IEEE Proceedings of the 12th Euromicro Conference on Real-Time Systems, Stockholm, Sweden, June 2000. 1

Elastic Feedback Control

Marco Caccamo

Pisa (Italy)
caccamo@sssup.it

Abstract

In many real-time control applications, the task pe-
riods are typically fized and worst-case execution times
are used in schedulability analysis. With the advance-
ment of robotics, flexible visual sensing using cameras
has become a popular alternative to the use of embedded
sensors. Unfortunately, the execution time of visual
tracking varies greatly. In such environments, control
tasks have a normally short computation time but also
an occasional long computation time; therefore, the use
of worst-case execution time is inefficient for control-
ling performance optimization. Nevertheless, to main-
tain the control stability, we still need to guarantee the
task set even if the worst case arises. In this paper, we
propose an integrated approach to control performance
optimization and task scheduling for control applica-
tions where the execution time of each task can vary
greatly. We create an innovative approach to elastic
control that allows us to fully utilize the processor to
optimize the control performance and yet guarantee the
schedulability of all tasks under worst-case conditions.

1 Introduction

In many real-time control applications, the task pe-
riods are typically fixed and worst-case execution times
are used in the schedulability analysis. This model is
fine for many classical control applications where the
execution time variations are small. However, with the
advance of robotics, flexible visual sensing using cam-
eras has become a popular alternative to the use of
embedded sensors. Unfortunately, the execution time
of visual tracking varies greatly.

For example, consider a ball and plate control sys-
tem based on visual feedback. A ball on the plate has
to follow a specified circle on the plate, which can be
controlled by acting on roll and pitch rotations. To
speed up the visual tracking process, predictive tech-

Giorgio Buttazzo
Scuola Superiore S. Anna University of Pavia (Italy)
INFM Research Unit

giorgio@sssup.it

Lui Sha
University of Illinois
Urbana, IL 61801
Irs@cs.uiuc.edu

niques are typically used to search for the ball in a small
mobile window centered in the estimated ball position
rather than searching the whole image. Normally, the
ball is found in the small window and its position can
be computed quickly. However, in most control appli-
cations there are occasional disturbances. If the dis-
turbance makes the ball move outside of the predicted
window, searching has to be extended in a larger area.
This process may continue until, eventually, the entire
plate is scanned.

In this example, the visual tracking task’s computa-
tion time can be modeled as having a constant normal
execution time, due to the searching operation in the
small window. In addition, it has a bounded probabilis-
tic execution time during tracking exceptions. Simi-
lar situations can be found in radar tracking where a
search window is centered on the predicted location of
the target.

It is worth noting that the search time is a part of the
control loop, since the position information is needed
in control computations. With a normally short (con-
trol loop) computation time, but an occasional long
computation time, the use of worst-case computation
times is inefficient. Nevertheless, to guarantee the con-
trol stability, we still need to close the control loop in
time, even if the worst case arises.

If we reserve for the worst-case time, then most of
the time there is a large amount of reserved but un-
used execution time budget. Although such an unused
reserved time can be reclaimed for soft real-time aperi-
odic applications [8, 9, 10], such an aperiodic applica-
tion may or may not exist in a given application envi-
ronment. An alternative solution is to fully utilize the
reserved budget to optimize the control performance in
spite of the variation in computation time.

In digital control, the system performance is a func-
tion of the sampling rate. For a given controller design
method, faster sampling will permit, up to a limit, a
better control performance. So the idea is to increase
the control loop frequency when the loop computation

time is short and slow down the frequency when the
worst-case situation arises. However, there is a lower
bound on the frequency for each task, f/", the mini-
mum frequency for each task 7;, below which the per-
formance is unacceptable - the control becomes unsta-
ble. In this formulation, 1/f™" represents the hard
deadline that each instance of 7; has to honor.

