
Optimal Design for Reservation Servers under Shared Resources

Alessandro Biondi∗, Alessandra Melani∗, Marko Bertogna†, Giorgio C. Buttazzo∗

∗Scuola Superiore Sant’Anna, Pisa, Italy
†University of Modena and Reggio Emilia, Modena, Italy

Email: {alessandro.biondi, alessandra.melani, g.buttazzo}@sssup.it, m.bertogna@unimore.it

Abstract

Modularity and hierarchical-based design are crucial fea-

tures that need to be supported in complex embedded systems

characterized by multiple applications with timing requirements.

Resource reservation is a powerful scheduling mechanism for

achieving such goals and providing temporal isolation among

different real-time applications. When different applications share

mutually exclusive resources, a precise feasibility analysis can

still be performed in isolation, using specific resource access

protocols, taking into account only the application features and

the reservation parameters. This paper presents a methodology

for selecting the parameters of each reservation in order to

guarantee the feasibility of the served applications and minimize

the required bandwidth.

1. Introduction

Resource reservation is a general scheduling mechanism pro-

posed to partition a computational resource among multiple appli-

cations to avoiding reciprocal interference. If an application A is

assigned a fraction α (also referred to as reservation bandwidth)

of the entire processor, it behaves as it were executing alone on a

slower processor (with speed α times the original speed) entirely

dedicated to it, independently of the execution behavior of the

other applications. To achieve this goal, the kernel must not only

guarantee that each application receives the required amount of

bandwidth, but it must also prevent that it may consume more than

its allocated fraction, to protect the other applications running in

the system (temporal protection). The advantage of this method

is that each task can be guaranteed in isolation, independently of

the behavior of the other tasks. Resource reservation servers have

been proposed both under fixed-priority [1] and deadline-based

scheduling [2], [3].

The basic idea behind a reservation server is to provide a

periodic service, executing the application for Q units of time

every P units, where Q is denoted as the server budget, P
as the server period, and α = Q/P as the server bandwidth.

A reservation server is said to be hard if, when the budget is

exhausted, the application is blocked until the beginning of the

next period, at which the budget is replenished. A reservation

server is said to be soft if, when the budget is exhausted, the

application remains active and can be scheduled at a lower

priority. Reservations have also been used in the context of

hierarchical scheduling, to design real-time systems as a set of

modular components, each handling its own application, which

can be scheduled by a desired scheduling algorithm [4], [5].

When different applications share mutually exclusive resources,

temporal isolation can be broken and proper resource access

protocols need to be used to prevent that a budget exhaustion

inside a critical section introduces extra interference on other

applications.

To address this problem, different approaches have been pre-

sented in the literature. Abeni and Buttazzo proposed a simple

solution under the Constant Bandwidth Server (CBS) [3], known

as budget overrun: when the server budget is exhausted inside a

resource, the server is allowed to consume extra budget until the

critical section is completed. Davis and Burns [6] analyzed this

approach under fixed priorities and proposed two versions of this

mechanism:

• Overrun with payback, where the server pays back in the

next execution instant, in that the next budget replenishment

is decreased by the overrun value;

• Overrun without payback, where no further action is taken

after the overrun.

Note that the budget overrun technique does not increase the

response time of the served tasks, but implies a greater bandwidth

requirement for the reservation. To avoid breaking the isolation

property, such an extra bandwidth need to be subtracted from the

server taking into account the largest possible overrun.

Another protocol, known as SIRAP, was proposed by Behnam

et al. [7] and consists of introducing a budget check before

granting the access to a resource: if the budget is sufficient to

complete the critical section, the task can access the resource,

otherwise the access is postponed until the next budget replen-

ishment. This approach does not affect the execution of tasks in

other reservations, but penalizes the response time of the served

tasks.

A third protocol, named BROE (Bounded-Delay Resource

Open Environment), was proposed by Bertogna et al. [8]. Ac-

cording to this method, when a task wants to enter a critical

section and the budget is not sufficient for its completion, a full

budget replenishment is planned at the earliest possible time that

preserves both the server bandwidth and the maximum service

delay. The server is blocked until the budget replenishment.

A simple test for verifying the feasibility of a real-time

application scheduled by Earliest Deadline First (EDF) under

a BROE reservation server, was first presented by Bertogna et

al. [8] using an upper bound of the server supply function. Later,

Biondi et al. [9] derived the exact supply function for BROE

and proposed a more precise schedulability test for EDF, using

which BROE has been shown to outperform SIRAP under many

configuration parameters.

Although feasibility tests are essential to guarantee the timing

behavior of real-time applications handled inside reservations, no

method is available today for determining the server parameters

(Q,P) as a function of the application characteristics, exploiting

the exact supply function derived for BROE. This paper therefore

presents a methodology for designing the optimal parameters of a

BROE server, showing how to use the improved supply function

at server design time with pseudo-polynomial complexity. A

complete design algorithm has been developed according to the

proposed methodology, maintaining a modular approach that

analyzes each application in isolation, without considering the

specific parameters of the other components.

Paper structure. The remainder of this paper is organized as

follows. Section 2 presents the system model, the global frame-

work and the assumptions used throughout the paper. Section 3

briefly recalls the local schedulability test for real-time task sets

running within a BROE reservation server, using the improved

supply bound function presented in [9]. Section 4 analyzes the

design problem, deriving the exact feasibility region of a BROE

server for a given application. Section 5 shows how to explore

the feasibility region to find the point that minimizes the required

server bandwidth. Section 6 discusses the complexity of the

proposed approach, proving that it is still pseudo-polynomial

in the number of tasks. Section 7 presents the related works,

explaining how the presented work improves over previously

proposed suboptimal approaches. Finally, Section 8 states our

conclusions and future work.

2. System model and framework

This paper considers a uniprocessor hierarchical system S
consisting of a number N of subsystems Sk ∈ S, k = 1, . . . , N ,

each implemented by a BROE [8] reservation server (also denoted

as Sk), characterized by a budget Qk and a period Pk. The rules

of a BROE server are summarized in Appendix A. For the sake of

simplicity, we consider a two-level hierarchical system, although

our contributions can be extended to a generic n-level hierarchical

system, using the compositional real-time scheduling framework

proposed by Shin and Lee [5]. The global scheduler is based

on a Hard Constant Bandwidth Server [3], [10], a bandwidth

preserving mechanism that determines which subsystem can

access the CPU at any given time. Each subsystem uses a local

scheduler to select the running task on the subsystem. In this

paper, EDF is considered as local scheduling policy for each

subsystem.

2.1. Task model

Each subsystem Sk runs an application Γk consisting of nk

periodic or sporadic preemptive tasks. Each task τi is character-

ized by a worst-case execution time (WCET) Ci, a period (or

minimum interarrival time) Ti, and a relative deadline Di ≤ Ti.

Within each subsystem, tasks are indexed by increasing relative

deadlines.

2.2. Resource model

Two types of resources can be defined:

• Local resource: a resource shared among tasks within the

same subsystem;

• Global resource: a resource shared among tasks belonging

to different subsystems.

In the following, Zi,j denotes the longest critical section of τi
related to resource Rj and δi,j denotes the WCET of Zi,j .

