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Abstract 

In certain real-time applications, ranging from multime- 

dia to telecommunication systems, timing constraints can be 

more flexible than scheduling theory usually permits. For 

example, in video reception, missing a deadline is accept- 

able, provided that most deadlines are met. In this paper 
we deal with the problem of scheduling hybrid sets of tasks, 
consisting offirm periodic tasks (i.e., tasks with deadlines 
which can occasionally skip one instance) and soft aperi- 
odic requests, which have to be served as soon as possible 
to minimize their average response time. We propose and 
analyze an algorithm, based on a variant of Earliest Dead- 
line First scheduling, which exploits skips to enhance the 

response time of aperiodic requests. Schedulability bounds 

are also derived to peform off-line analysis. 

1. Introduction 

Many real-time applications require periodic activities 
that have to be cyclically executed at fixed rates and within 
specific deadlines. Typically, each periodic instance is as- 
signed a relative deadline equal to the task period and is 
treated as a hard job. Thus, a periodic task is executed only 
if all its instances are guaranteed to complete within their 
deadlines. Schedulability analysis of periodic task sets can 
easily be performed both under fixed and dynamic priority 
assignments. In particular, a lot of work has been done for 
the Rate Monotonic (RM) and the Earliest Deadline First 
(EDF) algorithms [9]. Schedulability analysis has also been 
extended for the case in which tasks use shared resources 
[ 11, 1,2] or run in the presence of aperiodic activities, under 
fixed priority scheduling [7, 12, 81 and in dynamic priority 
systems as well [ 13, 3, 151. 

All these papers assume that periodic tasks are hard, that 
is, all instances of a task have to be executed within their 
deadlines, otherwise the task is not started at all. This model 

is suitable for critical control applications in which missing 
a deadline may cause catastrophic consequences on the con- 
trolled system, but it can be too restrictive for other applica- 

tions. For example, in multimedia communication systems, 
skipping a video frame once in a while decreases the qual- 
ity of service but certainly does not cause any damage to 

the system. Even in more critical control applications, hard 

tasks usually coexist with soft and non real-time activities, 

which need to be treated in a different manner in order to 
optimize the available resources. 

Permitting skips in soft periodic tasks increases sys- 
tem flexibility, since it allows to make a better use of re- 
sources and schedule systems that would otherwise be over- 
loaded. Consider for example two periodic tasks, 7-1 and 
~2, with periods pt = 10, pz = 100, and execution times 
Ct = 5 and Cz = 55, where rt can skip an instance ev- 
ery 10 periods, whereas ~2 is hard (i.e., no instances can 
be skipped). Clearly, the two tasks cannot be both sched- 
uled as hard tasks, because the processor utilization factor 

is U = S/10 + 55/100 = 1.05 > 1. However, if rt is 
permitted to skip one instance every 10 periods, the spare 
time can be used to accommodate the execution of 72. 

The general problem of scheduling periodic tasks that 
allow occasional skips has not received much attention in 
the real-time literature. Hamdaoui and Ramanathan [4] pro- 
posed a general framework called (m, Ic) model, for dealing 
with periodic tasks having firm deadlines. However, this 
method is based on a heuristic priority assignment and no 
exact schedulability analysis is performed. Another general 
model for increasing flexibility of periodic scheduling has 
been proposed by Mok and Chen [IO]. Although skippable 
tasks could be handled with this model, this technique can 
only be applied to fixed priority environment, in the absence 

of aperiodic tasks. 

The most significant approach on skippable periodic tasks 

is the one carried out by Koren and Shasha [6]. They showed 
that making optimal use of skips is NP-hard and proposed 
two algorithms, called Skip-Over Algorithms (one a variant 
of rate monotonic scheduling and one of earliest deadline 
first) that exploit skips to increase the feasible periodic load 
and schedule slightly overloaded systems. 

In this paper, we address the problem of scheduling hy- 
brid task sets, consisting of firm (i.e., skippable) periodic 
tasks and soft aperiodic requests. In such an environment, 
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we propose an algorithm that uses the spare time saved by 
the skipped instances to enhance the response time of ape- 
riodic requests. Schedulability bounds are derived in order 
to perform off-line analysis and on-line reclaiming of any 
unused computation time. 

