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Abstrat

In many real-time ontrol appliations, the task pe-

riods are typially �xed and worst-ase exeution times

are used in shedulability analysis. With the advane-

ment of robotis, exible visual sensing using ameras

has beome a popular alternative to the use of embedded

sensors. Unfortunately, the exeution time of visual

traking varies greatly. In suh environments, ontrol

tasks have a normally short omputation time but also

an oasional long omputation time; therefore, the use

of worst-ase exeution time is ineÆient for ontrol-

ling performane optimization. Nevertheless, to main-

tain the ontrol stability, we still need to guarantee the

task set even if the worst ase arises. In this paper, we

propose an integrated approah to ontrol performane

optimization and task sheduling for ontrol applia-

tions where the exeution time of eah task an vary

greatly. We reate an innovative approah to elasti

ontrol that allows us to fully utilize the proessor to

optimize the ontrol performane and yet guarantee the

shedulability of all tasks under worst-ase onditions.

1 Introdution

In many real-time ontrol appliations, the task pe-

riods are typially �xed and worst-ase exeution times

are used in the shedulability analysis. This model is

�ne for many lassial ontrol appliations where the

exeution time variations are small. However, with the

advane of robotis, exible visual sensing using am-

eras has beome a popular alternative to the use of

embedded sensors. Unfortunately, the exeution time

of visual traking varies greatly.

For example, onsider a ball and plate ontrol sys-

tem based on visual feedbak. A ball on the plate has

to follow a spei�ed irle on the plate, whih an be

ontrolled by ating on roll and pith rotations. To

speed up the visual traking proess, preditive teh-

niques are typially used to searh for the ball in a small

mobile window entered in the estimated ball position

rather than searhing the whole image. Normally, the

ball is found in the small window and its position an

be omputed quikly. However, in most ontrol appli-

ations there are oasional disturbanes. If the dis-

turbane makes the ball move outside of the predited

window, searhing has to be extended in a larger area.

This proess may ontinue until, eventually, the entire

plate is sanned.

In this example, the visual traking task's omputa-

tion time an be modeled as having a onstant normal

exeution time, due to the searhing operation in the

small window. In addition, it has a bounded probabilis-

ti exeution time during traking exeptions. Simi-

lar situations an be found in radar traking where a

searh window is entered on the predited loation of

the target.

It is worth noting that the searh time is a part of the

ontrol loop, sine the position information is needed

in ontrol omputations. With a normally short (on-

trol loop) omputation time, but an oasional long

omputation time, the use of worst-ase omputation

times is ineÆient. Nevertheless, to guarantee the on-

trol stability, we still need to lose the ontrol loop in

time, even if the worst ase arises.

If we reserve for the worst-ase time, then most of

the time there is a large amount of reserved but un-

used exeution time budget. Although suh an unused

reserved time an be relaimed for soft real-time aperi-

odi appliations [8, 9, 10℄, suh an aperiodi applia-

tion may or may not exist in a given appliation envi-

ronment. An alternative solution is to fully utilize the

reserved budget to optimize the ontrol performane in

spite of the variation in omputation time.

In digital ontrol, the system performane is a fun-

tion of the sampling rate. For a given ontroller design

method, faster sampling will permit, up to a limit, a

better ontrol performane. So the idea is to inrease

the ontrol loop frequeny when the loop omputation



time is short and slow down the frequeny when the

worst-ase situation arises. However, there is a lower

bound on the frequeny for eah task, f

min

i

, the mini-

mum frequeny for eah task �

i

, below whih the per-

formane is unaeptable - the ontrol beomes unsta-

ble. In this formulation, 1=f

min

i

represents the hard

deadline that eah instane of �

i

has to honor.

The frequeny adjustment is partiularly easy when

the ommon method of digitized analog design is used,

sine this method does not require the hange of on-

trol gains. The sheduler design method in this paper

is also appliable to other ontrol design methods. In

this ase, it involves the design of ontrol gain shedul-

ing in onjuntion with sheduler design. However, ap-

pliation of this approah requires more work on the

analysis of system stability. Sine the fous of this pa-

per is on the sheduler design, we shall assume that the

digitized analogy ontroller design method is used for

the system.

