
Exploiting Skips In Periodic Tasks For Enhancing Aperiodic Responsiveness

Marco Caccamo and Giorgio Buttazzo
Scuola Superiore S. Anna, Pisa, Italy
marea@tirreno.it, giorgio@sssup.it

Abstract

In certain real-time applications, ranging from multime-

dia to telecommunication systems, timing constraints can be

more flexible than scheduling theory usually permits. For

example, in video reception, missing a deadline is accept-

able, provided that most deadlines are met. In this paper
we deal with the problem of scheduling hybrid sets of tasks,
consisting offirm periodic tasks (i.e., tasks with deadlines
which can occasionally skip one instance) and soft aperi-
odic requests, which have to be served as soon as possible
to minimize their average response time. We propose and
analyze an algorithm, based on a variant of Earliest Dead-
line First scheduling, which exploits skips to enhance the

response time of aperiodic requests. Schedulability bounds

are also derived to peform off-line analysis.

1. Introduction

Many real-time applications require periodic activities
that have to be cyclically executed at fixed rates and within
specific deadlines. Typically, each periodic instance is as-
signed a relative deadline equal to the task period and is
treated as a hard job. Thus, a periodic task is executed only
if all its instances are guaranteed to complete within their
deadlines. Schedulability analysis of periodic task sets can
easily be performed both under fixed and dynamic priority
assignments. In particular, a lot of work has been done for
the Rate Monotonic (RM) and the Earliest Deadline First
(EDF) algorithms [9]. Schedulability analysis has also been
extended for the case in which tasks use shared resources
[11, 1,2] or run in the presence of aperiodic activities, under
fixed priority scheduling [7, 12, 81 and in dynamic priority
systems as well [13, 3, 151.

All these papers assume that periodic tasks are hard, that
is, all instances of a task have to be executed within their
deadlines, otherwise the task is not started at all. This model

is suitable for critical control applications in which missing
a deadline may cause catastrophic consequences on the con-
trolled system, but it can be too restrictive for other applica-

tions. For example, in multimedia communication systems,
skipping a video frame once in a while decreases the qual-
ity of service but certainly does not cause any damage to

the system. Even in more critical control applications, hard

tasks usually coexist with soft and non real-time activities,

which need to be treated in a different manner in order to
optimize the available resources.

Permitting skips in soft periodic tasks increases sys-
tem flexibility, since it allows to make a better use of re-
sources and schedule systems that would otherwise be over-
loaded. Consider for example two periodic tasks, 7-1 and
~2, with periods pt = 10, pz = 100, and execution times
Ct = 5 and Cz = 55, where rt can skip an instance ev-
ery 10 periods, whereas ~2 is hard (i.e., no instances can
be skipped). Clearly, the two tasks cannot be both sched-
uled as hard tasks, because the processor utilization factor

is U = S/10 + 55/100 = 1.05 > 1. However, if rt is
permitted to skip one instance every 10 periods, the spare
time can be used to accommodate the execution of 72.

The general problem of scheduling periodic tasks that
allow occasional skips has not received much attention in
the real-time literature. Hamdaoui and Ramanathan [4] pro-
posed a general framework called (m, Ic) model, for dealing
with periodic tasks having firm deadlines. However, this
method is based on a heuristic priority assignment and no
exact schedulability analysis is performed. Another general
model for increasing flexibility of periodic scheduling has
been proposed by Mok and Chen [IO]. Although skippable
tasks could be handled with this model, this technique can
only be applied to fixed priority environment, in the absence

of aperiodic tasks.

The most significant approach on skippable periodic tasks

is the one carried out by Koren and Shasha [6]. They showed
that making optimal use of skips is NP-hard and proposed
two algorithms, called Skip-Over Algorithms (one a variant
of rate monotonic scheduling and one of earliest deadline
first) that exploit skips to increase the feasible periodic load
and schedule slightly overloaded systems.