1.1 Terminology and assumptions 

We consider a hybrid set consisting of TC firm periodic 

tasks and m soft aperiodic requests to be executed on a 
uniprocessor system. All tasks are preemptive and do not 

have precedence relations. Periodic tasks have deadlines, 
but they are allowed to occasionally skip one instance once 
in a while. Aperiodic requests do not have deadlines, and 
have to be executed as soon as possible to minimize their 
average response time. Periodic tasks are scheduled based 
on EDF, and aperiodic requests are handled by the Total 
Bandwidth Server (TBS) algorithm [ 151 (see Section 4.1). 

Each periodic task pi is characterized by a worst-case 
computation time ci, a period pi, a relative deadline equal 
to its period, and a skip parameter si, 2 < si 5 00, which 

gives the minimum distance between two consecutive skips. 
When si = 00 no skips are allowed and ri is equivalent to 
a hard periodic task. The skip parameter can be viewed as a 
Quality Of Service metric (the higher s, the better the quality 
of service). 

Using the terminology introduced by Koren and Shasha 
in [6], every instance of a periodic task can be red or blue. 
A red instance must complete before its deadline; a blue 
instance can be aborted at any time. When a blue instance 
is aborted, we say that it was skipped. The fact that s > 2 
implies that, if a blue instance is skipped, then the next s - 1 

instances must be red. On the other hand, if a blue instance 
completes successfully, the next task instance is also blue. 

2. Known results 

In the basic periodic model in which all task instances 
are red (i.e., no skips are permitted), the schedulability of 
a periodic task set can be tested using a simple necessary 

and sufficient condition based upon cumulative processor 
utilization. In particular, Liu and Layland [9] showed that 
a periodic task set is schedulable by EDF if and only if its 
cumulative processor utilization is no greater than 1. That 
is, 

Analyzing the feasibility of periodic tasks that allow skip 
is not equally easy. Koren and Shasha [6] proved that de- 
termining whether a set of periodic occasionally skippable 
tasks is schedulable is NP-hard. They also found that, given 

a set r = {Ti(pi, ci, si)} of periodic tasks that allow skips, 
then 

t ( nTCi Si-1) 
, I 1 

i=l pi-% 

is a necessary condition for the feasibility of I, since it 
represents the utilizatilon based on the computation that must 
take place. 

Using a processor demand criterion, Jeffay and Stone [5] 

showed that a set of hard periodic tasks is schedulable by 

EDF if and only if, for any interval L 2 0, 

(3) 

Based on this result, Koren and Shasha proved the fol- 
lowing theorem, which provides a sufficient condition for 
guaranteeing a set of skippable periodic tasks under EDF. 

Theorem 1 A set ofjFirm (i.e., skippable) periodic tasks is 

schedulable if 

where 

(4) 

(5) 

2.1 Algorithms 

Two on-line scheduling algorithms were proposed in [6] 
to handle tasks with skips under EDF. 

1. The first algorithm, called Red Tasks Only (RTO), 
always rejects the blue instances, whereas the red 
ones are scheduled according to EDF. 

2. The second algorithm, called Blue When Possible 

(BWP), is more flexible than RTO and schedules blue 
instances whenever there are no ready red jobs to ex- 
ecute. Red instances are scheduled according to EDF. 

It is easy to find examples that show that BWP improves 
RTO in the sense that it is able to schedule task sets that RTO 
cannot schedule. In the general case, the above algorithms 
are not optimal, but they become optimal under a particular 
task model, called the deeply-red model. 

Definition 1 A system is deeply-red ;f all tasks are syn- 
chronously activated and thejirst si - 1 instances of every 

task Ti are red. 
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In the same paper, Koren and Shasha showed that the 
worst case for a periodic skippable task set occurs when 
tasks are deeply-red. For this reason, all results in this paper 

will be proved assuming the assumption above. This means 
that, if a task set is schedulable under the deeply-red model, 

it is also schedulable without this assumption. 
In the following sections, we address the problem of 

scheduling hybrid task sets, consisting of skippable peri- 
odic tasks and soft aperiodic requests. In particular, the 
RTO and the BWP algorithms will be integrated with the 
Total Bandwidth Server [ 13, 151 for enhancing aperiodic re- 
sponsiveness. Before presenting the proposed approach, we 
introduce the notion of equivalent utilization factor, which 
simplifies the description of the schedulability analysis of 

hybrid task sets. 