Definition 1: The Resource Holding Time Hk,j(i) of a global

resource Rj accessed by a task τi ∈ Γk is the maximum

amount of budget consumed by Sk between the lock and the

corresponding release of Rj performed by τi.
Note that, if global resources are accessed by disabling local

preemption, Hk,j(i) is equal to δi,j of task τi ∈ Γk. If local

preemption is not disabled, Hk,j(i) takes into account the worst-

case local interference experienced by τi during the lock of Rj .

Details on how to compute Hk,j(i) are reported in Appendix C.

In addition, the maximum Resource Holding Time on a re-

source Rj for an application Γk is defined as

Hk,j = max
τi∈Γk

{Hk,j(i)}. (1)

Finally, the maximum Resource Holding Time for an applica-

tion Γk is defined as

Hk = max
j
{Hk,j}. (2)

To access shared resources in such a hierarchical framework,

the Stack Resource Policy (SRP) can be used as it is for local

resources, while it has to be extended [8], [11] for global

resources. In the following, the global version of SRP presented

in [8], [11] is adopted, referred to as SRP-G.

We use the notation {x}0 to denote {0} ∪ {x}.

2.3. Framework

Each subsystem Sk, running an application Γk, is implemented

through a reservation server, and is characterized by an interface

consisting of three parameters: a budget Qk, a period Pk and a

maximum resource holding time Hk.

We assume the existence of a global integration level which

is in charge of admitting or rejecting each Sk in the system.

Each subsystem under analysis can be integrated according to

a global schedulability test which only requires the knowledge

of its interface. Hence, the parameters of the interface constitute

the only information exported to the integration level, while the

specific parameters of the tasks running inside the application are

completely hidden to the other subsystems and not visible at the

integration level.

Since the applications may share a certain number of global

resources, we assume that the integration level specifies a System

Maximum Resource Holding Time H. This poses a constraint

on the resource holding time Hk of each application that shares

global resources and wants to be admitted in the system. As a

result, the maximum Resource Holding Time of each application

will never exceed H. In formulas:

∀k = 1, . . . , N Hk ≤ H. (3)

Moreover, for the BROE server to work correctly, the maxi-

mum resource holding time of any server must be smaller than

the corresponding server budget:

∀k = 1, . . . , N Hk ≤ Qk. (4)

2.4. Global integration

The admission control at the global level is performed through

a schedulability check based on the interface parameters specified

by each application in the system.

According to SRP-G, a server Sk can be blocked for a time

BG
k by a server Sℓ with period Pk < Pℓ. This happens when Sℓ

locks a resource R, which is used by Sℓ and by a server Sh with

period Ph ≤ Pk. Formally, the global blocking factor BG
k can be

expressed as follows:

BG
k = max

Pℓ>Pk

{Hℓ,j | Rj used by Sh ∧ Ph ≤ Pk}0. (5)

The following Theorem has been proved in [8].

Theorem 1: A set of BROE servers S1, . . . , SN may be com-

posed upon a unit-capacity processor without missing any dead-

line if

∀k = 1, . . . , N
∑

i:Pi≤Pk

αi +
BG

k

Pk

≤ 1. (6)

Focusing on the definition of BG
k expressed by Equation (5), we

observe that BG
k depends on the resources accessed by the other

servers, the relative resource holding times of each server for each

resource, and the relative order of server periods with respect

to Pk. The modularity of the design approach does not allow

the server interfaces to contain information on which resource is

accessed by each server, and for how long. The only information

that is “propagated” to the other subsystems is the maximum

resource holding time Hk. Then, assuming all servers access all

resources, Equation (5) becomes

BG
k = max

Pℓ>Pk

{Hℓ}. (7)

3. Local schedulability analysis for BROE

For the sake of simplicity, from now on, the index k associated

to the parameters of a server Sk may be removed in those

formulas that refer to a single generic server.

The local schedulability analysis of a reservation server can

be performed using the test proposed by Shin and Lee [5],

later extended by Baruah [12] to account for shared resources.

According to this test, a task set Γ is schedulable by EDF on a

reservation server S if

∀t > 0 BL(t) + dbf(Γ, t) ≤ sbf(S, t) (8)

where

dbf(Γ, t)
def
=

n
∑

i=0

⌊

t−Di + Ti

Ti

⌋

Ci

is the demand bound function of the task set Γ (i.e., the maximum

computational demand of Γ in any interval of length t > 0),

sbf(S, t) is the supply bound function of the server S (i.e., the

minimum amount of service time provided by the server in any

interval of length t > 0), and BL(t) is the maximum blocking

time in the interval (0, t] due to local resources, computed as the

maximum critical section of tasks having deadline > t, accessing

local resources common to at least one task with deadline ≤ t,
that is,

BL(t) = max{δi,j | Di > t ∧
∃τℓ accessing Rj with Dℓ ≤ t}.

(9)

In the original analysis of the BROE protocol proposed by

Bertogna et al. [8], the supply bound function in (8) is a linear

lower bound sbfL(S, t) of a bounded-delay partition (α, ∆),

where α is the server bandwidth and ∆ is the maximum service

delay:

sbfL(S, t) = α(t−∆), (10)

with α = Q/P and ∆ = 2(P −Q). The supply bound function

adopted in the original BROE analysis does not include the worst-

case resource holding time H of the server, because the linear

lower bound sbfL(S, t) already accounts for the worst-case delay

introduced by the global resource access policy [8]. However,

exploiting the information on H it is possible to improve the

supply bound function, allowing a tighter schedulability analysis,

as shown by Biondi et al. in [9].

In this work, the exact supply bound function of BROE

presented in [9] is adopted, which can be formally expressed

as follows:

sbfB(S, t) =











t−∆− (k − 1)(P −Q) tA < t ≤ tB

kQ− kH tB < t ≤ tC

α(t−∆) tC < t ≤ tD

(11)

where

k =

⌈

t−∆

P

⌉

(12)

and tA, tB , tC , and tD are reported in Table 2. The function is

equal to 0 in the interval [0,∆]. More details on the derivation

of Equation (11) can be found in Appendix B.

tA ∆+ (k − 1)P
tB ∆+ (k − 1)P + (Q− kH)
tC ∆+ kP − kH/α
tD ∆+ kP

Table 1: Values for sbfB .

Figure 1 shows a graphical comparison between the periodic

supply function, its linear bound and the exact supply bound

function derived in [9]. As clear from the figure, the new supply

bound function introduces some additional areas over the linear

bound sbfL(t). Such areas allow the test in Equation (8) to derive

a tight schedulability condition, maintaining the same pseudo-

polynomial computational complexity of the original test based on

the linear sbfL(t). The computation of the improved supply bound

function for a given time t requires indeed just an additional

modulo operation to identify the kth period using Equation (12),

which is done in constant time.

Note that after ⌈Q/H⌉ periods, the supply bound function

collapses to the linear sbfL(t). Therefore, the smaller H with

respect to Q, the larger the improvement with respect to sbfL(t).
In the extreme case in which no global resource is shared

(H = 0), the sbfB(t) coincides with the supply bound function

0 t

Q

2Q-2H

3Q-3H

sbf(t)

∆

H
α

2H
α

Q-H

2Q

∆+ P ∆+ 2P

Figure 1: Supply bound functions: periodic (dashed line), linear

α − ∆ (dotted line), and improved sbfB proposed for BROE

(continuous line).

sbfP (t) of a periodic server. Conversely, when H = Q, sbfB(t)
is always equal to sbfL(t).