The frequency adjustment is particularly easy when
the common method of digitized analog design is used,
since this method does not require the change of con-
trol gains. The scheduler design method in this paper
is also applicable to other control design methods. In
this case, it involves the design of control gain schedul-
ing in conjunction with scheduler design. However, ap-
plication of this approach requires more work on the
analysis of system stability. Since the focus of this pa-
per is on the scheduler design, we shall assume that the
digitized analogy controller design method is used for
the system.

We refer the idea of dynamically adjusting the rates
to optimize the control performance as an “elastic task
tuning”. However, a simple-minded implementation
of this idea would not work. Consider the following
example:

| Task | WCET; (ms) | ¢ (ms) | f™" (Hz) |
T 25 20 9.9
P 25 20 20

Table 1. Task set parameters.

Example 1. A simple system is composed of two
tasks whose parameters are shown in Table 1, where
WCET; is the worst-case execution time in msec, ¢}
is the normal execution time in msec, and f™" is the
minimal frequency in Hz. Suppose that when both
tasks execute normally, the optimal frequency assign-
ment for 7 is assumed to be 9.9 Hz, the same as
the minimal frequency. Suppose also that the opti-
mal frequency f5*' assignment for task 7 is 40 Hz,
twice that of the minimal frequency of 20 Hz, whereas

ot — fmin Under this arrangement, these two tasks
use 20% and 80% of the CPU respectively. The idea
is that, should the worst case arise, task 7 could slow
down from 40 Hz to 20 Hz to avoid overload. Unfortu-
nately, this idea would not work.

As shown in Figure 1, both tasks start at time ¢ = 0.
At time ¢t = 101, an exception is raised by the system
because task 7 is asking to execute more than ¢ units
of time. Unfortunately, at this point, there is nothing
task 75 can do to assist task 71. As a result, 7, will
miss its deadline at t,, = 101.

time-overflow
T
! M M il [V]
0 ms
"2 al
0 25 50 75 100 ms

Figure 1. Example of time-overflow due to an
exception.

To make the idea of elastic control work, the chal-
lenge is to develop a method that will adjust the task
frequencies to produce the optimal system control per-
formance, subject to the constraint of guaranteeing
that when the worst case comes, no deadlines will be
missed.

The problem of handling execution overruns in real-
time systems has been recently addressed in the litera-
ture using various approaches. In [4], Gardner and Liu
compared the behavior of three classes of scheduling
algorithms for scheduling real-time systems in which
jobs may overrun their allocated processor time, po-
tentially causing the system to be overloaded. In their
work, each task is characterized by a guaranteed execu-
tion time, which is zero for non real-time tasks, equal to
the worst-case execution time for hard real-time tasks,
and somewhere in between for soft real-time tasks.
They introduced the Overrun-Server Method (OSM)
and the Isolation-Server Method (ISM) as scheduling
algorithms. Under OSM, a job is released for execu-
tion and scheduled in the same manner as it would be
according to Deadline Monotonic (DM) [5] or Earliest
Deadline First (EDF) [6] (in a fixed priority or dynamic
priority environment, respectively). At the time of ex-
ception, the execution of the job is interrupted and
the remaining execution time of the job is released as
an aperiodic request to a server. Using the ISM tech-
nique, jobs are submitted as aperiodic requests to the
server assigned to their task at the time of their release
and execute completely under server control. However,
these scheduling strategies can guarantee those jobs
which do not generate exceptions meet their deadlines
but are unable to guarantee a maximum response time
for those which do.

Stankovic, Lu, Son and Tao, in [11, 12], describe
another approach to increase the performance of a
scheduling algorithm in unpredictable dynamic sys-
tems whose workloads cannot be accurately modeled.
Usually, real-time systems are designed based on worst-

case workload parameters. When accurate system
workload models are not available, such an approach
can result in a highly underutilized system based on
extremely pessimistic estimation of workload. In this
work, they propose a new scheduling paradigm, called
feedback control real-time scheduling, which defines er-
ror terms for schedules, monitors the amount of error,
and continuously adjusts the schedules to maintain sat-
isfactory performance. Using control theory methodol-
ogy, they defined the percentage of tasks that miss their
deadlines as the controlled variable and the requested
CPU utilization as the manipulated variable. By do-
ing this, the deadline miss ratio can be controlled by
varying the admission strategy of tasks on-line. How-
ever, this technique rejects jobs to keep the system not
fully loaded. The technique also is unable to isolate
an overloaded task from the other tasks, affecting the
performance of all the other tasks.