We refer the idea of dynamially adjusting the rates

to optimize the ontrol performane as an \elasti task

tuning". However, a simple-minded implementation

of this idea would not work. Consider the following

example:

Task WCET

i

(ms) 

n

i

(ms) f

min

i

(Hz)

�

1

25 20 9:9

�

2

25 20 20

Table 1. Task set parameters.

Example 1. A simple system is omposed of two

tasks whose parameters are shown in Table 1, where

WCET

i

is the worst-ase exeution time in mse, 

n

i

is the normal exeution time in mse, and f

min

i

is the

minimal frequeny in Hz. Suppose that when both

tasks exeute normally, the optimal frequeny assign-

ment for �

1

is assumed to be 9:9 Hz, the same as

the minimal frequeny. Suppose also that the opti-

mal frequeny f

opt

2

assignment for task �

2

is 40 Hz,

twie that of the minimal frequeny of 20 Hz, whereas

f

opt

1

= f

min

1

. Under this arrangement, these two tasks

use 20% and 80% of the CPU respetively. The idea

is that, should the worst ase arise, task �

2

ould slow

down from 40 Hz to 20 Hz to avoid overload. Unfortu-

nately, this idea would not work.

As shown in Figure 1, both tasks start at time t = 0.

At time t = 101, an exeption is raised by the system

beause task �

1

is asking to exeute more than 

n

i

units

of time. Unfortunately, at this point, there is nothing

task �

2

an do to assist task �

1

. As a result, �

1

will

miss its deadline at t

ov

= 101.

t
ov

τ
1

τ
2

0

0 25 50 75 100

time-overflow

ms

ms

Figure 1. Example of timeoverflow due to an

exception.

To make the idea of elasti ontrol work, the hal-

lenge is to develop a method that will adjust the task

frequenies to produe the optimal system ontrol per-

formane, subjet to the onstraint of guaranteeing

that when the worst ase omes, no deadlines will be

missed.

The problem of handling exeution overruns in real-

time systems has been reently addressed in the litera-

ture using various approahes. In [4℄, Gardner and Liu

ompared the behavior of three lasses of sheduling

algorithms for sheduling real-time systems in whih

jobs may overrun their alloated proessor time, po-

tentially ausing the system to be overloaded. In their

work, eah task is haraterized by a guaranteed exeu-

tion time, whih is zero for non real-time tasks, equal to

the worst-ase exeution time for hard real-time tasks,

and somewhere in between for soft real-time tasks.

They introdued the Overrun-Server Method (OSM)

and the Isolation-Server Method (ISM) as sheduling

algorithms. Under OSM, a job is released for exeu-

tion and sheduled in the same manner as it would be

aording to Deadline Monotoni (DM) [5℄ or Earliest

Deadline First (EDF) [6℄ (in a �xed priority or dynami

priority environment, respetively). At the time of ex-

eption, the exeution of the job is interrupted and

the remaining exeution time of the job is released as

an aperiodi request to a server. Using the ISM teh-

nique, jobs are submitted as aperiodi requests to the

server assigned to their task at the time of their release

and exeute ompletely under server ontrol. However,

these sheduling strategies an guarantee those jobs

whih do not generate exeptions meet their deadlines

but are unable to guarantee a maximum response time

for those whih do.

Stankovi, Lu, Son and Tao, in [11, 12℄, desribe

another approah to inrease the performane of a

sheduling algorithm in unpreditable dynami sys-

tems whose workloads annot be aurately modeled.