3. Equivalent utilization factor 

In the basic periodic model, in which all tasks instances 
are red (si = 03 for all tasks), the processor utilization 
factor is defined as U, = ci q/pi, If skips are permitted 
in the periodic task set, the spare time saved by rejecting the 
blue instances can be reallocated for other purposes, e.g., 
for advancing the execution of soft aperiodic requests. 

Unfortunately, the spare time has a “granular” distribu- 

tion and cannot be reclaimed at any time. Nevertheless, 
we will show that skipping blue instances still produces a 
bandwidth saving in the periodic scheduling. To express 
this fact, we define an equivalent utilization factor Up as 
follows. 

Definition 2 Giver2 a set r = {l’; (pi, ci, s;)} of n periodic 
tasks that allow skips, we define the equivalent processor 
utilization factor as: 

where 

(6) 

It is worth to observe that to compute U,* it is not nec- 
essary to evaluate equation (6) for any L, but it is sufficient 

to evaluate it in those points L that are periods’ end points 
not beyond the hyperperiod P = lcnr(pl, ~2,. . . , p,). The 
following theorem states the schedulability condition for a 
set of deeply-red skippable tasks. 

Theorem 2 A set r of skippable periodic tasks, which are 

deeply-red, is schedulable ifand only ;f 

cr* < 1. 
P- 

Proof. 
If. Directly derives from Theorem 1 and the definition of 
u;. 
Only if. Suppose l_Ji > 1. If we consider any interval [0, t], 

the total computation demand of I- in the worst case is 

n 

C[O, t] = c D(i, [O, t]) 
221 

and, according to the U,* definition, 

3L 1 .?qL = &(l: [O,L]). 

i=l 

Hence 

C[O, L] = 2 D(i, [OJ,) = UpL > L. 
i=l 

Since the computation demand in [0, L] exceeds the length 
of the same interval, r is not feasible. •I 

Notice that the factor Up represents the net bandwidth 

really used by periodic tasks, assuming a deeply-red model. 

It is easy to show that 

u; 5 up. 

In fact, by equation 3, U, can also be defined as 

Thus, Up* < U, because 

4. Scheduling aperiodic tasks 

In the previous section we showed that periodic skips 
create additional free bandwidth that can be used to advance 
the execution of soft aperiodic tasks. Such a free bandwidth 
can be exploited by a Total Bandwidth Server (TBS), a 
scheduling algorithm proposed by Spuri and Buttazzo [ 13, 
151 to enhance aperiodic responsiveness under EDF. It is 
briefly recalled in the following section. 

4.1 The Total Bandwidth Server 

The name of the server comes from the fact that,each time 
an aperiodic request enters the system, the total bandwidth 
of the server (in terms of cpu execution time), is assigned 
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to it, whenever possible. This is done by simply assigning 
a suitable deadline to the request, which is scheduled ac- 
cording to the EDF algorithm together with all the periodic 
task instances. The assignment of the deadline is done to 
improve the aperiodic responsiveness, still maintaining the 
schedulability of periodic tasks. 

The definition of the TBS is relatively simple. When the 
/c-th aperiodic request arrives at time t = rk, it receives a 

deadline 

drz = max(r,,,dk_i) + $: (7) 
s 

where CE is the execution time of the request and U, is the 
server utilization factor (i.e., its bandwidth). By definition 
do = 0. The request is then inserted into the ready queue 
of the system and scheduled by EDF, as any periodic or 
sporadic instance. 

Note that we can keep track of the bandwidth already 
assigned to other requests by simply taking the maximum 
between rk and dk-1. Intuitively, the assignment of the 
deadlines is such that in each interval of time the ratio al- 
located by EDF to aperiodic requests never exceeds the 
server utilization U,, that is, the processor utilization of the 
aperiodic tasks is at most U,. As a consequence, the schedu- 
lability of a periodic task set in the presence of a TBS can 
simply be tested by verifying the following condition: 

where U, is the utilization factor of the periodic task set. 
In spite of its simplicity, the TBS shows a good perfor- 

mance/cost ratio and can easily be extended to deal with firm 

aperiodic requests, as described in [ 141. We now show how 
to use the TBS to run in a real-time periodic environment 
which allow skips. 