The problem of selecting the set of control task fre-
quencies to optimize the system control performance
subject to schedulability constraints was addressed by
Seto, Lehoczky, Sha and Shin [7]. In this formula-
tion, each control task 7; is characterized by a per-
formance loss index (PLI') as a function of the sam-
pling frequency. In fact, let J and Jp(f) be the per-
formance indices generated by a continuous-time con-
trol and its digital implementation at sampling fre-
quency f, respectively; a performance loss index can
be provided as AJ(f) = |Jp(f) — J| which is con-
vex and monotonically decreasing. Hence, if we note
that AJ(f) exponentially decreases with the frequency,
then, for each control task, it can be approximated by
AJi(f;) = aze Bifi | where f; is the frequency of 7;, o
is a magnitude coefficient and S; is the decay rate.

The performance loss index of the overall sys-
tem AJ(f1,...,fn) is defined as AJ(f1,....fn) =
> wiAJ;(fi), where w; is a design parameter deter-
mined from the application. For instance, it can be the
importance of the associated control system to have a
better performance than the others.

Given the minimum frequency f™" and the worst-
case execution time (WCET;) of each task 7;, Seto,
Lehoczky, Sha and Shin provide an algorithm to com-
pute the frequencies f{** which minimizes the PLI of
the system while guaranteeing the schedulability con-
straints (ensuring each task can meet its deadlines).

However, in [7], f*" were computed based on
WCETs. If the normal computation times ¢} are much
less than WCET;, then f7** can be too low.

In the following of this paper, we assume that each

Mn the original formulation, the performance loss index was
simply called performance index or PI. In the following, it will
be called PLI for more clarity.

task has a given performance index function.

The rest of the paper is organized as follows. Sec-
tion 2 introduces some terminology and assumptions
we will use in the rest of the paper. Section 3 presents
the main results consisting in a local approach for han-
dling overruns, and an example is shown to illustrate
the improvement in the performance we can achieve us-
ing our approach. Section 4 briefly recalls the Constant
Bandwidth Server (CBS) algorithm and introduces an
extension of it (CBS") for efficiently schedule peri-
odic tasks which generate overruns. Finally, Section 5
presents our conclusions and future work.

2 Terminology and assumptions

In this section we introduce the elastic control model
developed for improving the performance of a real-time
control system with large variations in computation
time. We will assume that the task set is scheduled by
the EDF algorithm, which assigns priorities inversely
proportional to absolute deadlines.

For each task we introduce a normal computation
time ¢! < WCET; and we assume that it can be com-
puted by analyzing the probabilistic distribution of the
task computation time. Hence, each task is described
by 7;(c, WCET;, fmn AJ;(f;)), where W CET; is the
worst case execution time, f/™" is the minimum fre-
quency 7; can execute at, and AJ;(f;) is the PLI of
7. We require that each task must complete at or
before its hard deadline D = 1/ f"). Notice, how-
ever, that task 7; will be normally scheduled using a
dynamic deadline D; less than or equal to D

The goal of this approach is to compute the optimal
frequency f{**, using the normal computation time ¢!
rather than W C ET;, while guaranteeing that each task
will never miss its hard deadline D?. Furthermore,
to simplify runtime management, we require that the
worst case should be handled locally by each task, with-
out affecting the frequencies of the other tasks.

We shall develop an algorithm which will give each
task a computation budget as a percentage of the CPU.
This budget will guarantee that every task will always
meet its deadline. In addition, given the budgets, task
frequencies can be adjusted in such a way that the con-
trol performance is optimal when tasks are using their
normal execution times. The computation budgets can
be implemented as a server that maintains the assigned
budgets for each task.

