
1

Response Time Analysis for

G-EDF and G-DM Scheduling

of Sporadic DAG-Tasks

with Arbitrary Deadline

Andrea Parri, Alessandro Biondi and Mauro Marinoni

Scuola Superiore Sant’Anna – Pisa, Italy

2

Introduction

Multicore revolution

New parallel programming models

for expressing parallel computational

activities

Intel TBB

3

Introduction

Big Data

Novel programming models

based on the Map-Reduce

paradigm that relies on parallel

processing

4

Introduction

JUNIPER EU Project – supported this work

Goal: enable application development with

performance guarantees required for real-time

exploitation of large streaming data sources and

stored data;

Case-study: applications for credit cards.

5

DAG-Task

 Task model for expressing parallel computations

with precedence constraints

A task is described with a Directed Acyclic
Graph (DAG)

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑒6

𝑒7

X

6

DAG-Task

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑒6

𝑒7

Vertex – sequential

computation with

WCET 𝑒𝑖

7

DAG-Task

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑒6

𝑒7

Edge – precedence

constraint among two

computational activities

8

DAG-Task

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑒6

𝑒7

Note: this model allows to

express parallelism

9

DAG-Task

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑒6

𝑒7

Release of a DAG-Task 𝜏𝑖

All the vertices are released simultaneously but it

can be that not all of them are enabled due to

precedence constrains

𝜏𝑖

10

Sporadic DAG-Task

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑒6

𝑒7

DAG-Task 𝜏𝑖

 Released with a minimum inter-arrival time 𝑻𝒊

 Each vertex must complete within a deadline 𝑫𝒊

𝜏𝑖

11

Example

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑒6

processor 1

processor 2

𝑒1

𝑒2

𝑒3

0 2 4 6 8

𝑒1 2

𝑒2 2

𝑒3 1

𝑒4 1

𝑒5 2

𝑒6 3

12

Example

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑒6

processor 1

processor 2

𝑒1

𝑒2

𝑒3 𝑒4

0 2 4 6 8

𝑒1 2

𝑒2 2

𝑒3 1

𝑒4 1

𝑒5 2

𝑒6 3

13

Example

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑒6

processor 1

processor 2

𝑒1

𝑒2

𝑒3 𝑒4 𝑒5

𝑒6

0 2 4 6 8

𝑒1 2

𝑒2 2

𝑒3 1

𝑒4 1

𝑒5 2

𝑒6 3

14

Scheduling Problem

Given

a set of N sporadic DAG-Tasks;

A scheduling algorithm (G-EDF or G-DM);

A platform with m identical processors;

verify if all deadlines are guaranteed.

15

State of The Art

Existing schedulability analysis can be split in 3

categories:

 Based on resource augmentation (speed-up);

(Baruah et al., Bonifaci et al., Nilissen et al.,…)

 Based on capacity augmentation;

(Kim et al., Li et al., Lakshmanan et al., …)

 Based on Response-Time Analysis.

(Maia et al., Chwa et al., Melani et al., …)

16

This Work

 Response-Time Analysis of Sporadic DAG-Tasks
under both G-EDF and G-DM

Contribution w.r.t. the state of the art:

• Vertices-oriented analysis;

• Tasks can have arbitrary deadlines;

• Vertices can have arbitrary utilization;

• Augmentation bounds proved for N=1.

17

Response-Time Analysis

 For each DAG-Task 𝜏𝑖,

 For each vertex 𝑣 of 𝜏𝑖,

 Each job of vertex 𝑣 must complete within a
deadline 𝑫𝒊

𝑒𝑣 + 𝐼𝑣 = 𝑹𝒗 ≤ 𝐷𝑖

Vertex WCET

Worst-case scheduling interference

18

Response-Time Analysis

 For each DAG-Task 𝜏𝑖,

 For each vertex 𝑣 of 𝜏𝑖,

 Each job of vertex 𝑣 must complete within a
deadline 𝑫𝒊

𝑒𝑣 + 𝐼𝑣 = 𝑹𝒗 ≤ 𝐷𝑖

Not easy to compute

for multiprocessor systems!

