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Towards the use of EDF in real-world
engine control applications

Not only periodic tasks!
Engine control applications also
INnclude adapftive variable-rate tasks

Benefits in ferms of schedulabllity have been
observed (in theory) under EDF scheduling

. « OSEK-like RTOS support for EDF scheduling
This of engine control applications

Work

« Simulation Framework
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Introduction

Engine control applications include
Periodic tasks with fixed periods: 1 - 500 ms

Angular tasks, linked to the rotation of the
crankshaft

activate task
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Introduction

Lino Guzzella
Christopher H. Onder

Introduction
to Modeling and Control

of Internal Combustion
Engine Systems

Second Edition
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Engine-triggered Tasks

I Engine-ifriggered tasks — single activation per revolution

Inter-arrival time
IDC % given a fixed

speed w

TA

>

),
w™n = 500 rpm B T™*= 120 ms

ax = 46500 rpm W) T™Mn = 10 ms







Engine-triggered Tasks

Suppose a fixed WCET for the task

worst-case execution time

(WCET)
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Engine-triggered Tasks

Suppose a fixed WCET for the task

worst-case execution time
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Engine-triggered Tasks

To prevent overload at high rates, different
control implementations are used







Adaptive Variable-Rate Tasks

1 The AVR task implements a number of execution

modes
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Scheduling Infrastructure

Fixed-Priority
Scheduling

4 ) OSEK/AUTOSAR
Set of RTOS
Timer Periodic Tasks p- ~
1, (C;, T;, D)) Ready queue
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IS FIXED-PRIORITY

SCHEDULING THE BEST
CHOICE FOR ENGINE
CONTROL APPLICATIONS?




FP Schedulmg of AVR Tasks
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EDF Scheduling of AVR Tasks

Job priorities are adapted at run time as a function
of the engine speed at their release time

Variable relative deadline for each job

This is still EDF! (job-level fixed-priority)

EDF

Scheduler
- Y,

Deadline
Assignment Law
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Deadline Assignment

) Engine-triggered tasks — Dynamic condition

Ir'= — s
TDC




Deadline Assignment

- Engine-friggered tasks — Dynamic condition

Vw? + 2rat — w

74 .
TDC ] f

((w)
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The deadline is assigned
considering the earliest possible
next activation given by the

o I 4
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Schedulability ratio
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Experimental
results from [1]

EDF is “practically” optimal

Speed-up factor analysis

Guo and Baruah [2]

Depends on engine speed and

Mmaximum acceleration

[1] A. Biondi, G. Buttazzo, S. Simoncelli, “Feasbility Analysis of Engine Control Tasks under EDF Scheduling”, ECRTS ‘15
[2] Z. Guo, S. Baruah, “Uniprocessor EDF Scheduling of AVR task systems”, ICCPS ‘15
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LET’S TRY TO USE EDF
FOR REAL-WORLD
ENGINE CONTROL
APPLICATIONS...




Qur Goal

Motivated by the benefits of EDF observed in theory

Design and implementation of a RTOS support for
engine control applications under EDF
scheduling

Being OSEK/AUTOSAR the de-facto standard in
the automotive iIndustry

Minimal changes o the standard
OSEK API

Integration with the OSEK standard
configuration language (OIL)

21
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Qur Goal

Existing
engine-conftrol
application

OSEK RTOS
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less

changes as
possible ™~
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Qur Goal

Existing
engine-conftrol
application

This Work
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Erika Enterprise

ERIKIN Jeee

1 ERIKA Enterprise is an OSEK/VDX certitied RTOS

1 Offers a suitable open-source license allowing the
static linking of closed source code

I Typical footprint around 2-4KB Flash

1 Used by several automotive and white goods
companies




OSEK
certified

BCCI
BCC2
ECCI
ECC2

Erika Enterprise

FP

minimal

impl. of
fixed-priority
scheduling

ERIKIN ™

EDF

EDF

scheduling
+

(M)SRP

*

OSEK-like API
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Impact

RTOS should be aware of the parameters of AVR
tasks and the engine

Needed support for variable relative-deadline as
a function of the engine speed

Needed extensions at the OSEK Configuration
Language (OlL)