Different methods have been proposed in the literature to

reduce resource holding times by limiting (or disabling) local

preemption when accessing global resources [13]. We will show

that in almost all cases of interest it is possible to have a

minimal resource holding time equal to the critical section length,

so magnifying the improvement allowed by the supply bound

function presented in this section.

In the following, we will also show that the improved supply

bound function can be also used to optimally solve the problem

of selecting the server parameters for a given application, with

pseudo-polynomial complexity. The modularity of BROE’s orig-

inal approach is preserved, as the local schedulability of each

application is still validated in isolation, without requiring the

knowledge of the parameters of the other applications.

4. Optimal design for the BROE server

Given a real-time application Γ to be scheduled within a

reservation, this section describes how to derive the BROE server

parameters P and Q that minimize the bandwidth required to

guarantee the feasibility of Γ under EDF. Here, the bandwidth to

minimize includes the runtime overhead σ required to perform a

context switch. Hence, for a server that allocates a budget Q every

period P , the effective bandwidth required by the reservation is

considered to be:

α′ =
Q+ σ

P
= α+

σ

P
. (13)

One may wonder why not including the resource holding time

H in the objective function to minimize, as it also affects the

system schedulability through the blocking term of Equation (6).

The reason for ignoring H descends from a very nice property

of the BROE server, which allows significantly decreasing the

resource holding time of each task by executing each global

critical section non-preemptively, without any schedulability loss.

In particular, we will hereafter show that any application Γ that

can be feasibly scheduled with EDF+SRP on a BROE server with

α ≤ 1/2 can also be feasibly scheduled with EDF on the same

BROE server using a simple non-preemptive locking protocol.

In this way, the resource holding time of any task τi ∈ Γ is

equal to the corresponding critical section length δi,j , so that the

maximum resource holding time of the application Γ is

H = max
i,j

δi,j . (14)

Besides the significant reduction in the resource holding time, the

above formula shows that H is no more dependent on the other

server parameters P and Q. As shown in Appendix C, this is not

the case when using preemptive locking protocols, like SRP, for

which the computation of H is influenced by P and Q through

∆/2 = P−Q. Moreover, it is worth noting that the value given by

Equation (14) cannot be further reduced by artificially increasing

the local resource ceiling as proposed in [13], because the value

of H is already the minimum possible one.

Therefore, there is no reason for including H in the objective

function, as in most cases of interest this parameter is fixed,

independent from P and Q, and already minimized, so that no

further design choice can be taken to further reduce the impact

of H on the global system schedulability.

Theorem 2: [Theorem 7 in [8]] Given an application Γ access-

ing a globally shared resource Rj that can be feasibly scheduled

with EDF+SRP upon a BROE server with parameters (P,Q), if

∀τi ∈ Γ δi,j ≤
∆
2 , then Γ can be EDF-scheduled on the same

BROE server executing each critical section of Rj with local

preemptions disabled.

Using the above result, the following theorem can be proved.

Theorem 3: If an application Γ can be feasibly scheduled with

EDF+SRP upon a BROE server with α ≤ 1/2, then Γ can be

EDF-scheduled on the same BROE server executing each critical

section with local preemptions disabled.

Proof: By definition, ∀i, j δi,j ≤ H . Then, by Equation (4),

∀i, j δi,j ≤ Q.

Assuming α ≤ 1/2,

∆/2 = P −Q = Q

(

1

α
− 1

)

≥ Q.

Merging both inequalities, the precondition of Theorem 2 holds:

∀i, j δi,j ≤ ∆/2,

thus the theorem follows.

The significance of the above theorem is manyfold: (i) it

minimizes H improving global schedulability; (ii) it allows using

a very simple non-preemptive locking protocol, reducing the

scheduling overhead; (iii) it minimizes the number of preemptions

experienced by an application while holding a lock, improving the

predictability of such critical chunks of code; and (iv) it simplifies

the computation of the resource holding times, without the need

for iterative methods.

Moreover, the precondition α ≤ 1/2 is applicable to most cases

of practical interest. Clearly, there could be at most one server in

the system that does not meet this condition, as the sum of all

server bandwidths cannot exceed the available processing power.

For this reason, the design space exploration presented in the

next sections will be limited to BROE servers with α ≤ 1/2. If a

server is needed with α > 1/2, it can be easily treated separately.

Note that for such a server, Theorem 2 can still be used to execute

non-preemptive critical sections smaller than ∆/2.

4.1. BROE design space

The objective of the proposed design method is to find, for each

application Γ, the optimal server parameters (Popt, Qopt) that

minimize the bandwidth α′, under the following schedulability

constraint:

∀t ∈ dSet BL(t) + dbf(Γ, t) ≤ sbf(S, t), (15)

where dSet is the set of all time instants in which the test has to

be performed.

Exploiting the stepwise definition of the dbf, the cardinality

of dSet can be bounded by applying techniques from [14],

considering only values of t satisfying t ≡ (Di + βTi), for all

τi ∈ Γ, and some integer β ≥ 0. By Equation (9), it is easy to see

that the blocking BL(t) is null for t ≥ Dmax
def
= maxni=1{Di}.

Condition (15) then becomes

dbf(Γ, t) ≤ sbf(S, t)

Let U =
∑n

i=0(Ci/Ti) and Ui = (Ci/Ti). By removing the floor,

dbf(Γk, t) can be upper bounded as follows:

dbf(Γ, t) ≤

n
∑

i=0

(

t−Di + Ti

Ti

)

Ci = Ut+

n
∑

i=0

(Ti −Di)Ui

which is a line with slope U . Moreover, sbf(S, t) can be lower

bounded by sbfL(S, t), which is a line with slope α. If U < α,

the two lines intersect at

t∗ =
α∆+

∑n

i=0(Ti −Di)Ui

α− U
. (16)

After t∗, dbf(Γ, t) will then always be lower than or equal to

sbf(S, t), so that Condition (15) is satisfied. In order to check

the feasibility of application Γ on a BROE server, it is then

sufficient to check Condition (15) for all points ti ∈ dSet until

max{Dmax, t
∗}. This bound is pseudo-polynomial if the applica-

tion utilization is a priori bounded from above by a constant less

than α. Note that U ≤ α is a necessary condition for feasibility.

Alternatively, Condition (15) can be checked until the least com-

mon multiple of all tasks periods THP def
= lcm{T1, T2, . . . , Tn}.

The computational demand of the task set Γ associated to the

application Γ is expressed as a set of pairs (wi, ti), where the

values ti are all the test points in dSet, and wi = BL(ti) +
dbf(Γ, ti). Equation (15) is then also equivalent to

∀ti ∈ dSet wi ≤ sbf(S, ti). (17)

In order to compute the optimal pair (Popt, Qopt), we proceed

by defining the feasibility region for each demand point (wi, ti)
as

D(wi, ti) = {(P,Q) | wi ≤ sbf(S, ti)}. (18)

Each D(wi, ti) represents the region in the P-Q plane of the

feasible server parameters that guarantee the schedulability of the

task set for the corresponding pair (wi, ti), according to Equation

(17).

Since the EDF schedulability test (17) must be satisfied for

each point in dSet, the exact feasibility region of the optimization

problem is described as the intersection in the P-Q plane of all

the regions found at each step i, that is,

D =
⋂

di∈dSet

D(wi, ti). (19)

Hence, D represents all the possible pairs (P,Q) satisfying the

local schedulability test given in Equation (17).