4.2 Integrating TBS with periodic skips 

In this section we show how the spare time saved by 
skipped instances can be exploited by the TBS algorithm 
to advance the execution of aperiodic tasks, thus enhancing 
responsiveness with respect to the case of no skips. The fol- 
lowing theorem gives a sufficient condition for guaranteeing 

a feasible schedule of a hybrid task set. 

Theorem 3 Given a set of periodic tasks that allow skip 

with equivalent utilization U,* and a set of soft aperiodic 

tasks served by a TBS with utilization factor U,, the hybrid 

set is schedulable by RTO or BWP if: 

u; + u, I 1. (9) 

Proof. 
See Appendix. I3 

Theorem 3 only provides a sufficient schedulability con- 
dition, since it guarantees a minimum bandwidth U,,,,,,. = 

1 - U; to the aperiodic tasks. Indeed, it is easy to find exam- 
ples in which periodic task sets are schedulable by assigning 
the TBS a bandwidth U, greater than U,,,,," . The following 
theorem gives a maximum bandwidth U,,,,,,,r above which 
the schedule is certalinly not feasible. 

Theorem 4 Given a set r = {Ti(pi, c;, s;)} of n periodic 

tasks that allow skips, and a TBS with bandwidth U,, then a 

necessary condition for the feasibility of r is: 

where 

u = 5711uz (10) 

Proof. 
See Appendix. 0 

Notice that Us,,,,, = represents the limit case in which the 
whole bandwidth sawed by skips can be used for aperiodic 
service. This is not ialways the case, since only a bandwidth 

U s,,L,,, can be guaranteed. 
Table 1 shows a set of skippable tasks that can be feasibly 

scheduled with a TBS having a bandwidth U, > U,CC)t,n. 

Figure 1 and Figure 2 show the schedule produced by RTO 
and BWP respectively. 

Table 1. A schedulable task set. 

Notice that a small difference between U, ,,“,,, and U, ,,,,,, 

indicates that the spare time saved by skips tends to be 
uniformly distributed. When U, ,,,,” = U,,,,O ‘, all skips are 
effectively used for aperiodic service, for any arrival pattern. 

A big difference ‘between U,,,,zn and U,,,,,,, indicates that 
the spare time save by skips is not uniformly distributed, 
and only a bandwidth equal to Us,,,,, can be guaranteed. In 
this case, the residual bandwidth U,,,,C,F - U,,,L,,, cannot be 
assigned to the TBS but it can be exploited by the BWP to 

execute blue instances whenever possible. 
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TBS 
“,=O.Y 

0 3 6 15 18 24 

Figure 1. Schedule produced by RTO for the task set shown in Table I, 

TBS 
UI = 0.3: 

Figure 2. Schedule produced by BWP for the task set shown in Table 1. 

5. Skip exploitation under TBS 5.1 Terminology and assumptions 

In the previous section we noticed that when U,,,,,,” < 
u s,,,,,r the spare time saved by skips is not uniformly dis- 
tributed, hence there are intervals of time in which aperiodic 
tasks may execute without consuming the bandwidth re- 
served by the TBS. In this section, we show how to preserve 
the TBS bandwidth in the case in which aperiodic requests 
execute in such intervals. The proposed technique auto- 
matically reclaims the spare time saved by tasks (periodic 

or aperiodic) that may complete early. This is an important 
feature of this method, since the behavior of the TBS strictly 
depends on the estimated maximum execution time of peri- 
odic and aperiodic tasks, and, in the case of overestimated 
values, the deadlines assigned to aperiodic requests would 
be longer than necessary, thus aperiodic execution would be 
delayed. 

The key idea for preserving the TBS bandwidth is to 
identify, after the execution of each aperiodic job, the earliest 
time t* after which the aperiodic bandwidth U, is totally 
available. This time is then used to compute the deadline 

for the next aperiodic request. 

In order to compute t” and guaranteeing the feasibility 
of the schedule with the new deadline assignment, some 
additional terminology has to be introduced. 