In this model, each task can change its frequency
dynamically depending on the current load. If Ji,j is
the soft deadline used by the server to schedule the job
Ji; and its overrun (whenever it occurs), the next job
Ji j+1 will start at time:

Qi j+1 = maw(am + Tpt’divj)' (1)
fi
Hence, each task instance (job J; ;) has a variable
period T; ; = a;j+1 — a;;. Using this formalism and
assuming that each instance has to complete by its fic-
titious deadline d; ;, we need to guarantee that

.. 1
T
In the next section we will show how to handle over-
runs correctly and how to perform an off-line guarantee
of the task set. Notice that no restrictions are assumed
on the number of overruns that a task can generate.

3 Local overrun handling

In this section, we introduce a simple policy for han-
dling overruns. The proposed approach allows each
task to handle its overruns locally, without affecting
the frequencies of the other tasks. In this way, every
time an overrun occurs, we only require a very small
overhead to handle it.

In the following we assume that the optimal fre-
quency f{P* has already been computed for each task
7;, based on ¢, using the algorithm proposed in [7].
The method is based on reserving a bandwidth U; =
fPPer for each task 7;. In normal conditions (without
overruns), each task has a constant period T; = 1/ £
and each task behaves as a classic periodic task?. When
a generic job J; ; generates an overrun, a new deadline
is computed for J; ; to avoid that the bandwidth con-
sumed by 7; exceeds its reserved bandwidth U;.

Let J” be the soft deadline assigned by the server
before the overrun occurs. That is,

5 1

dij = aij + ot
7

T

If J; ; tries to execute more than cj’, the new deadline

d'; ; of J; j becomes:

ET; — c?
iy =diy + YOEL Z e

- 3)

The following example illustrates how an overrun
is handled by the scheduling algorithm. The task set
consists of two periodic tasks, 7 and 75, with minimum
frequencies 1/20 and 1/12, worst case execution times
5 and 6, normal execution times 4 and 2, respectively.
Moreover, let us suppose that the optimal frequencies

2Periodic tasks consist of an infinite sequence of identical ac-
tivities, called instances or jobs, that are regularly activated at
a constant rate.

[| |
N
e | o e | ol
al.l d_l

Figure 2. Example of overrun handled locally.

computed by the Seto, Lehoczky, Sha and Shin (SLSS)
algorithm are f{”* = 1/8 and fJ*" = 1/4. Therefore,
each server has assigned a bandwidth U; = Us = 0.5.

Figure 2 shows what happens when 7» generates an
overrun at time ¢ = 8. Initially, the server assigns a soft
deadline d272 = 8 to job Jy 2. At time ¢ = 8, an overrun
occurs and the server computes the new soft deadline
d'y5 =dog + (WCOET, — ¢})/Us = 16. After handling
the overrun, the next job J» 3 of task 7 arrives at time
a3 = 16 and it will be executed again at its optimal
frequency.

A simple necessary and sufficient condition states
how it is possible to handle overruns locally; this result
is expressed by the following theorem:

Theorem 1 Given a set ' of periodic tasks
(", WCET;, f™™") where each task is handled
by a dedicated server with bandwidth U;, then each
task instance (job J; ;) has a period T;; < 1/fm" if
and only if:

V1, U > fM"WCET;. (4)

Proof.

If. Suppose equation (4) holds; then the worst case
occurs when a task 7 is scheduled with a bandwidth
Ui = f"W CET} and 7 raises an overrun at the end
of its period needing a computation time equal to its
WCET},. Supposing that ay is the arrival time of the
current instance of 73, an overrun equal to WCET —c}}
is detected at tour = ap +c}t/Uy. Now, we compute the
response time Ry of 7 including the interval of time
required by the server to schedule the overrun:

¢ WCET,—¢ ¢ WCET, ¢
Rk_Uk+ Uk _Uk+ Uk U,
_ WCET, WCET, 1

U, [P"WCET, frn

Thus, the “if condition” follows.