19

Response-Time Analysis

Our approach: compute an upper-bound 𝐼 𝑣 of
the interference 𝐼𝑣 specific for each vertex 𝑣, so

obtaining a response-time upper-bound 𝑹𝒗

𝑒𝑣 + 𝐼𝑣 = 𝑹𝒗 ≤

𝑒𝑣 + 𝐼 𝑣 ⇒ 𝑅𝑣 ≤ 𝑹𝒗

20

Response-Time Analysis

Main result of this work: we proved that

𝑅𝑣 ≤ 𝑹𝒗

𝑹𝒗 = 𝓁𝑣
+ +
1

𝑚

𝑣′

𝑾𝒗,𝒗′ 𝑹𝒗, 𝑌𝑣′ − 𝓁𝑣
+

Critical path length:

maximum sum of WCETs in a
path ending with 𝑣

21

Critical Path

Critical path length: maximum sum of WCETs in a

path ending with 𝒗

1

3

4

6

2

8

4

𝒗
1+4+2+4 = 11

3+6+4 = 13

𝓁𝑣
+ = 13

22

Response-Time Analysis

Main result: we proved that

𝑅𝑣 ≤ 𝑹𝒗

𝑹𝒗 = 𝓁𝑣
+ +
1

𝑚

𝑣′

𝑾𝒗,𝒗′ 𝑹𝒗, 𝑌𝑣′ − 𝓁𝑣
+

Sum on all vertices 𝒗′ in the task-set

23

Response-Time Analysis

Main result: we proved that

𝑅𝑣 ≤ 𝑹𝒗

𝑹𝒗 = 𝓁𝑣
+ +
1

𝑚

𝑣′

𝑾𝒗,𝒗′ 𝑹𝒗, 𝑌𝑣′ − 𝓁𝑣
+

Upper-bound on the worst-case workload
generated by 𝒗′ interfering with 𝒗

24

Worst-Case Workload

Upper-bound on the worst-case workload
generated by 𝒗′ interfering with 𝒗

𝑾𝒗,𝒗′ 𝑹𝒗, 𝑌𝑣′

Tentative response-time

of vertex 𝑣, used in the

fixed-point iteration
starting with 𝑹𝒗 = 𝒆𝒗

Response-time upper-bound

Must be always greater than

the response-time
(𝑌𝑣′ = 𝐷𝑣 + 1 in the limit case)