In this paper, we address the problem of scheduling hy-
brid task sets, consisting of firm (i.e., skippable) periodic
tasks and soft aperiodic requests. In such an environment,

330

0-8186-8268-x/97 $10.00 0 1997 IEEE

Administrator
Proceedings of the 18th IEEE Real-Time Systems Symposium (RTSS 1997), San Francisco, California, December 1997.

we propose an algorithm that uses the spare time saved by
the skipped instances to enhance the response time of ape-
riodic requests. Schedulability bounds are derived in order
to perform off-line analysis and on-line reclaiming of any
unused computation time.

1.1 Terminology and assumptions

We consider a hybrid set consisting of TC firm periodic

tasks and m soft aperiodic requests to be executed on a
uniprocessor system. All tasks are preemptive and do not

have precedence relations. Periodic tasks have deadlines,
but they are allowed to occasionally skip one instance once
in a while. Aperiodic requests do not have deadlines, and
have to be executed as soon as possible to minimize their
average response time. Periodic tasks are scheduled based
on EDF, and aperiodic requests are handled by the Total
Bandwidth Server (TBS) algorithm [151 (see Section 4.1).

Each periodic task pi is characterized by a worst-case
computation time ci, a period pi, a relative deadline equal
to its period, and a skip parameter si, 2 < si 5 00, which

gives the minimum distance between two consecutive skips.
When si = 00 no skips are allowed and ri is equivalent to
a hard periodic task. The skip parameter can be viewed as a
Quality Of Service metric (the higher s, the better the quality
of service).

Using the terminology introduced by Koren and Shasha
in [6], every instance of a periodic task can be red or blue.
A red instance must complete before its deadline; a blue
instance can be aborted at any time. When a blue instance
is aborted, we say that it was skipped. The fact that s > 2
implies that, if a blue instance is skipped, then the next s - 1

instances must be red. On the other hand, if a blue instance
completes successfully, the next task instance is also blue.

2. Known results

In the basic periodic model in which all task instances
are red (i.e., no skips are permitted), the schedulability of
a periodic task set can be tested using a simple necessary

and sufficient condition based upon cumulative processor
utilization. In particular, Liu and Layland [9] showed that
a periodic task set is schedulable by EDF if and only if its
cumulative processor utilization is no greater than 1. That
is,

Analyzing the feasibility of periodic tasks that allow skip
is not equally easy. Koren and Shasha [6] proved that de-
termining whether a set of periodic occasionally skippable
tasks is schedulable is NP-hard. They also found that, given

a set r = {Ti(pi, ci, si)} of periodic tasks that allow skips,
then

t (nTCi Si-1)
, I 1

i=l pi-%

is a necessary condition for the feasibility of I, since it
represents the utilizatilon based on the computation that must
take place.

Using a processor demand criterion, Jeffay and Stone [5]

showed that a set of hard periodic tasks is schedulable by

EDF if and only if, for any interval L 2 0,

(3)

Based on this result, Koren and Shasha proved the fol-
lowing theorem, which provides a sufficient condition for
guaranteeing a set of skippable periodic tasks under EDF.

Theorem 1 A set ofjFirm (i.e., skippable) periodic tasks is

schedulable if

where

(4)

(5)

2.1 Algorithms

Two on-line scheduling algorithms were proposed in [6]
to handle tasks with skips under EDF.

1. The first algorithm, called Red Tasks Only (RTO),
always rejects the blue instances, whereas the red
ones are scheduled according to EDF.

2. The second algorithm, called Blue When Possible

(BWP), is more flexible than RTO and schedules blue
instances whenever there are no ready red jobs to ex-
ecute. Red instances are scheduled according to EDF.

It is easy to find examples that show that BWP improves
RTO in the sense that it is able to schedule task sets that RTO
cannot schedule. In the general case, the above algorithms
are not optimal, but they become optimal under a particular
task model, called the deeply-red model.

Definition 1 A system is deeply-red ;f all tasks are syn-
chronously activated and thejirst si - 1 instances of every

task Ti are red.

