ∈ P(λi,k).

APPENDIX B
RUNNING TIMES

The analysis and partitioning algorithms proposed in this work
have been implemented in C++ and compiled with the Microsoft
VC++2015 compiler (with default compiling options in release
mode). The experiments have been executed on an Intel i7 machine
running at 4 GHz with 32 GB of RAM. Literal and sequential
implementations have been realized, i.e., not optimized. In the tested
configurations discussed in Section VII we measured the running time
of the WF_ALGO approach, hence accounting for the execution of the
partitioning algorithm (Algorithm 4) and the analysis of DAG tasks
(Algorithm 3 called multiple times). We observed a maximum running
time below 10 seconds, and an average running time below 2 seconds.
These measurements show that our approach is compatible with the
typical time-frame of off-line design activities.
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