In the definition of our reclaiming mechanism we will 
use the following notation: 

t: the instant at which the reclaiming algorithm is 
executed. 

ri,j : denotes the j-th instance of periodic task 7-i. 

cr;,j: denotes the current state of instance ri,j; it is, 
a counter which identifies the number of consecutive 

red instances activated after a skipped blue instance; 
ai,j E [O, s; - 11; cri,j = 0 when the current job is 
blue. 

ci,j : denotes the worst case execution time of instance 

-Qi. 

ri,j: denotes the arrival time of instance qj, i.e., the 
time at which the job is activated and becomes ready 
to execute. 

c:(t): denotes the remaining computation time of the 
current instance of periodic task ri, i.e., the residual 
worst case execution time needed by the processor, at 
the current time t, to complete the instance without 
interruption; by definition, c:(t) = 0 either if the 
current instance is blue, or t = ri,j, for a j > 0. 
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l D(i, [h,t2]): d enotes the computation demand of red 
instances of periodic task 7-i during the interval ☯t] , t2]; 
that is, the processing time of those red instances of 

ri released at or after t] and with deadline less than 
or equal to t2. More formally, 

D(i,[tl,tlZ]) = c Ci,j. 

l A(i, [r] , tz]): denotes the computation time requested 
by Ti in the interval [t] , tz), that is, the remaining com- 
putation time of the current instance of periodic task 
r; plus the computation time of the red jobs released 
in [t] , tz). More formally, 

46 [tl t t2]) = 
c:(h) + E~;<~~<t2 ci,j if t2 > h 

cZ(t1) if t2 = t] 

l &(t] , t2): denotes the total computation demand of 
red instances of all periodic tasks during the interval 
[t], t2]; that is, the processing time of those red in- 
stances released at or after tl and with deadline less 
than or equal to t2. More formally, 

wt,, t2) = c cS(t,) + c D(i, [tr ) t2]). 
4 92 i 

For a better exploitation of skips, throughout our analysis 
we assume that periodic tasks are scheduled by the RTO 
algorithm. 

reclaiming(t,,,, , dk_,) P returns t* l / 

{ 
t = currlent_time(); 
L = next-time(t); 
t* = t; 

do 1 
newt = L - [L - t - DT(t, L)]/Us; 
f” = max(newt, t*); 

5.2 The reclaiming algorithm if (t* 2 dk_,) return(dk_r); 

Whenever an aperiodic request Jk-, is completed, the 
next pendingrequest Jk, if any, becomes eligible to execute. 
Let t be such a time. Based on the classical TBS, at time 
t,, Jk receives a deadline & = man:(t,&_]) + f$ and it 
is scheduled by EDF along with the periodic task instances. 
Such a deadline assignment guarantees that the periodic task 
set remains schedulable [ 1.51. 

As we observed above, however, ifjob Jk_, does not en- 
tirely consume the available bandwidth lJ, (either because it 
exploited skips or because it executed less than its worst case 

duration) we can exploit the unused bandwidth by advanc- 

ing deadline dk of job Jh. To advance dk, our reclaiming 
algorithm starts finding the earliest time t* (t < t* < dk-]) 
after which the total bandwidth U, is again available for 
aperiodic service. 

Time t* can be computed by observing that for all L > t” 
the total computation demand of periodic and aperiodic tasks 
must be less than or equal to the available processing time. 
That is, 

t* = kn{” 1 VL > x DT(tr L) + (L - 2T)U, 5 L - t)}. 
- 

(11) 

Clearly, if t > dk_ 1, no reclaiming can be done (since the 
bandwidth U, is already guaranteed by the TBS) and we can 
immediately set t* := t. 

Since, after t*, the total bandwidth U, is available, the 
eligible aperiodic t;ask Jk will be assigned a deadline dk 
according to the following TBS rule: 

dk=t*+$. 
s 

(12) 

The algorithm for computing t’ is shown in Figure 3. It 
uses the following function next-time (t ) which returns 
the next request ri,j 2 t among all periodic tasks: 

nezt_tinze(t) = min{r;,j 1 r;,j 2 t}. 
iii 

Notice that t* can be computed only using L values which 
are periods’ end points of periodic tasks, up to a maximum 
time t,,, . 

L = next_time(L + 1); 

} while (L 5 tmaz); 

return( 

1 

Figure 3. Algorithm of t* computation. 

Figure 4 illustrates an example of t* computation per- 
formed at time t = 1. We can note that L = 7 is the instant 
which determines the value oft*, that is t* = 3. 