331

In the same paper, Koren and Shasha showed that the
worst case for a periodic skippable task set occurs when
tasks are deeply-red. For this reason, all results in this paper

will be proved assuming the assumption above. This means
that, if a task set is schedulable under the deeply-red model,

it is also schedulable without this assumption.
In the following sections, we address the problem of

scheduling hybrid task sets, consisting of skippable peri-
odic tasks and soft aperiodic requests. In particular, the
RTO and the BWP algorithms will be integrated with the
Total Bandwidth Server [13, 151 for enhancing aperiodic re-
sponsiveness. Before presenting the proposed approach, we
introduce the notion of equivalent utilization factor, which
simplifies the description of the schedulability analysis of

hybrid task sets.

3. Equivalent utilization factor

In the basic periodic model, in which all tasks instances
are red (si = 03 for all tasks), the processor utilization
factor is defined as U, = ci q/pi, If skips are permitted
in the periodic task set, the spare time saved by rejecting the
blue instances can be reallocated for other purposes, e.g.,
for advancing the execution of soft aperiodic requests.

Unfortunately, the spare time has a “granular” distribu-

tion and cannot be reclaimed at any time. Nevertheless,
we will show that skipping blue instances still produces a
bandwidth saving in the periodic scheduling. To express
this fact, we define an equivalent utilization factor Up as
follows.

Definition 2 Giver2 a set r = {l’; (pi, ci, s;)} of n periodic
tasks that allow skips, we define the equivalent processor
utilization factor as:

where

(6)

It is worth to observe that to compute U,* it is not nec-
essary to evaluate equation (6) for any L, but it is sufficient

to evaluate it in those points L that are periods’ end points
not beyond the hyperperiod P = lcnr(pl, ~2,. . . , p,). The
following theorem states the schedulability condition for a
set of deeply-red skippable tasks.

Theorem 2 A set r of skippable periodic tasks, which are

deeply-red, is schedulable ifand only ;f

cr* < 1.
P-

Proof.
If. Directly derives from Theorem 1 and the definition of
u;.
Only if. Suppose l_Ji > 1. If we consider any interval [0, t],

the total computation demand of I- in the worst case is

n

C[O, t] = c D(i, [O, t])
221

and, according to the U,* definition,

3L 1 .?qL = &(l: [O,L]).

i=l

Hence

C[O, L] = 2 D(i, [OJ,) = UpL > L.
i=l

Since the computation demand in [0, L] exceeds the length
of the same interval, r is not feasible. •I

Notice that the factor Up represents the net bandwidth

really used by periodic tasks, assuming a deeply-red model.

It is easy to show that

u; 5 up.

In fact, by equation 3, U, can also be defined as

Thus, Up* < U, because

4. Scheduling aperiodic tasks

In the previous section we showed that periodic skips
create additional free bandwidth that can be used to advance
the execution of soft aperiodic tasks. Such a free bandwidth
can be exploited by a Total Bandwidth Server (TBS), a
scheduling algorithm proposed by Spuri and Buttazzo [13,
151 to enhance aperiodic responsiveness under EDF. It is
briefly recalled in the following section.

4.1 The Total Bandwidth Server

The name of the server comes from the fact that,each time
an aperiodic request enters the system, the total bandwidth
of the server (in terms of cpu execution time), is assigned

332

to it, whenever possible. This is done by simply assigning
a suitable deadline to the request, which is scheduled ac-
cording to the EDF algorithm together with all the periodic
task instances. The assignment of the deadline is done to
improve the aperiodic responsiveness, still maintaining the
schedulability of periodic tasks.

The definition of the TBS is relatively simple. When the
/c-th aperiodic request arrives at time t = rk, it receives a

deadline

drz = max(r,,,dk_i) + $: (7)
s

where CE is the execution time of the request and U, is the
server utilization factor (i.e., its bandwidth). By definition
do = 0. The request is then inserted into the ready queue
of the system and scheduled by EDF, as any periodic or
sporadic instance.