While Equation (18) is valid regardless of the specific supply

function adopted, when using the exact BROE supply function

expressed by Equation (11), the analytical expression of D(w, t)
can be found by inverting Equation (17), assuming sbf(S, t) =
sbfB(S, t).

Due to the piecewise definition of sbfB(S, t), it is necessary to

consider three separate cases (neglecting the trivial case for t ≤
∆, where sbfB(S, t) = 0), determining three different feasibility

regions:

• Region 1: tA < t ≤ tB ,

t−∆− (k − 1)(P −Q) ≥ w ⇔ Q ≥
w − t

k + 1
+ P (20)

with

tA < t ⇔ P <
t+ 2Q

k + 1
(21)

t ≤ tB ⇔ P ≥
t+Q+ kH

k + 1
. (22)

• Region 2: tB < t ≤ tC :

kQ− kH ≥ w ⇔ Q ≥
w

k
+H (23)

with

tB < t ⇔ P <
t+Q+ kH

k + 1
(24)

t ≤ tC ⇔ P ≥
tQ+ 2Q2

2Q+ kQ− kH
. (25)

• Region 3: tC < t ≤ tD:

α(t−∆) ≥ w ⇔ 2Q2 +Q(t− 2P)− Pw ≥ 0 (26)

with

tC < t ⇔ P <
tQ+ 2Q2

2Q+ kQ− kH
(27)

t ≤ tD ⇔ P ≥
t+ 2Q

2 + k
. (28)

Please note that k, defined according to Equation (12), depends

on P , Q and t.
Unlike sbfL(S, t), which can be described only in terms of

P and Q, the improved supply function sbfB(S, t) also depends

on the maximum resource holding time H of the application.

However, as explained in the previous subsection, this parameter

can be considered constant and does not represent an output for

the optimization procedure.

Let Conj(w, t) be the j-th feasibility region. Formally,

Con1(w, t) := {(P,Q) | (20) ∧ (21) ∧ (22)}; (29)

Con2(w, t) := {(P,Q) | (23) ∧ (24) ∧ (25)}; (30)

Con3(w, t) := {(P,Q) | (26) ∧ (27) ∧ (28)}. (31)

The union of such sets determines the region D(w, t) for any

value of w and t, that is:

D(w, t) =
⋃

1≤j≤3

Conj(w, t). (32)

Combining these regions according to (19), we obtain the final

feasibility region composed of all pairs (P,Q) that guarantee the

schedulability of the application:

D =
⋂

di∈dSet

D(wi, ti) =
⋂

di∈dSet

⋃

1≤j≤3

Conj(wi, ti). (33)

4.2. Reducing the design space

In this section, the feasibility region D is refined by introducing

some generic constraints that are valid for each test point, with

the purpose of eliminating impossible scenarios. The feasibility

region including such additional constraints will be denoted as

D+.

A constraint on the server period can be derived considering the

blocking time, given by Equation (7), introduced on the servers

by global resources. The effect of the global blocking BG is

illustrated in Figure 2.

����

��������������

Executing

Blocked

BG Q

P
t

Figure 2: Global blocking of a server S.

In order to guarantee the schedulability of the server, it is easy

to see that each server S must have at least a period

Pmin = BG +Q. (34)

Note that this is only a necessary condition, since it does not take

into account the interference of the other servers. Considering

the interference coming from the other servers would be in

contrast with our modular design approach, which does not allow

selecting the parameters of a server at design time based on

the parameters of other subsystems1. If this were not the case,

every time a new server enters/leaves the system, or any server

parameter is changed, it would be necessary to re-evaluate the

design parameters of all the servers in the system, significantly

increasing the overhead and the complexity of the design process.

Moreover, selecting the parameters of a server based on the other

system components would lead to a circular dependency in the

server design process, because the server period selection has a

clear impact on the interference to/from the other subsystems.

1. Note that all subsystems are instead considered at integration time, when
checking the global schedulability of all servers in the system. However, the
global schedulability test is based on the reduced set of parameters specified in
the interface of each server.

This circular dependency could only be handled by considering

a global design method that takes into account all parameters

(not just the interfaces) of all applications composing the system

at once. Besides being in contrast with our modular approach,

such a global method has a huge computational complexity,

limiting its applicability to static systems without the typical on-

line variations of open environments.

However, using expression (34) in the selection of the param-

eters of a server would still give rise to a circular dependency,

because the server period selection impacts the blocking to/from

the other subsystems (see Equation (7)). To maintain the modu-

larity of our approach, a more general upper bound for BG can

be derived considering that in our framework H ≤ H. From

Equation (7), it follows BG ≤ H. Hence, a lower bound on the

minimum period that does not depend on the parameters of the

other servers can be expressed as

P ≥ H +Q. (35)

A simple constraint on the maximum service delay ∆ can be

obtained by

∆ ≤ ∆max
def
= Tmin

def
= min{T1 − C1, . . . , Tn − Cn}, (36)

because no task can stand a service delay greater than its period.

Being ∆ = 2(P −Q), it follows

P ≤
Tmin

2
+Q. (37)

Considering α ≤ 1
2 ,

∆ = 2(P −Q) = 2P

(

1−
1

α

)

≥ P.

An upper bound on the server period can then be derived from

Equation (36):

P ≤ Tmin. (38)

Finally, a lower bound on the server budget is derived from

Equation (4):

Q ≥ H. (39)

As shown in Figure 3, Equations (35), (37), (38), and (39)

determine a closed region with trapezoidal shape in the P -Q
plane, denoted as G:

G
def
= {(P,Q)|



















P ≥ Q+H

P ≤ Q+ Tmin

2

P ≤ Tmin

Q ≥ H

}

For uniformity, each of the four constraints will be denoted as

Conj(wi, ti), with j = 4, 5, 6, 7, respectively.

With the generic constraints introduced above, the definition

of the feasibility region D+ can be formalized as follows:

D
+ := D ∩G. (40)

The overall optimization problem consists in finding the opti-

mal point (Popt, Qopt) in the feasibility region D+ that minimizes

the objective function α′.

G

H

Pmax

−H

Q ≥ H

P ≥ Q+H

P ≤ Q +
Tmin

2

P ≤ Tmin

P

Q

Figure 3: Region G.

5. Design algorithm

Using the optimal design method presented in Section 4,

this section illustrates how to derive a complete algorithm for

computing the optimal server parameters. A fully-working im-

plementation of the final algorithm is also available [15] for

MATLAB R©.

The idea underlying the algorithm is to build the feasibility

region D
+ iteratively and represent it only by means of vertices

and edges connecting them. A computational representation of the

contour is sufficient since the optimal point (Popt, Qopt) certainly

belongs to the contour of the region.

Intuitively, the issue of defining the contour of the feasibility

region is addressed by considering all the constraints as equalities,

then intersecting them and filtering out the vertices and edges that

do not satisfy the constraints as inequalities.