We now restrict the value of t,,, by introducing the 
notion of generalizled busy-period, called GB-period, which 
gives the interval of continuous processor utilization due 
to the red periodic instances and the bandwidth Us. More 
formally, at any time t, the GB-period(t) is that interval 
[t, tgb] such that: 

tgb = ~2 % >; A(i, [t,x]) + (z - t)Us 5 2 - t . 
- ii i 

(13) 
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T2 

14 ;21 
I 

TBS , 

U 5 = 0.25 

0 t t” d L tgb 

Figure 4. Example of t* computation. 

The following theorem guarantees that the number of 
points L, in the t* computation, can be limited in the range 

[t, tgb]. 

gb_period(t) /* returns i&b */ 

1 

BAR = 0; 

Theorem 5 Let r be a hybrid set of tasks such that .!IJ, + 

U, 5 1; let t be the instant at which the aperiodic task JI, 
becomes eligible and a reclaiming occurs. Then, if no task 

misses its deadline in [t, t&l, then r is schedulable. 

1 = t; 

while (TRUE) { 

last-1 = 1; 
1 = t + xi A(i, [t, I]) + BAR; 

Proof. 
See Appendix. 0 

if (1 == last-l) { 
new = next(l); 

if (xi A(i, [t, new])+ 
The algorithm for computing the GB-period is reported 

in Figure 5. Function next ( t ) is used to’compute the next 
request ri,j > t among all periodic red instances: 

next(t) = r$~ {ri,j 1 (ai,j > 0) A (ri,j > t)}. 

(new - t) * U, 5 new - t) 

return(new); 

else { 
BAR = BAR + new - 1; 
1 = new + req(new); 

> 
Function req ( t ) is used to compute the time requested by 
periodic & instances with ri,j = t: 

> 
> 

1 

req(t) = c Ci>j 

Note that this algorithm returns nezt(t,b). An example 
of GB-period(t) computation is shown in Figure 6. Here, 
points L1, L2, Lx indicate the times at which 1 = last-l and 
variable BAR represents the bandwidth reserved to aperiodic 
requests. The termination condition of the cycle is computed 
for each of these three points, but it is satisfied only for Lj, 
obtaining tgb = 21. 

6. Experimental results 

In this section we present some results of the simulations 
we have carried out for evaluating the performance of our 
reclaiming algorithm (TBrec) with respect to the plain TBS 
and the background service, for different aperiodic loads and 

I 

Figure 5. Algorithm for G&period(t). 

skip parameters. The execution times of aperiodic requests 
are choosen to be uniformly distributed in the interval [5,20], 
whereas their interarrival times are generated according to 
an exponential distribution, with average value computed to 
impose a specific aperiodic load. In the graphs, the average 

response time of aperiodic tasks is plotted as a function of 
the aperiodic load and is normalized with respect to their 
computation time. Hence, a value of 5 on the y-axis means 

that the average response time of aperiodic tasks is five times 
longer than their average computation time. 

Both the experiments refer to a task set of five periodic 
tasks with CJP = 0.837, however the skip parameters used 
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TBS 
U) = 0.25 

4 BAR 

in Figure 8 are greater than those used in Figure 7 (i.e., less 
skips are allowed in Figure 8). As a consequence, in Figure 
8 the value of U, is a little higher. 

As shown in Figure 7, for small skip parameters (i.e., 
when many instances are skipped) the performance of TBS 
tends to be similar to that of background service. Neverthe- 
less, TBrec is able to achieve good performance by exploit- 
ing the execution time left by the skipped (blue) instances. 
As shown in Figure 8, the improvement achieved by TBrec 
is even more significant for high aperiodic loads and high 
skip parameters (i.e., when less instances are skipped). In 
this situation, in fact, the background exhibits poor perfor- 
mance (since less “holes” are available), whereas the TBS 
degrades for high load conditions. 

In summary, experimental results indicate that the our 
reclaiming algorithm is worth to be used when a high quality 
of service is required by periodic tasks and for high load 

conditions. When load is not so high the plain TBS is 
able to achieve acceptable performance, thus the reclaiming 
mechanism might be avoided to limit the runtime overhead. 