Note that we can keep track of the bandwidth already
assigned to other requests by simply taking the maximum
between rk and dk-1. Intuitively, the assignment of the
deadlines is such that in each interval of time the ratio al-
located by EDF to aperiodic requests never exceeds the
server utilization U,, that is, the processor utilization of the
aperiodic tasks is at most U,. As a consequence, the schedu-
lability of a periodic task set in the presence of a TBS can
simply be tested by verifying the following condition:

where U, is the utilization factor of the periodic task set.
In spite of its simplicity, the TBS shows a good perfor-

mance/cost ratio and can easily be extended to deal with firm

aperiodic requests, as described in [141. We now show how
to use the TBS to run in a real-time periodic environment
which allow skips.

4.2 Integrating TBS with periodic skips

In this section we show how the spare time saved by
skipped instances can be exploited by the TBS algorithm
to advance the execution of aperiodic tasks, thus enhancing
responsiveness with respect to the case of no skips. The fol-
lowing theorem gives a sufficient condition for guaranteeing

a feasible schedule of a hybrid task set.

Theorem 3 Given a set of periodic tasks that allow skip

with equivalent utilization U,* and a set of soft aperiodic

tasks served by a TBS with utilization factor U,, the hybrid

set is schedulable by RTO or BWP if:

u; + u, I 1. (9)

Proof.
See Appendix. I3

Theorem 3 only provides a sufficient schedulability con-
dition, since it guarantees a minimum bandwidth U,,,,,,. =

1 - U; to the aperiodic tasks. Indeed, it is easy to find exam-
ples in which periodic task sets are schedulable by assigning
the TBS a bandwidth U, greater than U,,,,," . The following
theorem gives a maximum bandwidth U,,,,,,,r above which
the schedule is certalinly not feasible.

Theorem 4 Given a set r = {Ti(pi, c;, s;)} of n periodic

tasks that allow skips, and a TBS with bandwidth U,, then a

necessary condition for the feasibility of r is:

where

u = 5711uz (10)

Proof.
See Appendix. 0

Notice that Us,,,,, = represents the limit case in which the
whole bandwidth sawed by skips can be used for aperiodic
service. This is not ialways the case, since only a bandwidth

U s,,L,,, can be guaranteed.
Table 1 shows a set of skippable tasks that can be feasibly

scheduled with a TBS having a bandwidth U, > U,CC)t,n.

Figure 1 and Figure 2 show the schedule produced by RTO
and BWP respectively.

Table 1. A schedulable task set.

Notice that a small difference between U, ,,“,,, and U, ,,,,,,

indicates that the spare time saved by skips tends to be
uniformly distributed. When U, ,,,,” = U,,,,O ‘, all skips are
effectively used for aperiodic service, for any arrival pattern.

A big difference ‘between U,,,,zn and U,,,,,,, indicates that
the spare time save by skips is not uniformly distributed,
and only a bandwidth equal to Us,,,,, can be guaranteed. In
this case, the residual bandwidth U,,,,C,F - U,,,L,,, cannot be
assigned to the TBS but it can be exploited by the BWP to

execute blue instances whenever possible.

333

TBS
“,=O.Y

0 3 6 15 18 24

Figure 1. Schedule produced by RTO for the task set shown in Table I,

TBS
UI = 0.3:

Figure 2. Schedule produced by BWP for the task set shown in Table 1.

5. Skip exploitation under TBS 5.1 Terminology and assumptions

In the previous section we noticed that when U,,,,,,” <
u s,,,,,r the spare time saved by skips is not uniformly dis-
tributed, hence there are intervals of time in which aperiodic
tasks may execute without consuming the bandwidth re-
served by the TBS. In this section, we show how to preserve
the TBS bandwidth in the case in which aperiodic requests
execute in such intervals. The proposed technique auto-
matically reclaims the spare time saved by tasks (periodic

or aperiodic) that may complete early. This is an important
feature of this method, since the behavior of the TBS strictly
depends on the estimated maximum execution time of peri-
odic and aperiodic tasks, and, in the case of overestimated
values, the deadlines assigned to aperiodic requests would
be longer than necessary, thus aperiodic execution would be
delayed.