For each constraint Conj , its contour Cj is defined as the set

of points where the constraint is satisfied as equality. In general,

Cj can be expressed as a set of vertices Vj and a set of edges

Ej . Similarly, CD
+

denotes the contour corresponding to D+. The

same notation holds for the sets of edges and vertices ED
+

and

VD
+

. In addition, let L(ei) be the locus of points in the P-Q plane

belonging to ei ∈ Ej . Two fundamental properties are exploited

to build C
D

+

:

(i) ∀e ∈ ED
+

∃j | e ∈ Cj ,

that is, the edges composing CD
+

belong to the contour of

at least one of the regions determined by the constraints

listed in Section 4;

(ii) ∀v ∈ VD
+

∃j | v ∈ Vj ∨ ∃i, ℓ | v ∈ L(ei) ∩ L(eℓ),

that is, a vertex composing C
D

+

is either a proper vertex of

a contour, or the intersection point between pairs of edges

belonging to the contour of different regions.

5.1. How to find vertices and edges

The proposed algorithmic approach requires computing the in-

tersections between the contours of regions to iteratively produce

the vertices and edges defining D+. This can be obtained by

solving systems of two equations representing pairs of edges.

Such systems can be trivially solved in all cases except when

dealing with edges of Con1 and Con2, which follow a staircase-

like pattern, due to the presence of the ceil function. We addressed

this issue by observing that the contour of such constraints

can simply be expressed with a set of linear edges. Intuitively,

it is sufficient to identify the points where the linearity of

the constraints is broken and account such points as vertices.

Analytically speaking, the ceil function f(x) = ⌈x⌉ lies by

definition on or above the function g(x) = x, and it is easy

to see that the two functions are equal only at the integer points:

⌈x⌉ = x ⇔ x ∈ Z.

Looking at the definition of Con1 and Con2 (see Equations (20)

and (23)), we can observe that the dependency on the ceil function

is introduced by the definition of k (see Equation (12)). Hence,

we need to find the values of P and Q where the argument of

the ceil in (12) is an integer value, formally described by the

following set:
{

(P,Q) | k =

⌈

t−∆

P

⌉

=
t−∆

P

}

, (41)

which gives (considering that ∆ = 2(P −Q)):

Q =
(k + 1)P − t

2
. (42)

The proper vertices of Con1 and Con2, i.e. the sets V1 and

V2, can be found by imposing Equation (42) in Equations (20)

and (23), respectively, expressed as equalities. This corresponds

to solving the following linear systems:
{

Q = w−t
k+1 + P

Q = (k+1)P−t

2

{

Q = w
k
+H

Q = (k+1)P−t

2

(43)

The vertices not satisfying the corresponding temporal con-

straints (Equations (21)-(22), and (24)-(25)) can be safely dis-

carded.

These linear systems in two equations must be solved for k ∈
[1, kmax], with k ∈ Z. Theorem 4 states a possible upper-bound

for k.

Theorem 4:

k ≤ kmax =

⌈

t

H +H

⌉

. (44)

Proof: Replacing ∆ in Equation (12), we get:

k =

⌈

t− 2P + 2Q

P

⌉

=

⌈

t

P
− 2 + 2α

⌉

.

From Equations (35) and (39), we get P ≥ H + H. Using this

relation, together with α ≤ 1, in the previous expression of k,

we obtain kmax, proving the theorem.

As we can see from Equation (26), also the contour of Con3 is

described by a non-linear function. However, intersecting C3 with

other contours is in this case trivial, as it only requires solving a

second degree equation, accepting only solutions with P > 0 and

Q > 0. All the other constraints are even simpler to manage, since

in the first quadrant (i.e., for positive values of P and Q) they do

not involve any non-linear function. Thus, their set of vertices is

empty, while their set of edges has exactly one element.

5.2. Algorithm definition

The resulting OPTBROE algorithm for computing the optimal

BROE server parameters (Popt, Qopt) is reported in Figure 4.

1: procedure OPTBROE(t[],w[],H)

2: finCont← GENSHAPE0(t1,w1,H) ⊲ see Sec.4.2

3: for i := 1 to size(t[]) do

4: for j := 1 to 3 do

5: cont[j]← GETCONTOUR(j, ti,wi) ⊲ see Sec.5.1

6: finCont← INTERSECTCONTOURS(finCont, cont[j])
7: end for

8: finCont← FILTERCONTOUR(i, finCont, t[],w[])
9: end for

10: (Popt,Qopt)← COMPUTEOPTIMUM(finCont)
11: return (Popt,Qopt)
12: end procedure

Figure 4: Algorithm for computing the optimal BROE server

parameters.

It takes as inputs two vectors (t[], w[]), representing the values

ti and wi of the dbf, and the maximum resource holding time

H of the application. As explained in Section 4, these are the

only parameters that are required to apply the proposed design

methodology. The System Maximum Resource Holding Time H
and the context switch overhead σ can be considered as global

parameters of the optimization procedure.

At line 2, the algorithm first builds the initial feasibility region

G by accounting for the generic constraints (Con4 to Con7)

explained in Section 4.2. At line 3, the vector t[] is scanned to

incrementally refine the feasibility region at each demand point.

To do this, the vertices and edges determined by each constraint

Con1, Con2 and Con3 are stored in a contour vector (line 5),

and the final feasibility region is computed by intersecting such

contours (line 6). The procedure INTERSECTCONTOURS splits

intersecting edges into two edges, adding the intersection point

as a new vertex. Once this is done for the three mentioned

constraints, the region produced at each step must be filtered to

remove vertices and edges that do not contribute to the feasibility

region at each step (line 8). Finally, the algorithm computes

the optimal server interface that satisfies all the constraints and

returns the corresponding values.

The pseudocode of the filtering procedure FILTERCONTOUR is

reported in Figure 5. As mentioned above, the feasibility region is

built through an incremental refinement; hence, this procedure is

in charge of removing edges that do not concur to the definition

of the feasibility region at each step i. Each edge composing

the current feasibility region (line 3) is discarded if at least one

of the involved constraints is violated (line 4-6). At the end of

the refinement process (after line 9), the contour CD
+

of the

feasibility region D+ is obtained in terms of vertices and edges.

Figure 6 reports procedure COMPUTEOPTIMUM for selecting

the optimal server interface (Popt, Qopt) from the final contour.

Such an optimal point must be either (i) a vertex of CD
+

or (ii)

a point of the objective function (Equation (13)) tangent to a

non-linear edge. Procedure ADDTANGENTVERT adds to CD
+

the

candidate vertices falling in case (ii). They are found by consid-

ering the tangent point between the quadratic curve determining

the non-linear edge and the objective function Q = α′P − σ.

Since there is just one non-linear constraint per checkpoint,

ADDTANGENTVERT will add at most a pseudopolynomial num-

1: procedure FILTERCONTOUR(i,Cont, t[],w[])
2: retCont← Cont

3: for each edge in Cont do

4: inShapei ← edge ∈
⋂i

j=1 D(wj, tj) ∩G

5: if ¬inShapei then

6: retCont← retCont \ edge
7: end if

8: end for

9: return retCont

10: end procedure

Figure 5: Procedure for filtering the contour of a region at step

i.

1: procedure COMPUTEOPTIMUM(finalCont)

2: αopt ← 1
3: finalCont← ADDTANGENTVERT(finalCont)
4: for each vertex in finalCont do

5: if (vertex.Q + σ)/vertex.P < αopt then

6: αopt ← (vertex.Q + σ)/vertex.P
7: (Popt,Qopt)← (vertex.P, vertex.Q)
8: end if

9: end for

10: return (Popt,Qopt)
11: end procedure

Figure 6: Procedure for computing optimal server interface

(Popt, Qopt).

ber of points to finalCont. Once the complete set of candidate

vertices for the optimum has been obtained, it is sufficient to

scan such a set to select the vertex that minimizes the objective

function (lines 4-9).