Usually, real-time systems are designed based on worst-



ase workload parameters. When aurate system

workload models are not available, suh an approah

an result in a highly underutilized system based on

extremely pessimisti estimation of workload. In this

work, they propose a new sheduling paradigm, alled

feedbak ontrol real-time sheduling, whih de�nes er-

ror terms for shedules, monitors the amount of error,

and ontinuously adjusts the shedules to maintain sat-

isfatory performane. Using ontrol theory methodol-

ogy, they de�ned the perentage of tasks that miss their

deadlines as the ontrolled variable and the requested

CPU utilization as the manipulated variable. By do-

ing this, the deadline miss ratio an be ontrolled by

varying the admission strategy of tasks on-line. How-

ever, this tehnique rejets jobs to keep the system not

fully loaded. The tehnique also is unable to isolate

an overloaded task from the other tasks, a�eting the

performane of all the other tasks.

The problem of seleting the set of ontrol task fre-

quenies to optimize the system ontrol performane

subjet to shedulability onstraints was addressed by

Seto, Lehozky, Sha and Shin [7℄. In this formula-

tion, eah ontrol task �

i

is haraterized by a per-

formane loss index (PLI

1

) as a funtion of the sam-

pling frequeny. In fat, let J and J

D

(f) be the per-

formane indies generated by a ontinuous-time on-

trol and its digital implementation at sampling fre-

queny f , respetively; a performane loss index an

be provided as �J(f) = jJ

D

(f) � J j whih is on-

vex and monotonially dereasing. Hene, if we note

that �J(f) exponentially dereases with the frequeny,

then, for eah ontrol task, it an be approximated by

�J

i

(f

i

) = �

i

e

��

i

f

i

, where f

i

is the frequeny of �

i

, �

i

is a magnitude oeÆient and �

i

is the deay rate.

The performane loss index of the overall sys-

tem �J(f

1

; :::; f

n

) is de�ned as �J(f

1

; :::; f

n

) =

P

i

w

i

�J

i

(f

i

), where w

i

is a design parameter deter-

mined from the appliation. For instane, it an be the

importane of the assoiated ontrol system to have a

better performane than the others.

Given the minimum frequeny f

min

i

and the worst-

ase exeution time (WCET

i

) of eah task �

i

, Seto,

Lehozky, Sha and Shin provide an algorithm to om-

pute the frequenies f

opt

i

whih minimizes the PLI of

the system while guaranteeing the shedulability on-

straints (ensuring eah task an meet its deadlines).

However, in [7℄, f

opt

i

were omputed based on

WCET s. If the normal omputation times 

n

i

are muh

less than WCET

i

, then f

opt

i

an be too low.

In the following of this paper, we assume that eah

1

In the original formulation, the performane loss index was

simply alled performane index or PI. In the following, it will

be alled PLI for more larity.

task has a given performane index funtion.

The rest of the paper is organized as follows. Se-

tion 2 introdues some terminology and assumptions

we will use in the rest of the paper. Setion 3 presents

the main results onsisting in a loal approah for han-

dling overruns, and an example is shown to illustrate

the improvement in the performane we an ahieve us-

ing our approah. Setion 4 briey realls the Constant

Bandwidth Server (CBS) algorithm and introdues an

extension of it (CBS

hd

) for eÆiently shedule peri-

odi tasks whih generate overruns. Finally, Setion 5

presents our onlusions and future work.

2 Terminology and assumptions

In this setion we introdue the elasti ontrol model

developed for improving the performane of a real-time

ontrol system with large variations in omputation

time. We will assume that the task set is sheduled by

the EDF algorithm, whih assigns priorities inversely

proportional to absolute deadlines.

For eah task we introdue a normal omputation

time 

n

i

�WCET

i

and we assume that it an be om-

puted by analyzing the probabilisti distribution of the

task omputation time. Hene, eah task is desribed

by �

i

(

n

i

;WCET

i

; f

min

i

;�J

i

(f

i

)), whereWCET

i

is the

worst ase exeution time, f

min

i

is the minimum fre-

queny �

i

an exeute at, and �J

i

(f

i

) is the PLI of

�

i

. We require that eah task must omplete at or

before its hard deadline D

hd

i

= 1=f

min

i

). Notie, how-

ever, that task �

i

will be normally sheduled using a

dynami deadline D

i

less than or equal to D

hd

i

.