The key idea for preserving the TBS bandwidth is to
identify, after the execution of each aperiodic job, the earliest
time t* after which the aperiodic bandwidth U, is totally
available. This time is then used to compute the deadline

for the next aperiodic request.

In order to compute t” and guaranteeing the feasibility
of the schedule with the new deadline assignment, some
additional terminology has to be introduced.

In the definition of our reclaiming mechanism we will
use the following notation:

t: the instant at which the reclaiming algorithm is
executed.

ri,j : denotes the j-th instance of periodic task 7-i.

cr;,j: denotes the current state of instance ri,j; it is,
a counter which identifies the number of consecutive

red instances activated after a skipped blue instance;
ai,j E [O, s; - 11; cri,j = 0 when the current job is
blue.

ci,j : denotes the worst case execution time of instance

-Qi.

ri,j: denotes the arrival time of instance qj, i.e., the
time at which the job is activated and becomes ready
to execute.

c:(t): denotes the remaining computation time of the
current instance of periodic task ri, i.e., the residual
worst case execution time needed by the processor, at
the current time t, to complete the instance without
interruption; by definition, c:(t) = 0 either if the
current instance is blue, or t = ri,j, for a j > 0.

334

l D(i, [h,t2]): d enotes the computation demand of red
instances of periodic task 7-i during the interval ☯t] , t2];
that is, the processing time of those red instances of

ri released at or after t] and with deadline less than
or equal to t2. More formally,

D(i,[tl,tlZ]) = c Ci,j.

l A(i, [r] , tz]): denotes the computation time requested
by Ti in the interval [t] , tz), that is, the remaining com-
putation time of the current instance of periodic task
r; plus the computation time of the red jobs released
in [t] , tz). More formally,

46 [tl t t2]) =
c:(h) + E~;<~~<t2 ci,j if t2 > h

cZ(t1) if t2 = t]

l &(t] , t2): denotes the total computation demand of
red instances of all periodic tasks during the interval
[t], t2]; that is, the processing time of those red in-
stances released at or after tl and with deadline less
than or equal to t2. More formally,

wt,, t2) = c cS(t,) + c D(i, [tr) t2]).
4 92 i

For a better exploitation of skips, throughout our analysis
we assume that periodic tasks are scheduled by the RTO
algorithm.

reclaiming(t,,,, , dk_,) P returns t* l /

{
t = currlent_time();
L = next-time(t);
t* = t;

do 1
newt = L - [L - t - DT(t, L)]/Us;
f” = max(newt, t*);

5.2 The reclaiming algorithm if (t* 2 dk_,) return(dk_r);

Whenever an aperiodic request Jk-, is completed, the
next pendingrequest Jk, if any, becomes eligible to execute.
Let t be such a time. Based on the classical TBS, at time
t,, Jk receives a deadline & = man:(t,&_]) + f$ and it
is scheduled by EDF along with the periodic task instances.
Such a deadline assignment guarantees that the periodic task
set remains schedulable [1.51.

As we observed above, however, ifjob Jk_, does not en-
tirely consume the available bandwidth lJ, (either because it
exploited skips or because it executed less than its worst case

duration) we can exploit the unused bandwidth by advanc-

ing deadline dk of job Jh. To advance dk, our reclaiming
algorithm starts finding the earliest time t* (t < t* < dk-])
after which the total bandwidth U, is again available for
aperiodic service.

Time t* can be computed by observing that for all L > t”
the total computation demand of periodic and aperiodic tasks
must be less than or equal to the available processing time.
That is,

t* = kn{” 1 VL > x DT(tr L) + (L - 2T)U, 5 L - t)}.
-

(11)

Clearly, if t > dk_ 1, no reclaiming can be done (since the
bandwidth U, is already guaranteed by the TBS) and we can
immediately set t* := t.