Needed new support for deadline buffering to
manage overloads

Different requirements for stack sharing

&etis ¢



Activation of an AVR task

Interrupt:
CrankshaftAngle_zero

TDC g

/

ISR(CrankshafttAngle Zero) {

ActivateTask(AVRtask);

ISR(CrankshaftAngle Zero) {

Not part of the
OSEK standard AP



Deadline Computation

The deadline of each job depends on the
engine speed w (at the job release time)

D(w)| -

Must be computed every
time a job of an AVR fask is
activated

P—
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engine speed w
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Deadline Computation

run-time overhead
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Deadline Computation

run-time overhead

Relying on ~450 cycles
standard 5.4 us on SM132F4
C libmath @ 168Mhz

foofprint “‘ error




Deadline Computation

run-fime overhead

1

~188 cycles
fastSQRT 2.2 us on SMT32F4
algorithm @ 168Mhz

error < 0.04%

footprint error




Deadline Computation

run-time overhead

Iiglg-lzp ~25 cycles
0.3 us on SMT32F4
64/128
: @ 168Mhz
entries 0.2/0.05%

footprint error




Experimental Results

Run-time overhead for the Acfivatelask

context switch + deadline computation + ready queue
management + ...

Num. of Tasks 3 5 7 10
EDF-AVR S 1410 | 421 | 436 | 4.46
(FastSQRT)  ———
MAX YIes | 689 | 707 | 732 | 749
EDF-AVR i 4008 418 | 425 | 439 . ..
FastSQRT) | Fixed-priority
S——— 420 cycles
(Lookup Table)
MAX YEES | 495 | 510 | 529 | 541 2.2 USs
EDF-AVR S 1291 | 301 | 3.14 | 3.20
(Lookup Table) ~voles
AVG YEIES | 480 | 505 | 527 | 537
STM32F4 @ 168Mhz — GNU ARM Compiler
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Experimental Results
Footfprint — 2 periodic tasks + #n AVR tasks
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Simulation Framework

I Lauterbach is the world’s larger producer of
hardware assisted debug tools for microprocessors

1 TRACE32® PowerView IDE

I Lauterbach makes available a version of their IDE
based on an instfruction-set simulator
- trace & debug without any hardwarel

Wil
Fie e

-----
-------

LAUTERBACH IA
DEVELOPMENT TOOLS



Simulation Framework

The TRACE32 simulator offers a standard interface
named Peripheral Simulation Model (PSM)

The PSM allows developing custom simulated
peripheral devices

react to events (e.g., memory read);

access to the simulated CPU registers;

Lauterbach . custom simulated
TRACE32 <:> peripheral device

———————————————————————————
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Simulation Framework

Lauterbach TRACE32

DLL&

TRACE32 PowerView
IDE

on write

Simulated
Memory

void myMemoryReadHandler()
{

<u2>
PSM_TRACE _WRITE_MEM(..);
<w2>
PSM_TRACE WRITE_REG(..);
<w2>

rise interrupt #3

void mySimulatedInterrupt()
{

<.
PSM_TRACE32 RISE_INT(3);
..



Simulation Framework

Random Lauterbach TRACE32

Speed
Pattern
Crankshaft Simulated ® TRACE3?2 ERIKA
Simulator STM32F4 IDE Application
Binary

Free Running
Timer
Simulator
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Conclusions

We presented a new RTOS support for EDF
scheduling of engine conftrol applications

The implementation has been conceived to
require minimal changes to existing applications
(OSEK-like API, infegration with OIL)

Run-time overhead and footprint are not
oroblems (+1.5 us and +500 bytes over an
Implementation of fixed-priority scheduling)

We also present a powerful simulation framework
for studying the execution of real code under
(but not only limited to) the proposed RTOS
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Future Work

We are going to test this implementation with @
real engine conftrol application controlling a real
engine

Integration of the TRACE32 simulator with MATLAB
Simulink and/or other physical simulation tools

soon available as open-source

http://erika.tuxfamily.org/
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