The goal of this approah is to ompute the optimal

frequeny f

opt

i

, using the normal omputation time 

n

i

rather thanWCET

i

, while guaranteeing that eah task

will never miss its hard deadline D

hd

i

. Furthermore,

to simplify runtime management, we require that the

worst ase should be handled loally by eah task, with-

out a�eting the frequenies of the other tasks.

We shall develop an algorithm whih will give eah

task a omputation budget as a perentage of the CPU.

This budget will guarantee that every task will always

meet its deadline. In addition, given the budgets, task

frequenies an be adjusted in suh a way that the on-

trol performane is optimal when tasks are using their

normal exeution times. The omputation budgets an

be implemented as a server that maintains the assigned

budgets for eah task.

In this model, eah task an hange its frequeny

dynamially depending on the urrent load. If

~

d

i;j

is

the soft deadline used by the server to shedule the job

J

i;j

and its overrun (whenever it ours), the next job

J

i;j+1

will start at time:



a

i;j+1

= max(a

i;j

+

1

f

opt

i

;

~

d

i;j

): (1)

Hene, eah task instane (job J

i;j

) has a variable

period T

i;j

= a

i;j+1

� a

i;j

. Using this formalism and

assuming that eah instane has to omplete by its �-

titious deadline

~

d

i;j

, we need to guarantee that

8 i; j T

i;j

�

1

f

min

i

: (2)

In the next setion we will show how to handle over-

runs orretly and how to perform an o�-line guarantee

of the task set. Notie that no restritions are assumed

on the number of overruns that a task an generate.

3 Loal overrun handling

In this setion, we introdue a simple poliy for han-

dling overruns. The proposed approah allows eah

task to handle its overruns loally, without a�eting

the frequenies of the other tasks. In this way, every

time an overrun ours, we only require a very small

overhead to handle it.

In the following we assume that the optimal fre-

queny f

opt

i

has already been omputed for eah task

�

i

, based on 

n

i

, using the algorithm proposed in [7℄.

The method is based on reserving a bandwidth U

i

=

f

opt

i



n

i

for eah task �

i

. In normal onditions (without

overruns), eah task has a onstant period T

i

= 1=f

opt

i

and eah task behaves as a lassi periodi task

2

. When

a generi job J

i;j

generates an overrun, a new deadline

is omputed for J

i;j

to avoid that the bandwidth on-

sumed by �

i

exeeds its reserved bandwidth U

i

.

Let

~

d

i;j

be the soft deadline assigned by the server

before the overrun ours. That is,

~

d

i;j

= a

i;j

+

1

f

opt

i

:

If J

i;j

tries to exeute more than 

n

i

, the new deadline

~

d

0

i;j

of J

i;j

beomes:

~

d

0

i;j

=

~

d

i;j

+

WCET

i

� 

n

i

U

i

: (3)

The following example illustrates how an overrun

is handled by the sheduling algorithm. The task set

onsists of two periodi tasks, �

1

and �

2

, with minimum

frequenies 1=20 and 1=12, worst ase exeution times

5 and 6, normal exeution times 4 and 2, respetively.

Moreover, let us suppose that the optimal frequenies

2

Periodi tasks onsist of an in�nite sequene of idential a-

tivities, alled instanes or jobs, that are regularly ativated at

a onstant rate.

8

8
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d
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Figure 2. Example of overrun handled locally.

omputed by the Seto, Lehozky, Sha and Shin (SLSS)

algorithm are f

opt

1

= 1=8 and f

opt

2

= 1=4. Therefore,

eah server has assigned a bandwidth U

1

= U

2

= 0:5.