Since, after t*, the total bandwidth U, is available, the
eligible aperiodic t;ask Jk will be assigned a deadline dk
according to the following TBS rule:

dk=t*+$.
s

(12)

The algorithm for computing t’ is shown in Figure 3. It
uses the following function next-time (t) which returns
the next request ri,j 2 t among all periodic tasks:

nezt_tinze(t) = min{r;,j 1 r;,j 2 t}.
iii

Notice that t* can be computed only using L values which
are periods’ end points of periodic tasks, up to a maximum
time t,,, .

L = next_time(L + 1);

} while (L 5 tmaz);

return(

1

Figure 3. Algorithm of t* computation.

Figure 4 illustrates an example of t* computation per-
formed at time t = 1. We can note that L = 7 is the instant
which determines the value oft*, that is t* = 3.

We now restrict the value of t,,, by introducing the
notion of generalizled busy-period, called GB-period, which
gives the interval of continuous processor utilization due
to the red periodic instances and the bandwidth Us. More
formally, at any time t, the GB-period(t) is that interval
[t, tgb] such that:

tgb = ~2 % >; A(i, [t,x]) + (z - t)Us 5 2 - t .
- ii i

(13)

335

T2

14 ;21
I

TBS ,

U 5 = 0.25

0 t t” d L tgb

Figure 4. Example of t* computation.

The following theorem guarantees that the number of
points L, in the t* computation, can be limited in the range

[t, tgb].

gb_period(t) /* returns i&b */

1

BAR = 0;

Theorem 5 Let r be a hybrid set of tasks such that .!IJ, +

U, 5 1; let t be the instant at which the aperiodic task JI,
becomes eligible and a reclaiming occurs. Then, if no task

misses its deadline in [t, t&l, then r is schedulable.

1 = t;

while (TRUE) {

last-1 = 1;
1 = t + xi A(i, [t, I]) + BAR;

Proof.
See Appendix. 0

if (1 == last-l) {
new = next(l);

if (xi A(i, [t, new])+
The algorithm for computing the GB-period is reported

in Figure 5. Function next (t) is used to’compute the next
request ri,j > t among all periodic red instances:

next(t) = r$~ {ri,j 1 (ai,j > 0) A (ri,j > t)}.

(new - t) * U, 5 new - t)

return(new);

else {
BAR = BAR + new - 1;
1 = new + req(new);

>
Function req (t) is used to compute the time requested by
periodic & instances with ri,j = t:

>
>

1

req(t) = c Ci>j

Note that this algorithm returns nezt(t,b). An example
of GB-period(t) computation is shown in Figure 6. Here,
points L1, L2, Lx indicate the times at which 1 = last-l and
variable BAR represents the bandwidth reserved to aperiodic
requests. The termination condition of the cycle is computed
for each of these three points, but it is satisfied only for Lj,
obtaining tgb = 21.

6. Experimental results

In this section we present some results of the simulations
we have carried out for evaluating the performance of our
reclaiming algorithm (TBrec) with respect to the plain TBS
and the background service, for different aperiodic loads and

I

Figure 5. Algorithm for G&period(t).

skip parameters. The execution times of aperiodic requests
are choosen to be uniformly distributed in the interval [5,20],
whereas their interarrival times are generated according to
an exponential distribution, with average value computed to
impose a specific aperiodic load. In the graphs, the average

response time of aperiodic tasks is plotted as a function of
the aperiodic load and is normalized with respect to their
computation time. Hence, a value of 5 on the y-axis means

that the average response time of aperiodic tasks is five times
longer than their average computation time.

Both the experiments refer to a task set of five periodic
tasks with CJP = 0.837, however the skip parameters used

336

TBS
U) = 0.25

4 BAR

in Figure 8 are greater than those used in Figure 7 (i.e., less
skips are allowed in Figure 8). As a consequence, in Figure
8 the value of U, is a little higher.

As shown in Figure 7, for small skip parameters (i.e.,
when many instances are skipped) the performance of TBS
tends to be similar to that of background service. Neverthe-
less, TBrec is able to achieve good performance by exploit-
ing the execution time left by the skipped (blue) instances.
As shown in Figure 8, the improvement achieved by TBrec
is even more significant for high aperiodic loads and high
skip parameters (i.e., when less instances are skipped). In
this situation, in fact, the background exhibits poor perfor-
mance (since less “holes” are available), whereas the TBS
degrades for high load conditions.