5.3. Example

To clarify the method adopted for building the space of the

feasible (P,Q) pairs and selecting the one which minimizes the

bandwidth occupation, we propose a simple example. Consider

an application Γk which is already expressed in terms of its dbf,

i.e., as a set of pairs (wi, ti) (as mentioned in Section 4). The

specific values of the test points of the dbf and its corresponding

values are expressed as two vectors t and w:

t = {200, 320, 400, 500, 600},

w = {35, 70, 80, 120, 140}.

The other parameters involved in the optimization procedure

are Hk = 15, σ = 10, H = 20.
Procedure OPTBROE is able to iteratively compute the fea-

sibility region in the P-Q plane, and to identify the optimum

point considering the objective function of Equation (13). Figure

7 represents the feasibility region obtained considering the entire

dbf, and the tangent line identifying the optimum. In this specific

case we get (Popt, Qopt) = (133, 50), which leads to a minimum

bandwidth

α′ =
Qopt + σ

Popt

=
60

133
= 0.45.

0 50 100 150 200
−20

0

20

40

60

80

100

120

140

160

180

−σ

D+

P

Q

Q = Pα′ − σ

Figure 7: Feasibility region D+ and objective function in the

optimum for the considered example.

Figure 8 illustrates the considered dbf function, together with

the optimal sbfB found through the optimization procedure.

Please note how the improved supply bound function is able to

better adhere to the shape of the dbf, allowing a smaller server

bandwidth, as well as a reduced resource holding time.

0 100 200 300 400 500 600 700
0

50

100

150

200

250

dbf

sbf
B

t

Figure 8: Optimal sbfB and the dbf for the example.

6. Complexity

The number of steps of the iterative procedure is bounded

by the pseudo-polynomial number of demand points to check

given by Equation (16). At each point, the procedure OPTBROE

is invoked. The complexity of the procedure is dominated by

the invocation of INTERSECTCONTOURS, which increases the

number of vertices to consider. This procedure is in charge

of computing the intersection of two contours. At the generic

step i, it computes the intersection between Ci and
⋂i−1

l=1 C
l,

which respectively describe two non-convex regions in the P -

Q plane. These regions are composed of linear edges and non-

linear edges. Computing the intersection of non-convex regions

with linear edges is a well-known problem in the literature:

as shown by Bentley and Ottmann [16], this problem can be

solved with O(n log n) complexity, where n is the number of

intersecting edges. The number of linear edges of each single

region determined by each Cl is O(kmax) (see Theorem 4). On

the other hand, the non-linear edges (given by Equation (26))

determine a convex region, and can be easily treated without

affecting the worst-case complexity (as has been also shown by

Bini et al. in [17]). Overall, procedure INTERSECTCONTOURS

does not jeopardize the pseudo-polynomial complexity of the

design algorithm.

There is still one remaining problem for bounding the com-

plexity of the presented method. That is, the size of dSet given

by Equation (16) depends (through α and ∆) on the server

parameters, which are not yet determined. To solve this problem,

the method for deriving t∗ presented in Section 4 can be modified

as follows.

For every feasible BROE server S, the following inequality

should hold:

sbf(S, t) ≤ αmin(t−∆max), (45)

where the right-hand-side term represents a linear supply bound

function with a service delay ∆max and supply rate αmin. The

values ∆max and αmin can be any upper (lower) bound on

the maximum (minimum) possible service delay (supply rate)

among all feasible BROE servers (i.e., BROE servers that can

successfully schedule Γ).

If relation 45 is used to upper-bound the sbf(Sk, t), the

derivation of Equation (16) becomes

t∗ =
αmin∆max +

∑n

i=0(Ti −Di)Ui

αmin − U
. (46)

While ∆max can be given by Equation (36), a lower bound on

α can instead be iteratively derived as follows. Each checkpoint

ti ∈ dSet is considered in increasing order, starting from the

first point (w1, t1). For a given point (wi, ti), the smallest αk

that guarantees sbf(Sk, ti) ≥ wi is computed applying procedure

COMPUTEOPTIMUM to D(wi, ti). Note that the contour of a

single region D(wi, ti) is rather simple, limiting the complexity of

the procedure. A lower bound αmin = Q/P is then easily derived

from the values (P,Q) returned by the procedure. If αmin ≤ U ,

it is necessary to continue to the next point in dSet. When a

point is found for which αmin > U , a pseudo-polynomial upper

bound t∗ that does not depend on Pk and Qk can be derived with

Equation (46).

At this point, it is possible to either stop, or continue to the next

point to find a smaller t∗. If a larger αmin is found, a smaller t∗

can be derived from Equation (16), further decreasing the number

of checkpoints to evaluate. In any case, the method stops when

the next point ti to check is beyond t∗.

7. Related work

The first approaches proposed in the literature for designing

servers parameters [4], [5], [18] did not consider resource sharing

among different reservations. Bini et al. presented in [17] an

optimal design for a bounded-delay partition without shared

resources, considering a linear supply bound function for the

server.

Shin et al. [19] and, later, Behnam et al. [20] proposed two

methods for designing a reservation server considering resource

sharing with an overrun-based approach. In [21], [22], Behnam

et al. proposed a design methodology for the BROE server.

However, their approach considers a linear supply bound function,

requires imposing a fixed period for each reservation server and

assumes non-preemptive access to global resources.

A more complete approach for designing reservation servers

was proposed by Van Den Heuvel et al. in [23]. The analysis

for periodic servers considers SIRAP [7] and the overrun-based

protocol for arbitrating the access to shared resources. However,

like in the previous case, this work does not consider the improved

supply function for BROE and still requires fixing a given period

for each server at design time.

In [24], Bini et al. proposed an optimization methodology for

an energy-aware scheduler, which inspired the approach presented

in this paper.

8. Conclusions and future work

This paper presented a design framework for optimizing the

server parameters in a hierarchical reservation system, where a

number of real-time applications are concurrently executed in

isolation within dedicated subsystems, sharing global resources.

Reservations are implemented using BROE, which is currently the

most effective server algorithm for handling reservations under

resource sharing. The analysis is based on an improved supply

bound function of BROE, and takes into account the overhead

due to context switches between servers. Our framework is able

to optimally select the server parameters with pseudo-polynomial

complexity, assuming EDF is used for scheduling tasks within a

reservation. A simple non-preemptive locking protocol is pro-

posed to significantly simplify the whole design process in most

cases of interest, reducing scheduling and preemption overheads,

while improving system schedulability. As a future work, we

plan to extend the BROE schedulability analysis under local fixed

priority scheduling.

Acknowledgments

This work has been supported in part by the European Commission
under the P-SOCRATES project (FP7-ICT-611016).

The authors like to thank Enrico Bini for the fruitful discussions that
inspired the methodology presented in this work.

References

[1] C. W. Mercer, S. Savage, and H. Tokuda, “Temporal protection in
real-time operating systems,” in Proc. of the 11th IEEE workshop
on Real-Time Operating System and Software, May 1994, pp. 79–
83.