Only if. By contradiction, suppose that a task 7
exists such that equation (4) is not verified, that is:
37 | U < fWCOET but still the task set is
schedulable. If 7 requests a computation time equal to
its WCET, then the actual frequency f of 7 becomes:
f = &7 < f™n" which means that the task set is
not schedulable. A contradiction.

O

Using the result of Theorem 1, we can compute the
optimal frequencies f** and guarantee a minimum fre-
quency f™" for each task 7; even in the presence of
overruns. Like in the classical SLSS algorithm, in this
approach a task set is guaranteed if and only if:

> FMMWCET; < 1. (5)

(3

If the task set is feasible, a new lower-bound f/*"
of frequency can be computed for each task 7; in order
to take overruns into account. In fact the parameter
fvi is defined as follows:

fminW CET,

n
G

Voo Jr = (6)

Finally, the SLSS algorithm will be used to compute
the optimal frequencies using ¢}’ as computation time
(instead of WCET;) and " as minimum frequency
(instead of f™") for each task 7;.

Note that the SLSS algorithm is optimal among the
algorithms which handle overruns locally (that is, with-
out affecting the other tasks performance) even though
the value of f/™" is used as minimum frequency in-
stead of f/™™. This is easy to prove, because the value
f[m" represents the minimum frequency permitted to
each task 7; in order to handle overruns locally. Hence,
in this model, each optimal frequency f** must be
greater than or equal to fl”””

The performance cost of local handling provides us
with the opening to consider global handling of over-
runs; that is, when an overrun occurs, instantaneously
each task could decrease its frequency in order to free
bandwidth for handling the overrun. However, this dif-
ferent approach is out of the scope of this paper.

3.1 An example

We illustrate the effect of the proposed technique on
a bubble control system, which is a simplified model de-
signed to study diving control in submarines. The same
system was described by Seto, Lehoczky, Sha and Shin
in [7]. Here, we describe a modified version of it, to em-
phasize the advantages achievable using our technique.

The bubble control system considered here consists of a
tank filled with air and immersed in the water. Depth
control of the diver is achieved by adjusting the piston
connected to the air bubble. In this example, a camera
monitors the diver as sensor for getting its position.

Now, suppose that two such systems with different
physical dimensions are installed on an underwater ve-
hicle to control the depth and orientation of the vehicle,
and assume they are controlled by one on-board pro-
cessor. Hence, each control task is characterized by two
different functions; the first one reads the image mem-
ory filled by the camera frame grabber and determines
the actual position of diver, and the second one com-
putes the next value of the control variable defined as
the piston velocity. The first function of each control
task is characterized by a variable computation time
which depends on the current position of each diver;
hence, we can assume that each task is characterized
by a worst case execution time (WCET;) and by a
normal computation time c. The task set parameters
are shown in Table 2, where, for each bubble control
system i, WCET; (ms) is the control task worst-case
execution time in each sampling period, f" (Hz) is
the lower bound on sampling frequency, and w; is the
weight assigned to system i.

The following data are given for the control design
and scheduling problem: AJ; = aze 5fi i = 1,2,
where the frequencies f; must be determined.

| Task || a; | i | WCET; (ms) | f"™ (Hz) | w; |
b 1 (04 25 10 2
b 1]0.1 25 20 1

Table 2. Task parameters for the bubble con-
trol system.

A simple computation shows that the total CPU
utilization of the overall bubble system is 75% when
the minimum task frequencies are assigned. Suppos-
ing the total CPU utilization available for the bubble
systems is 100%, Table 3 shows, at different values of
c", the optimal frequencies computed from the SLSS
algorithm and the resulting performance loss index of
the overall system. Note that system performance in-
creases as the performance loss index decreases. More-
over, ¢ = kW CET means that all normal computa-
tion times are reduced by that fraction. So, for in-
stance, ¢ = 0.9WCFET means that ¢} = 0.9WCET;
and ¢ = 0.9WCETs.