Figure 2 shows what happens when �

2

generates an

overrun at time t = 8. Initially, the server assigns a soft

deadline

~

d

2;2

= 8 to job J

2;2

. At time t = 8, an overrun

ours and the server omputes the new soft deadline

~

d

0

2;2

=

~

d

2;2

+ (WCET

2

� 

n

2

)=U

2

= 16. After handling

the overrun, the next job J

2;3

of task �

2

arrives at time

a

2;3

= 16 and it will be exeuted again at its optimal

frequeny.

A simple neessary and suÆient ondition states

how it is possible to handle overruns loally; this result

is expressed by the following theorem:

Theorem 1 Given a set � of periodi tasks

�

i

(

n

i

;WCET

i

; f

min

i

) where eah task is handled

by a dediated server with bandwidth U

i

, then eah

task instane (job J

i;j

) has a period T

i;j

� 1=f

min

i

if

and only if:

8 �

i

U

i

� f

min

i

WCET

i

: (4)

Proof.

If. Suppose equation (4) holds; then the worst ase

ours when a task �

k

is sheduled with a bandwidth

U

k

= f

min

k

WCET

k

and �

k

raises an overrun at the end

of its period needing a omputation time equal to its

WCET

k

. Supposing that a

k

is the arrival time of the

urrent instane of �

k

, an overrun equal toWCET

k

�

n

k

is deteted at t

ovr

= a

k

+

n

k

=U

k

. Now, we ompute the

response time R

k

of �

k

inluding the interval of time

required by the server to shedule the overrun:

R

k

=



n

k

U

k

+

WCET

k

� 

n

k

U

k

=



n

k

U

k

+

WCET

k

U

k

�



n

k

U

k

=

=

WCET

k

U

k

=

WCET

k

f

min

k

WCET

k

=

1

f

min

k

:



Thus, the \if ondition" follows.

Only if. By ontradition, suppose that a task ~�

exists suh that equation (4) is not veri�ed, that is:

9 ~� j

~

U < f

min

WCET but still the task set is

shedulable. If ~� requests a omputation time equal to

its WCET, then the atual frequeny

~

f of ~� beomes:

~

f =

~

U

WCET

< f

min

whih means that the task set is

not shedulable. A ontradition.

2

Using the result of Theorem 1, we an ompute the

optimal frequenies f

opt

i

and guarantee a minimum fre-

queny f

min

i

for eah task �

i

even in the presene of

overruns. Like in the lassial SLSS algorithm, in this

approah a task set is guaranteed if and only if:

X

i

f

min

i

WCET

i

� 1: (5)

If the task set is feasible, a new lower-bound

~

f

min

i

of frequeny an be omputed for eah task �

i

in order

to take overruns into aount. In fat the parameter

~

f

min

i

is de�ned as follows:

8 �

i

~

f

min

i

=

f

min

i

WCET

i



n

i

: (6)

Finally, the SLSS algorithm will be used to ompute

the optimal frequenies using 

n

i

as omputation time

(instead of WCET

i

) and

~

f

min

i

as minimum frequeny

(instead of f

min

i

) for eah task �

i

.

Note that the SLSS algorithm is optimal among the

algorithms whih handle overruns loally (that is, with-

out a�eting the other tasks performane) even though

the value of

~

f

min

i

is used as minimum frequeny in-

stead of f

min

i

. This is easy to prove, beause the value

~

f

min

i

represents the minimum frequeny permitted to

eah task �

i

in order to handle overruns loally. Hene,

in this model, eah optimal frequeny f

opt

i

must be

greater than or equal to

~

f

min

i

.

The performane ost of loal handling provides us

with the opening to onsider global handling of over-

runs; that is, when an overrun ours, instantaneously

eah task ould derease its frequeny in order to free

bandwidth for handling the overrun. However, this dif-

ferent approah is out of the sope of this paper.

3.1 An example

We illustrate the e�et of the proposed tehnique on

a bubble ontrol system, whih is a simpli�ed model de-

signed to study diving ontrol in submarines. The same

system was desribed by Seto, Lehozky, Sha and Shin

in [7℄. Here, we desribe a modi�ed version of it, to em-

phasize the advantages ahievable using our tehnique.