25

Worst-Case Workload

A generic vertex 𝒗′ interferes with 𝒗 released at 𝑡

𝑡 time

𝑡 − 𝑌𝑣′

𝑌𝑣′
𝒗′

If shifted more on the left the job of 𝒗′

will be completed when 𝒗 is released

Release of a job of 𝒗

26

Worst-Case Workload

A generic vertex 𝒗′ interferes with 𝒗 released at 𝑡

𝑡 time

𝑡 − 𝑌𝑣′
𝑡 + 𝑹𝒗

𝑌𝑣′ + 𝑹𝒗

𝑌𝑣′ + 𝑹𝒗
𝑇𝑣′

𝑒𝑣′
Interfering
workload

In case of G-DM

Null for vertices of

lower-priority tasks

27

Worst-Case Workload

A generic vertex 𝒗′ interferes with 𝒗 released at 𝑡

𝑡 time

𝑡 − 𝑌𝑣′

𝐷𝑣′
𝒗′

𝑡 + 𝐷𝑣

Jobs of 𝒗′ released after
𝑡 + 𝐷𝑣 − 𝐷𝑣′ will

not interfere with 𝒗

In case of G-EDF

28

Worst-Case Workload

A generic vertex 𝒗′ interferes with 𝒗 released at 𝑡

𝑡 time

𝑡 − 𝑌𝑣′
𝑡 + 𝐷𝑣

In case of G-EDF

𝑡 + 𝐷𝑣 − 𝐷𝑣′

𝑌𝑣′ +𝑚𝑖𝑛{𝑹𝒗, 𝐷𝑣 − 𝐷𝑣′}

𝑇𝑣′
𝑒𝑣′

Interfering
workload

29

Response-Time Analysis

 Successors in the same job of a DAG-task cannot
interfere

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑒6

𝑒7

𝒗
other tasks

30

Response-Time Analysis

Main result: we proved that

𝑅𝑣 ≤ 𝑹𝒗

𝑹𝒗 = 𝓁𝑣
+ +
1

𝑚

𝑣′

𝑾𝒗,𝒗′ 𝑹𝒗, 𝑌𝑣′ − 𝓁𝑣
+

31

Schedulability Test

Algorithm RTA(N) Maximum number of iterations

32

Schedulability Test

1. We start with 𝑌𝑣 = 𝐷𝑣 + 1, ∀𝑣, i = 1

2. Compute the fixed-point of

𝑹𝒗 = 𝓁𝑣
+ +

1

𝑚
 𝑣′𝑾𝒗,𝒗′ 𝑹𝒗, 𝑌𝑣′ − 𝓁𝑣

+

3. If 𝑹𝒗 ≤ 𝑫𝒗 return SCHEDULABLE

4. If 𝑌𝑣 == 𝑹𝒗, ∀𝑣 OR i==N return NOT SCHEDULABLE

5. Else, update response-times as 𝑌𝑣 = 𝑹𝒗, ∀𝑣 and

go to step 2

Pseudo-Polynomial Complexity
𝑖 + +

Algorithm RTA(N)

33

Polynomial-Time Schedulability Test

 If we set 𝑌𝑣 = 𝐷𝑣 + 1 and 𝑅𝑣 = 𝐷𝑣 it is possible to
obtain a simple polynomial-time schedulability
test without involving any iteration

𝑹𝒗 = 𝓁𝑣
+ +
1

𝑚

𝑣′

𝑾𝒗,𝒗′ 𝐷𝑣, 𝐷𝑣′ + 1 − 𝓁𝑣
+

Polynomial Complexity

34

Augmentation Bound

In case of a task-set composed of a single DAG-

Task (N=1) we proved that

Our test based on response-time analysis has

Augmentation bound < 3 for G-EDF;

Augmentation bound < 5 for G-DM.

35

Experimental Results

 The proposed schedulability tests have been

evaluated by using synthetic workload

 libdag – DAG-Tasks generator and

schedulability test. Soon publicly available online!

Comparison against the test based on

augmentation bound proposed in

V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese.

“Feasibility analysis in the sporadic DAG task model”, In proc. of
ECRTS 2013

To the best of our knowledge it is the only
test dealing with arbitrary deadlines

36

Experimental Results

Number N of external
iterations in our algorithm

The test of Bonifaci et al.

is based on a

workload approximation

up to an 𝜖-error

with 2−𝛿

𝛿

37

Experimental Results

 Running times of the schedulability tests

Exponential increase

of the running time as the
test precision increases

RTA test has

running time lower of
two orders of magnitude

(Intel Xeon @ 3.5 Ghz)

38

Experimental Results

Take-away messages

• RTA test outperforms

the speed-up based

test in all the tested

configurations;

• In some cases our

polynomial-time test

performs better than

the speed-up based

test that has pseudo-

polynomial complexity

𝑈 = 10

39

Conclusions

We proposed a new Response-Time Analysis for

the sporadic DAG-Task model under both G-EDF

and G-DM scheduling;

 The analysis handles DAG-Tasks with arbitrary

deadline and arbitrary utilization;

 Two schedulability tests have been derived

(pseudo-polynomial and polynomial complexity);

 Extensive set of experimental results confirmed

the effectiveness of the test.

40

Future Work

More accurate characterization of the interfering

workload;

 Support for conditional statements in the DAG-

Task;

 Integration of locking protocols in the analysis;

Handle distributed computations.

41

Thank you!
Alessandro Biondi

alessandro.biondi@sssup.it