The results reported in Table 3 demonstrate that the
control system performance significantly improves as
the normal computation time is decreased with respect

e A7) [B (Hy) | AT

WCET 12.16 27.84 0.0772
0.9WCET 13.05 31.40 0.0541
0.8WCET 14.16 35.84 0.0347
0.TWCET 15.59 41.56 0.0196
0.6WCET 17.49 49.17 0.0091
0.56WCET 20.16 59.84 0.0031

Table 3. Optimal frequencies and correspond-
ing AJ for different values of .

Performance Loss Index

1 1 1 1 1 1 1 1 1
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Normal computation time as fraction of WCET

Figure 3. AJ vs. normal computation time ¢".

to the WCET, because tasks can run at higher fre-
quencies. Figure 3 illustrates the relation between the
performance loss index AJ and the value of ¢". In the
graph, the normal computation time on the x-axis is ex-
pressed as a fraction of WCET. For instance, a value of
0.9 means that ¢} = 0.9WCET) and ¢} = 0.9W CET.
Note that a little difference between ¢® and WCET
gives a significant gain in performance; for example,
the performance loss index halves its value when each
task has the normal computation time equal to 80% of
its WCET.

In the following section we describe the character-
istics of a service mechanism which allows us to effi-
ciently implement the overrun handling algorithm de-
scribed above.

4 Scheduling algorithm

In [1], Abeni and Buttazzo proposed a scheduling
methodology, the Constant Bandwidth Server (CBS),
devised for handling real-time tasks under a temporal

protection mechanism. In order to provide task isola-
tion, each task is assigned a fraction of the processor (a
fixed bandwidth) and it is scheduled in such a way that
it will never exceed its specified bandwidth, indepen-
dently of its actual requests. This is achieved by assign-
ing each task a suitable (dynamic) deadline, computed
as a function of the reserved bandwidth and its actual
requests. If a task needs to execute more than its ex-
pected computation time, its deadline is postponed so
that its bandwidth is not exceeded. As a consequence,
overruns occurring on task 7, will only delay task 74,
but will not steal the bandwidth assigned to the other
tasks, which are then isolated and protected from re-
ciprocal interference. In [2], the same authors present a
statistical analysis for performing a probabilistic guar-
antee of soft tasks handled by the CBS algorithm.

In the following section we will briefly recall the CBS
algorithm and its main properties.

4.1 The CBS algorithm

A CBS is characterized by an ordered pair (Qs,T),
where @) is the maximum budget and T is the period
of the server. The ratio Us = Qs/T5 is denoted as the
server bandwidth.

At each instant, a fixed deadline dy ; and a budget
cs is associated with the server. Every time a new job
Ji ; has to be served, it is assigned a dynamic deadline
d; j equal to the current server deadline d, ;. The cur-
rent budget ¢, represents the amount of computation
time schedulable by the CBS using the current server
deadline. Whenever a served job executes, the budget
cs is decreased by the same amount and, every time
cs = 0, the server budget is recharged to the maxi-
mum value)5 and a new server deadline is generated
as ds7k+1 = dch +T5.

: H/\l
0 4 6 12
C~
=3 |3
1
T =6 L_\
0 3 12

Figure 4. Example of a CBS server.

Figure 4 illustrates an example in which two jobs J;
and Jy are served by a CBS having a budget s = 3
and a period Ty = 6. The first job arrives at time

r1 = 0 and it is assigned a deadline dys; =1 +T5 = 6.
Initially, ¢, is equal to Qs = 3; at time ¢ = 3, the budget
is exhausted, so a new deadline ds o = ds 1 + 15 = 12
is generated and ¢, is replenished. At time ¢t = 4, J;
finishes and the server budget ¢, is equal to 2 units;
hence, the CBS is still available to schedule two units
of computation time using the same server deadline
ds 2. At time rp = 5, the second job arrives and is
served with the actual server deadline (d; 2 = 12).