The bubble ontrol system onsidered here onsists of a

tank �lled with air and immersed in the water. Depth

ontrol of the diver is ahieved by adjusting the piston

onneted to the air bubble. In this example, a amera

monitors the diver as sensor for getting its position.

Now, suppose that two suh systems with di�erent

physial dimensions are installed on an underwater ve-

hile to ontrol the depth and orientation of the vehile,

and assume they are ontrolled by one on-board pro-

essor. Hene, eah ontrol task is haraterized by two

di�erent funtions; the �rst one reads the image mem-

ory �lled by the amera frame grabber and determines

the atual position of diver, and the seond one om-

putes the next value of the ontrol variable de�ned as

the piston veloity. The �rst funtion of eah ontrol

task is haraterized by a variable omputation time

whih depends on the urrent position of eah diver;

hene, we an assume that eah task is haraterized

by a worst ase exeution time (WCET

i

) and by a

normal omputation time 

n

i

. The task set parameters

are shown in Table 2, where, for eah bubble ontrol

system i, WCET

i

(ms) is the ontrol task worst-ase

exeution time in eah sampling period, f

min

i

(Hz) is

the lower bound on sampling frequeny, and w

i

is the

weight assigned to system i.

The following data are given for the ontrol design

and sheduling problem: �J

i

= �

i

e

��

i

f

i

, i = 1; 2,

where the frequenies f

i

must be determined.

Task �

i

�

i

WCET

i

(ms) f

min

i

(Hz) w

i

b

1

1 0.4 25 10 2

b

2

1 0.1 25 20 1

Table 2. Task parameters for the bubble con
trol system.

A simple omputation shows that the total CPU

utilization of the overall bubble system is 75% when

the minimum task frequenies are assigned. Suppos-

ing the total CPU utilization available for the bubble

systems is 100%, Table 3 shows, at di�erent values of



n

, the optimal frequenies omputed from the SLSS

algorithm and the resulting performane loss index of

the overall system. Note that system performane in-

reases as the performane loss index dereases. More-

over, 

n

= kWCET means that all normal omputa-

tion times are redued by that fration. So, for in-

stane, 

n

= 0:9WCET means that 

n

1

= 0:9WCET

1

and 

n

2

= 0:9WCET

2

.

The results reported in Table 3 demonstrate that the

ontrol system performane signi�antly improves as

the normal omputation time is dereased with respet





n

f

opt

1

(Hz) f

opt

2

(Hz) �J

WCET 12.16 27.84 0.0772

0:9WCET 13.05 31.40 0.0541

0:8WCET 14.16 35.84 0.0347

0:7WCET 15.59 41.56 0.0196

0:6WCET 17.49 49.17 0.0091

0:5WCET 20.16 59.84 0.0031

Table 3. Optimal frequencies and correspond

ing �J for different values of n.
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Figure 3. �J vs. normal computation time 

n.

to the WCET, beause tasks an run at higher fre-

quenies. Figure 3 illustrates the relation between the

performane loss index �J and the value of 

n

. In the

graph, the normal omputation time on the x-axis is ex-

pressed as a fration of WCET. For instane, a value of

0.9 means that 

n

1

= 0:9WCET

1

and 

n

2

= 0:9WCET

2

.

Note that a little di�erene between 

n

and WCET

gives a signi�ant gain in performane; for example,

the performane loss index halves its value when eah

task has the normal omputation time equal to 80% of

its WCET.

In the following setion we desribe the harater-

istis of a servie mehanism whih allows us to eÆ-

iently implement the overrun handling algorithm de-

sribed above.