In summary, experimental results indicate that the our
reclaiming algorithm is worth to be used when a high quality
of service is required by periodic tasks and for high load

conditions. When load is not so high the plain TBS is
able to achieve acceptable performance, thus the reclaiming
mechanism might be avoided to limit the runtime overhead.

7. Conclusions

In this paper, we addressed the problem of scheduling
hybrid task sets consisting of periodic tasks that can oc-
casionally skip one instance and soft aperiodic requests,
which have to be served as soon as possible to minimize
their average response time. We proposed and analyzed
an algorithm, based on a variant of Earliest Deadline First
scheduling, which exploits skips to enhance aperiodic re-
sponsiveness. Schedulability bounds have been derived to
ensure a minimum level of guarantee off-line. In particular,
we showed that the spare time saved by skipping periodic
instances creates a free bandwidth that can be used either
for scheduling slightly overloaded systems or for reducing

Figure 7. Performance results with low skip
parameters.

the average response time of aperiodic requests.

Since the spare time saved by skips is not uniformly dis-
tributed, we proposed a reclaiming algorithm for preserving
the unused bandw:idth when aperiodic requests execute in
intervals not explicitly reserved to the TBS. The proposed
technique automatically reclaims the spare time saved by
tasks that may complete early. Experimental results indi-
cate that reclaiming is more effective for high loads and
when high quality of service is required. We are currently
investigating possilble extensions of this approach to handle
tasks with deadline and fault-tolerant requirements.

Appendix

Proof of Theorem 3.

337

Figure 9. Example for the proof of Theorem 3.

Figure 8. Performance results with high skip
parameters.

and hence

u, + u, > 1

Assume U; + U, < 1, and suppose that a time-overflow
occurs at time t. Let t, 2 0 be the last time before t at
which the CPU is not running red tasks; let tb > 0 be the
last time before t at which the CPU is running red tasks with
deadlines after t. If we take t’ = max{ t,, tb} (see Figure 9),
time t’ has the property that only red tasks activated after t’
with deadlines less than or equal to t run during [t’, t]. We
can notice that:

D(i, [t’, t]) < D(i, [O, t - t’])

Let C be the total computation demand requested in the
interval [t’, t]. Since a time-overflow occurs, it must be that:

t - t’ < c.

Let Cape be the total execution time actually demanded
by aperiodic requests arrived at t’ or later and served with
deadlines less than or equal to t:

By the result of Lemma 2 proved in [15], which says that
c ape 4 (t - t’)Us, we can write that

c = c D(i, [t’, t]) + Cape c

4 c D(i, [t’, t]) + us(t - t’) 2

5 Coji,[OJ-t’,) + u8(t-t’) < -

5 &t - t’) + u,(t - t’).

As a consequence,

t-t’ < c < u,*ct - t’) + Us(t - t’)

which is a contradiction. 0

Proof of Theorem 4

Given a periodic tasks set r, suppose to schedule the set
l-’ = r U {T(p, c, s)}, such that:

Now, checking the necessary condition 2 for r’ we have:

n+l

E&$.)=Ig~-&)+;>

>g(;-+J%“.=l~
Since r’ does not satisfy condition (2), r’ is not feasible. 0

Proof of Theorem 5

SUppOSe that a time-OVerflOw occurs in i!,, > tab; we
can write that:

c c:(t) + CD& [t, tou]) + Cape > t,, -t (14)
d, ltov i

where Cape is the total execution time actually demanded
by aperiodic requests arrived at t or later and served with
deadlines less than or equal to tov:

338

For a generic t 2 f < t,,, we can write that

d,<t,,, i

i i

By the definition of GB-period we can also write that

Hence, from equation (14), setting f = tsb, we obtain:

c A(i, it, hbl) + z D(i, [tgb, tot,]) +
i

+ &o, - t) > t,, - t

c A(i, it> b’l) + c D(i, [t@, tov]) +

i i

f USC&b - t + to, - tgb) > t,, - t

(bb -t) + cD(i, [tgbrtov]) + u,(t,v - tgb) >

> (LJ - tgb) + (tgb - t)

c DC6 [tgb, km]) + us(tov - tgb) > (tow - tgb)

Finally, by the definition of U,, we have:

c D(i, [tgbr km]) 5 u,(tcm - tgb)

(us + U;)(to, - tgb) > (tov - tgb)

u, + u, > 1

which is a contradiction. 0

References

[11 N.C. Audsley, A. Burns, M. Richardson, K. Tindell and
A. Wellings, “Applying New Scheduling Theory to
Static Priority Preemptive Scheduling”, So&are En-

gineering Journal 8(5), pp. 284-292, September 1993.

[2] T.P. Baker, “Stack-Based Scheduling of Real-Time
Processes,” Real-Time Systems, 3, 199 1.

[3] T.M. Ghazalie and T.P. Baker, “Aperiodic Servers In
A Deadline Scheduling Environment,” Real-Time Sys-

tems, 9, pp. 21-36, 1995.

[4] M. Hamdaoui and P. Ramanathan, “A Dynamic Pri-
ority Assignment Technique for Streams with (m, /c)-
Firm Deadlines,” IEEE Transactions on Computers,
44(12), December 1995.

[5] K. Jeffay and 1~. Stone, “Accounting for interrupt han-
dling costs in dynamic priority task systems,” In Pro-

ceedings of thle 14th IEEE Real-Time Systems Sympo-

sium, pp. 2 12-22 1, Raleigh-Durham, NC, December
1993.

[6] G. Koren and D. Shasha, “Skip-Over: Algorithms
and Complexity for Overloaded Systems that Allow
Skips,” Proce,edings of IEEE Real-Time System Sym-
posium, Pisa, IItaly, December 1995.

[7] J.P. Lehoczky,, L. Sha and J.K. Strosnider, “Enhanced

Aperiodic Responsiveness in Hard Real-Time Envi-

ronments,” Proc. of the IEEE Real-Time Systems Sym-

posium, December 1987.

[8] J. P. LehoczkJy and S. R. Ramos-Thuel, “An optimal
algorithm for scheduling soft-aperiodic tasks in fixed-
priority preemptive systems”. In Proceedings of the
13th IEEE Real-Time Systems Symposium, pp. I lO-
123, Phoenix, Arizona, December 1992.

[9] C. L. Liu and J. Layland, “Scheduling algorithms for
multiprogram!ming in a hard real-time environment”.
.tournaloftheACM, 20(l), pp. 46-61, 1973.

[lo] A. K. Mok and D. Chen, “A Multiframe Model for
Real-Time Tasks”, Proceedings of IEEE Real-Time
System Symposium, Washington DC, December 1996.

[1 l] L. Sha, R. Rajkumar and J.P. Lehoczky,“Priority Inher-
itance Protocols: An Approach to Real-Time Synchro-
nization,” IEEE Transactions on Computers, 39(9),
September 19’90.

[12] B. Sprunt, L. Sha, and J. P. Lehoczky, “Aperiodic
scheduling for hard real-time system”. The Journal
of Real-Time !Systems, 1, pp. 27-60, 1989.

[131 Spuri, M. and iG. C. Buttazzo, “Efficient Aperiodic Ser-
vice under Earliest Deadline Scheduling”, Proceedings
of IEEE Real-Time System Symposium, San Juan, Por-
torico, December 1994.

[141 M. Spuri, G.C. Buttazzo, and F. Sensini, “Robust Ape-
riodic Scheduling under Dynamic Priority Systems”,
Proc. of the IEEE Real-Time Systems Symposium, Pisa,
Italy, December 1995.

[15] M. Spuri and G.C. Buttazzo, “Scheduling Aperiodic
Tasks in Dynamic Priority Systems,” Real-Time Sys-

tems, 10(2), 1’996.

339