In the model presented in this paper, each hard task
7; must be scheduled with a reserved bandwidth U; in
order to isolate the effects of task overruns; however,
we also need to guarantee that each task 7; always has
a frequency greater than or equal to f™". In order to
provide hard guarantee, for such tasks, we propose a
new version of the CBS, called the CBS"?.

4.2 The CBS"? algorithm

The CBS" maintains the CBS properties and per-
mits us to compute the dynamic deadline of each task
in a more flexible way. In fact, each time an overrun
occurs, the plain CBS recharges the budget to its max-
imum value and the task deadline is postponed by a
fixed amount. In this way, however, the budget amount
could be greater than the maximum overrun and the
current task deadline would move too far away. In or-
der to bound the task delay introduced by the overrun,
the budget can be re-charged in a more fit way.

The CBS"? rules are very similar to CBS rules. The
new feature consists of a different way of re-charging
the server budget and setting the new server deadline
every time ¢; = 0. In particular, the server budget is
not always recharged to the maximum value Q. If ¢f ;
is the remaining computation time of the current served
job J; ; when the budget is exhausted, then every time
¢s = 0, the following rule is applied for re-charge the
budget:

if (cj; > Qs) {

cs = Qs;

ds,k—H - ds,k + Ts;
} else {

Cs = €55

ds k1 =dsx +cf ; /Ui

}

Using CBS", the overrun is divided in chunks H x,
each characterized by a release time a; and a fixed
deadline d; ;. In this way, if the overrun is less than its
maximum value, the current job will be scheduled more
efficiently, avoiding computing the overrun deadline too
pessimistically.

In the following we propose to schedule each task 7;
using a dedicated C BS"® where the maximum budget
Qs is equal to ¢} and the period of the server T} is
equal to 1/f7P".

ITWT\I—\W\WT\!—\TWT\!—W

0 8 16 24

NN

| e

4 N 24
d d d

24, 24 24

Figure 5. Example of overrun handled by
CBS",

Ttﬂﬂﬁtﬁ iﬁmﬂi

T

Sphle = !

Figure 6. Example of overrun not handled by
CBS",

An example of chunks produced by a CBS" is
shown in Figure 5. The task set of the example con-
sists of two periodic tasks, 71 and 79, with minimum
frequencies 1/20 and 1/12, WCETs 5 and 6, normal
execution times 4 and 1, respectively. It is supposed
that the optimal frequencies computed by the SLSS al-
gorithm, are fP* = 1/8 and fy** = 1/2. Therefore,
each CBS" is assigned a bandwidth U; = Uy = 0.5,
where the first server is characterized by the pair (4,8),
and the second one by (1,2).

Figure 5 shows the schedule produced when 7 gen-
erates an overrun at t = 8. Initially, the CBS"? assigns
Ja2.4 a soft deadline 32,4 = &; at time t = &8, an over-
run occurs and the server budget has to be recharged.
Since ¢y , = 5 is greater than)5 = 1, the server com-
putes a new deadline 3’2,4 = 32,4 + T = 10 for the first
chunk Hj 4. The overrun does not finish, so another
chunk Hj', needs to be scheduled in order to handle
the whole overrun. However, at the end of the second
chunk, the overrun completes and at time ¢t = 12 the

next job Js 5 arrives. Figure 6 shows how the same sit-
uation would be handled by a plain CBS. In this case,
the overrun deadline is computed using equation (3).
Note that, even if we insert a reclaiming mechanism,
the period of J> 4 cannot be less than 8 units of time,
whereas the previous example shows that 15 4 = 6.

5 Conclusions

In this paper we presented a novel approach for
increasing the efficiency of digital control systems in
which the computation times of periodic activities
have significant variations. The proposed method was
proved to be particularly effective for those control ac-
tivities, as visual tracking tasks, in which the worst-
case computation time is much greater than the typical
computation time required in normal operations.