7. Conclusions 

In this paper, we addressed the problem of scheduling 
hybrid task sets consisting of periodic tasks that can oc- 
casionally skip one instance and soft aperiodic requests, 
which have to be served as soon as possible to minimize 
their average response time. We proposed and analyzed 
an algorithm, based on a variant of Earliest Deadline First 
scheduling, which exploits skips to enhance aperiodic re- 
sponsiveness. Schedulability bounds have been derived to 
ensure a minimum level of guarantee off-line. In particular, 
we showed that the spare time saved by skipping periodic 
instances creates a free bandwidth that can be used either 
for scheduling slightly overloaded systems or for reducing 

Figure 7. Performance results with low skip 
parameters. 

the average response time of aperiodic requests. 

Since the spare time saved by skips is not uniformly dis- 
tributed, we proposed a reclaiming algorithm for preserving 
the unused bandw:idth when aperiodic requests execute in 
intervals not explicitly reserved to the TBS. The proposed 
technique automatically reclaims the spare time saved by 
tasks that may complete early. Experimental results indi- 
cate that reclaiming is more effective for high loads and 
when high quality of service is required. We are currently 
investigating possilble extensions of this approach to handle 
tasks with deadline and fault-tolerant requirements. 

Appendix 

Proof of Theorem 3. 
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Figure 9. Example for the proof of Theorem 3. 

Figure 8. Performance results with high skip 
parameters. 

and hence 

u, + u, > 1 

Assume U; + U, < 1, and suppose that a time-overflow 
occurs at time t. Let t, 2 0 be the last time before t at 
which the CPU is not running red tasks; let tb > 0 be the 
last time before t at which the CPU is running red tasks with 
deadlines after t. If we take t’ = max{ t,, tb} (see Figure 9), 
time t’ has the property that only red tasks activated after t’ 
with deadlines less than or equal to t run during [t’, t]. We 
can notice that: 

D(i, [t’, t]) < D(i, [O, t - t’]) 

Let C be the total computation demand requested in the 
interval [t’, t]. Since a time-overflow occurs, it must be that: 

t - t’ < c. 

Let Cape be the total execution time actually demanded 
by aperiodic requests arrived at t’ or later and served with 
deadlines less than or equal to t: 

By the result of Lemma 2 proved in [15], which says that 
c ape 4 (t - t’)Us, we can write that 

c = c D(i, [t’, t]) + Cape c 

4 c D(i, [t’, t]) + us(t - t’) 2 

5 Coji,[OJ-t’,) + u8(t-t’) < - 

5 &t - t’) + u,(t - t’). 

As a consequence, 

t-t’ < c < u,*ct - t’) + Us(t - t’) 

which is a contradiction. 0 

Proof of Theorem 4 

Given a periodic tasks set r, suppose to schedule the set 
l-’ = r U {T(p, c, s)}, such that: 

Now, checking the necessary condition 2 for r’ we have: 

n+l 

E&$.)=Ig~-&)+;> 

>g(;-+J%“.=l~ 
Since r’ does not satisfy condition (2), r’ is not feasible. 0 

Proof of Theorem 5 

SUppOSe that a time-OVerflOw occurs in i!,, > tab; we 
can write that: 

c c:(t) + CD& [t, tou]) + Cape > t,, -t (14) 
d, ltov i 

where Cape is the total execution time actually demanded 
by aperiodic requests arrived at t or later and served with 
deadlines less than or equal to tov: 
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For a generic t 2 f < t,,, we can write that 

d,<t,,, i 

i i 

By the definition of GB-period we can also write that 

Hence, from equation (14), setting f = tsb, we obtain: 

c A(i, it, hbl) + z D(i, [tgb, tot,]) + 
i 

+ &o, - t) > t,, - t 

c A(i, it> b’l) + c D(i, [t@, tov]) + 

i i 

f USC&b - t + to, - tgb) > t,, - t 

(bb -t) + cD(i, [tgbrtov]) + u,(t,v - tgb) > 

> (LJ - tgb) + (tgb - t) 

c DC6 [tgb, km]) + us(tov - tgb) > (tow - tgb) 

Finally, by the definition of U,, we have: 

c D(i, [tgbr km]) 5 u,(tcm - tgb) 

(us + U;)(to, - tgb) > (tov - tgb) 

u, + u, > 1 

which is a contradiction. 0 
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