[2] L. Abeni and G. Buttazzo, “Integrating multimedia applications
in hard real-time systems,” in Proceedings of the IEEE Real-Time
Systems Symposium, Madrid, Spain, December 1998.

[3] ——, “Resource reservations in dynamic real-time systems,” Real-
Time Systems, vol. 27, no. 2, pp. 123–165, 2004.

[4] G. Lipari and E. Bini, “A methodology for designing hierarchical
scheduling systems,” Journal of Embedded Computing, vol. 1,
no. 2, pp. 257–269, April 2005.

[5] I. Shin and I. Lee, “Compositional real-time scheduling frame-
work,” in Proceedings of the 25th IEEE Real-Time Systems Sym-
posium, Lisbon, Portugal, December 5-8, 2004, pp. 57–67.

[6] R. I. Davis and A. Burns, “Resource sharing in hierarchical fixed
priority pre-emptive systems,” in Proceedings of the IEEE Real-
time Systems Symposium (RTSS 2006), Rio de Janeiro, Brazil,
December 5-8, 2006, pp. 257–268.

[7] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “SIRAP: a synchro-
nization protocol for hierarchical resource sharing in real-time open
systems,” in Proceedings of the 7th ACM & IEEE International
Conference on Embedded Software (EMSOFT 2007), Salzburg,
Austria, October 1173, 2007.

[8] M. Bertogna, N. Fisher, and S. Baruah, “Resource-sharing servers
for open environments,” IEEE Transactions on Industrial Informat-
ics, vol. 5, no. 3, pp. 202–219, August 2009.

[9] A. Biondi, G. Buttazzo, and M. Bertogna, “Schedulability analysis
of hierarchical real-time systems under shared resources,” RETIS
Lab, Scuola Superiore Sant’Anna, Italy, Technical Report TR-13-
01, July 2013.

[10] L. Marzario, G. Lipari, P. Balbastre, and A. Crespo, “IRIS: A new
reclaiming algorithm for server-based real-time systems,” in Proc.
of the IEEE Real-Time and Embedded Technology and Applications
Symposium, Toronto, Canada, May 2004.

[11] R. I. Davis and A. Burns, “Resource sharing in hierarchical fixed
priority preemptive systems,” in Proc. of the 27th IEEE Real-Time
Systems Symposium, Rio de Janeiro, Brazil, December 5-8, 2006.

[12] S. Baruah, “Resource sharing in EDF-scheduled systems: a closer
look,” in Proceedings of the 27th IEEE Real-Time Systems Sympo-
sium (RTSS’06), Rio de Janeiro, Brazil, December 5-8, 2006.

[13] M. Bertogna, N. Fisher, and S. Baruah, “Resource holding times:
Computation and optimization,” Real-Time Systems, vol. 41, no. 2,
pp. 87–117, February 2009.

[14] S. Baruah, A. K. Mok, and L. E. Rosier, “Preemptively scheduling
hard-real-time sporadic tasks on one processor,” in Proc. of the
11th IEEE Real-Time Systems Symposium (RTSS’90), Orlando, FL,
1990, pp. 182–190.

[15] A MATLAB R© optBROE algorithm implementation,
http://retis.sssup.it/∼a.biondi/optBROE.

[16] J. L. Bentley and T. A. Ottmann, “Algorithms for reporting and
counting geometric intersections,” IEEE Computer Society, 1979.

[17] E. Bini, G. Buttazzo, and Y. Wu, “Selecting the minimum con-
sumed bandwidth of an EDF task set,,” in 2nd Workshop on
Compositional Real-Time Systems, December 2009.

[18] L. Almeida and P. Pedreiras, “Scheduling within temporal parti-
tions: Response-time analysis and server design,” in 4th ACM Int.
Conf. of Embedded Softw. (EMSOFT ’04), Pisa, Italy, September
2004, pp. 95–103.

[19] I. Shin, M. Behnam, T. Nolte, and M. Nolin, “Synthesis of optimal
interfaces for hierarchical scheduling with resources,” in Proc. of
the 29th IEEE International Real-Time Systems Symposium (RTSS
2008), Barcelona, Spain, December 2008, pp. 209–220.

[20] M. Behnam, T. Nolte, M. Sjödin, and I. Shin, “Overrun methods
and resource holding times for hierarchical scheduling of semi-
independent real-time systems,” IEEE Transactions on Industrial
Informatics, vol. 6, no. 1, pp. 93–104, February 2010.

[21] M. Behnam, T. Nolte, and N. Fisher, “On optimal real-time
subsystem-interface generation in the presence of shared resources,”
in In proc. of ETFA 2010, IEEE Conference, Bilbao, Spain, Septem-
ber 13-16, 2010.

[22] M. Behnam and N. Fisher, “Subsystem-interface generation in
the presence of shared resources,” in Proceedings of the CRTS09
workshop in conjunction with the 30th IEEE International Real-
Time Systems Symposium (RTSS ’09), December 2009.

[23] M. van den Heuvel, M. Behnam, R. J. Bril, J. Lukkien, and T. Nolte,
“Opaque analysis for resource sharing in compositional real-time
systems,” in 4th Workshop on Compositional Theory and Technol-
ogy for Real-Time Embedded Systems (CRTS’11), November 2011.

[24] E. Bini, G. C. Buttazzo, and G. Lipari, “Minimizing cpu energy in
real-time systems with discrete speed management,” ACM Trans-
actions on Embedded Computing Systems, vol. 8, no. 4, 2009.

[25] A. Easwaran, M. Anand, and I. Lee, “Compositional analysis
framework using EDP resource models,” in Proceedings of the

28th IEEE Real-Time Systems Symposium (RTSS 2007), Tucson,
Arizona, USA, December 3-6, 2007.

[26] S. Baruah and A. Burns, “Sustainable scheduling analysis,” in
Proceedings of the IEEE Real-time Systems Symposium (RTSS
2006), Rio de Janeiro, Brasil, December 5-8, 2006.

Appendix A.

BROE server rules

The rules of a BROE server with period P and maximum budget Q
(bandwidth α = Q/P) are summarized below. We assume that the server
is serving an application having maximum Resource Holding Time H .
At any time t, the server is characterized by an absolute deadline d and
a remaining budget q. When a job executes, q is decreased accordingly.

1) Initially, q = 0 and d = 0.
2) When BROE is idle and a job arrives at time t, a replenishment

time is computed as tr = d− q/α:

a) if t < tr , the server is suspended until time tr . At time tr, the
budget is replenished to Q and d← tr + P .

b) otherwise the budget is immediately replenished to Q and d←
t+ P ;

3) When q = 0, the server is suspended until time d. At time d, the
server budget is replenished to Q and the deadline is postponed to
d← d+ P .

4) When a pending task wishes to access a global resource at a time t,
a budget check is performed: if q ≥ H , there is enough budget to
complete the critical section, hence the access is granted. Otherwise
a replenishment time is computed as tr = d− q/α:

a) if t < tr , the server is suspended until time tr . At time tr, the
budget is replenished to Q and d← tr + P .

b) otherwise the budget is immediately replenished to Q and d←
tr + P .