The work presented in the paper integrates and ex-
tends two recent advances in real-time computing - the
optimization of control performance subject to schedu-
lability analysis and the Constant Bandwidth Server
algorithm - to create an innovative approach to elastic
control that allows us to fully utilize the processor to
optimize the control performance and yet guarantee the
schedulability of all tasks under worst case conditions.

It was shown that the proposed method is optimal
among the algorithms which handle overruns locally
(that is, without affecting the performance of the other
tasks). An example was also described in order to il-
lustrate the effect of the proposed technique, showing
that the control system performance significantly im-
proves as the normal computation time is decreased
with respect to the WCET. In particular, the example
described in Section 3.1 illustrates that a little differ-
ence between ¢" and WCET provides a significant gain
in performance: the performance loss index halves its
value when each task has a normal computation time
equal to 80% of its WCET. Finally, an improvement of
the CBS algorithm was described in order to schedule
the periodic control tasks more efficiently.

As a future work, we plan to investigate a technique
for handling overruns globally, so that, when an over-
run occurs, each task can decrease its frequency in or-
der to create free bandwidth for handling the overrun.
We are also investigating how the current methodology
can be extended in the presence of resource constraints.

References

[1] L. Abeni and G. Buttazzo, “Integrating Multi-
media Applications in Hard Real-Time Systems”,
Proc. of the IEEE Real-Time Systems Symposium,
Madrid, Spain, December 1998.

[2] L. Abeni and G. Buttazzo, “QoS Guarantee Us-
ing Probabilistic Deadlines” , IEEE Proceedings
of the 11th Euromicro Conference on Real-Time
Systems, York, UK, pp. 242-249, June 1999.

[3] G. Buttazzo, G. Lipari, and L. Abeni, “Elastic
Task Model for Adaptive Rate Control”, Proc. of
the IEEFE Real-Time Systems Symposium, Madrid,
Spain, December 1998.

[4] M. K. Gardner and J. W.S. Liu, “Performance of
algorithms for scheduling real-time systems with
overrun and overload”, IEEE Proceedings of the

11th Euromicro Conference on Real-Time Sys-
tems, York, UK, June 1999.

[5] J. Leung and J. Whitehead, “On the complexity
of fixed-priority scheduling of periodic, real-time
tasks”, Performance Evaluation, 2:237-250, 1982.

[6] C.L. Liu and J.W. Layland, “Scheduling Algo-
rithms for Multiprogramming in a Hard real-Time
Environment”, Journal of the ACM 20(1), 1973,
pp- 40-61.

[7] D. Seto, J.P. Lehoczky, L. Sha and K.G. Shin
“On Task Schedulability in Real-Time Control
System”, Proc. of the IEEE Real-Time Systems
Symposium, December 1996.

[8] M. Spuri and G.C. Buttazzo, “Efficient Aperiodic
Service under Earliest Deadline Scheduling”, Proc.
of the IEEE Real-Time Systems Symposium, San
Juan, Portorico, December 1994.

[9] M. Spuri, G. Buttazzo and F. Sensini, “Robust
Aperiodic Scheduling Under Dynamic Priority
Systems”, Proc. of the 16th IEEE Real-Time Sys-
tems Symposium, Pisa, Italy, December 1995.

[10] M. Spuri and G.C. Buttazzo, “Scheduling Ape-
riodic Tasks in Dynamic Priority Systems”, The
Journal of Real-Time Systems, 10(2), 1996.

[11] J. A. Stankovic, C. Lu, S. Son and G. Tao, “The
Case for Feedback Control Real-Time Schedul-
ing”, IEEE Proceedings of the 11th FEuromicro
Conference on Real-Time Systems, York, UK,
June 1999.

[12] C. Lu, J. A. Stankovic, G. Tao and S. H. Son,
“Design and Evaluation of a Feedback Control
EDF Scheduling Algorithm”, Proceedings of the
IEEE Real-Time Systems Symposium, Phoenix,
Arizona, December 1999.