4 Sheduling algorithm

In [1℄, Abeni and Buttazzo proposed a sheduling

methodology, the Constant Bandwidth Server (CBS),

devised for handling real-time tasks under a temporal

protetion mehanism. In order to provide task isola-

tion, eah task is assigned a fration of the proessor (a

�xed bandwidth) and it is sheduled in suh a way that

it will never exeed its spei�ed bandwidth, indepen-

dently of its atual requests. This is ahieved by assign-

ing eah task a suitable (dynami) deadline, omputed

as a funtion of the reserved bandwidth and its atual

requests. If a task needs to exeute more than its ex-

peted omputation time, its deadline is postponed so

that its bandwidth is not exeeded. As a onsequene,

overruns ourring on task �

a

will only delay task �

a

,

but will not steal the bandwidth assigned to the other

tasks, whih are then isolated and proteted from re-

iproal interferene. In [2℄, the same authors present a

statistial analysis for performing a probabilisti guar-

antee of soft tasks handled by the CBS algorithm.

In the following setion we will briey reall the CBS

algorithm and its main properties.

4.1 The CBS algorithm

A CBS is haraterized by an ordered pair (Q

s

; T

s

),

where Q

s

is the maximum budget and T

s

is the period

of the server. The ratio U

s

= Q

s

=T

s

is denoted as the

server bandwidth.

At eah instant, a �xed deadline d

s;k

and a budget



s

is assoiated with the server. Every time a new job

J

i;j

has to be served, it is assigned a dynami deadline

d

i;j

equal to the urrent server deadline d

s;k

. The ur-

rent budget 

s

represents the amount of omputation

time shedulable by the CBS using the urrent server

deadline. Whenever a served job exeutes, the budget



s

is dereased by the same amount and, every time



s

= 0, the server budget is reharged to the maxi-

mum value Q

s

and a new server deadline is generated

as d

s;k+1

= d

s;k

+ T

s

.

T =6

=3

6

12

12

s

Q
s

s
c

0

0 4

3

14

3

1

Figure 4. Example of a CBS server.

Figure 4 illustrates an example in whih two jobs J

1

and J

2

are served by a CBS having a budget Q

s

= 3

and a period T

s

= 6. The �rst job arrives at time



r

1

= 0 and it is assigned a deadline d

s;1

= r

1

+ T

s

= 6.

Initially, 

s

is equal toQ

s

= 3; at time t = 3, the budget

is exhausted, so a new deadline d

s;2

= d

s;1

+ T

s

= 12

is generated and 

s

is replenished. At time t = 4, J

1

�nishes and the server budget 

s

is equal to 2 units;

hene, the CBS is still available to shedule two units

of omputation time using the same server deadline

d

s;2

. At time r

2

= 5, the seond job arrives and is

served with the atual server deadline (d

s;2

= 12).

In the model presented in this paper, eah hard task

�

i

must be sheduled with a reserved bandwidth U

i

in

order to isolate the e�ets of task overruns; however,

we also need to guarantee that eah task �

i

always has

a frequeny greater than or equal to f

min

i

. In order to

provide hard guarantee, for suh tasks, we propose a

new version of the CBS, alled the CBS

hd

.

4.2 The CBShd algorithm

The CBS

hd

maintains the CBS properties and per-

mits us to ompute the dynami deadline of eah task

in a more exible way. In fat, eah time an overrun

ours, the plain CBS reharges the budget to its max-

imum value and the task deadline is postponed by a

�xed amount. In this way, however, the budget amount

ould be greater than the maximum overrun and the

urrent task deadline would move too far away. In or-

der to bound the task delay introdued by the overrun,

the budget an be re-harged in a more �t way.

The CBS

hd

rules are very similar to CBS rules. The

new feature onsists of a di�erent way of re-harging

the server budget and setting the new server deadline

every time 

s

= 0. In partiular, the server budget is

not always reharged to the maximum value Q

s

. If 

r

i;j

is the remaining omputation time of the urrent served

job J

i;j

when the budget is exhausted, then every time



s

= 0, the following rule is applied for re-harge the

budget:

if (

r

i;j

� Q

s

) f



s

= Q

s

;

d

s;k+1

= d

s;k

+ T

s

;

g else f



s

= 

r

i;j

;

d

s;k+1

= d

s;k

+ 

r

i;j

=U

i

;

g

Using CBS

hd

, the overrun is divided in hunksH

j;k

,

eah haraterized by a release time a

j;k

and a �xed

deadline d

j;k

. In this way, if the overrun is less than its

maximum value, the urrent job will be sheduled more

eÆiently, avoiding omputing the overrun deadline too

pessimistially.