According to such rules, a server running ahead with respect to its
guaranteed processor utilization will self-suspend in two cases: when
reactivating after an idle time (Rule 2), and when trying to enter a global
critical section with insufficient budget (Rule 4). In both cases, it will
self-suspend until the guaranteed processor utilization is matched (time
tr = d− q/α). At time tr, the server budget is replenished to Q and the
deadline is set to d ← tr + P . When instead the server consumed less
processor resources than its allowed share, it will immediately replenish
its budget in the two mentioned cases. However, the deadline set when
reactivating after an idle (d← t+ P , according to Rule 2) differs from
the one set when trying to enter a global critical section with insufficient
budget (d← tr + P , according to Rule 4).

Appendix B.

Derivation of the BROE supply function

This section presents the derivation of the improved supply bound
function sbf

B(t) for the BROE server. The underlying motivation for
this work is that the linear bound sbf

L(t), on which the original BROE
schedulability test is based, can give a too pessimistic lower bound when
an application Γ accesses global resources with small resource holding
times. For this reason, the knowledge of the maximum resource holding
time H of the global resources accessed by Γ is exploited to derive a
tighter supply function for the BROE server.

Note that the use of H for the local analysis is compliant with the
framework presented in Section 2. In fact, resource holding times are
used by the global schedulability analysis and the resource access policy
to avoid budget depletion within critical sections.

When global resources are not accessed by tasks running upon a
reservation server (i.e., H = 0), the BROE server behaves as a classical
hard CBS server (like IRIS [10]), whose supply bound function is
described as follows [23], [25]:

sbf
P (t) = max







0,
(h(t)− 1)Q,

t− (h(t) + 1)(P −Q)







, (47)

where h(t) =
⌈

t−P+Q

P

⌉

. The function sbf
P (t) is shown in Figure 1 as

a dashed line.
When considering resource sharing, the worst-case supply can be

found by considering Rule 4 of BROE in Section A, which reduces
sbf

P (t) in some time intervals. Note that Rule 2 does not affect sbfB(t),
since it is applied only when the server is resumed from an idle state,
and therefore will never be invoked in the busy period considered in the
worst-case scenario.

The BROE supply function is derived by analyzing the worst-case
behavior of the server considering the access to global resources. In
the following, the sbf

B(t) is derived in the first two periods after the

worst-case delay ∆, and then generalized for the generic kth period.

First period. After its worst-case delay t = ∆, the server will be able to
execute for at least Q−H units of time. Hence, after time t = ∆+Q−H ,
a pending task wishing to access a global resource R can experience the
condition q < H . Under this condition, Rule 4 causes a deadline shift to
tr +P , suspending the server H units earlier than in the more favorable
sbf

P (t). Then, the latest time the server can resume execution is at time
t1 = tr +P −Q. Since tr = ∆+Q−H/α, then t1 = ∆+P −H/α.
Such a point lies at the intersection of the original sbfL(t) (dotted line
in Figure 1).

It is worth observing that the same condition imposed by Rule 4
(q < Hj) can occur at any time in (∆ + Q − H, ∆ + Q]; this is
because the access to a global resource Rj can occur with an arbitrary
current budget q. Hence, to cope with all possible scenarios, it must be
sbf

B(t) = sbf
L(t) = αt for each t in the interval (∆+P −H/α, ∆+

P].

Second period. In the second period [∆+P, ∆+2P), the reduction of
the sbf

B(t) with respect to sbf
P (t) is more significant. The reason is that

the server, when resuming the execution at time ta = ∆+P−H/α, can
be suspended again after executing for Q−H time units, thus the sbfP (t)
is “cropped” earlier than in the previous period. In this scenario the server
has a deadline at d = ta + P and tr = d − q/α = ta + P − H/α.
The latest time the server can resume execution can be computed as
t2 = tr + P − Q which, substituting the expression of tr, gives t2 =
∆+2P −2H/α. This point lies again at the intersection of the original
sbf

L(t). For the same reason explained above, to cope with all possible
scenarios, it must be sbf

B(t) = sbf
L(t) = αt for each t in the interval

(∆+ 2P − 2H/α, ∆+ 2P].

Generic kth period. In general, the reduction of the sbfB(t) with respect
to sbf

P (t) increases period by period, until it reduces to sbf
L(t) from

some t on.
Considering the kth period after ∆, with k given by Equation (12),

the interval in which sbf
B(t) = sbf

L(t) can be expressed as

[∆ + kP −
kH

α
, ∆+ kP]. (48)

The larger k, the larger the interval. The first period in which, for all t,
sbf

B(t) = sbf
L(t) can be derived by finding the first k that satisfies the

following inequality:

∆+ kP −
kH

α
≤ ∆+ (k − 1)P,

which gives k ≥ Q/H .

Figure 9 shows the sbf
B(t) in the kth period after ∆, for k < Q/H .

The values of the timing parameters used in the figure are reported in
Table 2.

Hence, the BROE supply bound function can be formally expressed
as in Equation (11).

Finally, it is worth observing that H is just an upper bound of
the resource holding time, while the effective locking time can be
significantly smaller, depending on the interference caused by higher
priority jobs preempting the critical section. A robust and sustainable [26]
analysis should therefore consider the case in which the global lock is
released an infinitesimal time after the budget replenishment and another
lock request is made Q−H time-units after that, as correctly considered
in the above discussion.

tA tB tC tD

QA

QB

QD

t

sbf(t)

Figure 9: sbfB(t) in the kth period after the service delay.

tA ∆+ (k − 1)P
tB ∆+ (k − 1)P + (Q− kH)
tC ∆+ kP − kH/α
tD ∆+ kP
QA (k − 1)Q
QB kQ− kH
QD kQ

Table 2: Values for Figure 9.

Appendix C.

Resource holding time computation

The budget check mechanism of BROE guarantees that when a server
S locks a global resource, it will be able to execute for the duration of
the whole resource holding time H ≤ Q without being suspended due to
a budget depletion. This means that the server will be able to execute for
at least H time units with a maximum service delay of (P −Q) = ∆/2
after the lock is granted.

The supply bound function to consider for computing the resource
holding time is therefore null for ∆/2 time-units, and then grows with
unitary slope until the resource is unlocked (see Figure 10).

Under EDF, the cumulative execution request of jobs that can preempt
a task τi while it is holding a resource Rj for t units of time is given
by (see [13])

P

Q

time

time

supply

LOCK UNLOCK

P −Q = ∆
2

t− ∆
2

Figure 10: Worst case supply when a global resource is locked.

Fi(t) =
∆

2
+ δi,j +

πj−1
∑

k=1

⌈

min (t,Di −Dk)

Tk

⌉

Ck, (49)

where πj represents the local ceiling of resource Rj , and δi,j represents
the WCET of longest critical section of τi related to Rj . Let t∗i be the
smallest fixed point of function Fi(t) (i.e., Fi(t

∗

i) = t∗i). If Fi(t) exceeds
min(Q, di), the iteration can be aborted rejecting the application.

Note that the term ∆/2 is needed to take into account higher priority
tasks arriving while the server is not executing. However, the resource
holding time represents the maximum supply needed by an application
to release a lock. It is therefore a measure of the execution time needed,
rather than a measure of the real time elapsed between the lock and
release of the resource. The resource holding time of task τi for resource
Rj is then given by

Hj(i) = t∗i −
∆

2
. (50)

More details on the above technique can be found in [13], where it
is proved for a similar case that a fixed point is reached within a finite
(pseudo-polynomial) number of steps.