In the following we propose to shedule eah task �

i

using a dediated CBS

hd

where the maximum budget

Q

s

is equal to 

n

i

and the period of the server T

s

is

equal to 1=f

opt

i

.
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Figure 5. Example of overrun handled by

CBS

hd.
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Figure 6. Example of overrun not handled by
CBS

hd.

An example of hunks produed by a CBS

hd

is

shown in Figure 5. The task set of the example on-

sists of two periodi tasks, �

1

and �

2

, with minimum

frequenies 1=20 and 1=12, WCETs 5 and 6, normal

exeution times 4 and 1, respetively. It is supposed

that the optimal frequenies omputed by the SLSS al-

gorithm, are f

opt

1

= 1=8 and f

opt

2

= 1=2. Therefore,

eah CBS

hd

is assigned a bandwidth U

1

= U

2

= 0:5,

where the �rst server is haraterized by the pair (4,8),

and the seond one by (1,2).

Figure 5 shows the shedule produed when �

2

gen-

erates an overrun at t = 8. Initially, the CBS

hd

assigns

J

2;4

a soft deadline

~

d

2;4

= 8; at time t = 8, an over-

run ours and the server budget has to be reharged.

Sine 

r

2;4

= 5 is greater than Q

s

= 1, the server om-

putes a new deadline

~

d

0

2;4

=

~

d

2;4

+T

s

= 10 for the �rst

hunk H

0

2;4

. The overrun does not �nish, so another

hunk H

00

2;4

needs to be sheduled in order to handle

the whole overrun. However, at the end of the seond

hunk, the overrun ompletes and at time t = 12 the



next job J

2;5

arrives. Figure 6 shows how the same sit-

uation would be handled by a plain CBS. In this ase,

the overrun deadline is omputed using equation (3).

Note that, even if we insert a relaiming mehanism,

the period of J

2;4

annot be less than 8 units of time,

whereas the previous example shows that T

2;4

= 6.

5 Conlusions

In this paper we presented a novel approah for

inreasing the eÆieny of digital ontrol systems in

whih the omputation times of periodi ativities

have signi�ant variations. The proposed method was

proved to be partiularly e�etive for those ontrol a-

tivities, as visual traking tasks, in whih the worst-

ase omputation time is muh greater than the typial

omputation time required in normal operations.

The work presented in the paper integrates and ex-

tends two reent advanes in real-time omputing - the

optimization of ontrol performane subjet to shedu-

lability analysis and the Constant Bandwidth Server

algorithm - to reate an innovative approah to elasti

ontrol that allows us to fully utilize the proessor to

optimize the ontrol performane and yet guarantee the

shedulability of all tasks under worst ase onditions.

It was shown that the proposed method is optimal

among the algorithms whih handle overruns loally

(that is, without a�eting the performane of the other

tasks). An example was also desribed in order to il-

lustrate the e�et of the proposed tehnique, showing

that the ontrol system performane signi�antly im-

proves as the normal omputation time is dereased

with respet to the WCET. In partiular, the example

desribed in Setion 3.1 illustrates that a little di�er-

ene between 

n

and WCET provides a signi�ant gain

in performane: the performane loss index halves its

value when eah task has a normal omputation time

equal to 80% of its WCET. Finally, an improvement of

the CBS algorithm was desribed in order to shedule

the periodi ontrol tasks more eÆiently.

As a future work, we plan to investigate a tehnique

for handling overruns globally, so that, when an over-

run ours, eah task an derease its frequeny in or-

der to reate free bandwidth for handling the overrun.

We are also investigating how the urrent methodology

an be extended in the presene of resoure onstraints.
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