
IEEE Pro
eedings of the 12th Euromi
ro Conferen
e on Real-Time Systems, Sto
kholm, Sweden, June 2000. 1

Elasti
 Feedba
k Control

Mar
o Ca

amo Giorgio Buttazzo Lui Sha

S
uola Superiore S. Anna University of Pavia (Italy) University of Illinois

Pisa (Italy) INFM Resear
h Unit Urbana, IL 61801


a

amo�sssup.it giorgio�sssup.it lrs�
s.uiu
.edu

Abstra
t

In many real-time 
ontrol appli
ations, the task pe-

riods are typi
ally �xed and worst-
ase exe
ution times

are used in s
hedulability analysis. With the advan
e-

ment of roboti
s, 
exible visual sensing using 
ameras

has be
ome a popular alternative to the use of embedded

sensors. Unfortunately, the exe
ution time of visual

tra
king varies greatly. In su
h environments, 
ontrol

tasks have a normally short 
omputation time but also

an o

asional long 
omputation time; therefore, the use

of worst-
ase exe
ution time is ineÆ
ient for 
ontrol-

ling performan
e optimization. Nevertheless, to main-

tain the 
ontrol stability, we still need to guarantee the

task set even if the worst 
ase arises. In this paper, we

propose an integrated approa
h to 
ontrol performan
e

optimization and task s
heduling for 
ontrol appli
a-

tions where the exe
ution time of ea
h task 
an vary

greatly. We 
reate an innovative approa
h to elasti



ontrol that allows us to fully utilize the pro
essor to

optimize the 
ontrol performan
e and yet guarantee the

s
hedulability of all tasks under worst-
ase 
onditions.

1 Introdu
tion

In many real-time 
ontrol appli
ations, the task pe-

riods are typi
ally �xed and worst-
ase exe
ution times

are used in the s
hedulability analysis. This model is

�ne for many 
lassi
al 
ontrol appli
ations where the

exe
ution time variations are small. However, with the

advan
e of roboti
s, 
exible visual sensing using 
am-

eras has be
ome a popular alternative to the use of

embedded sensors. Unfortunately, the exe
ution time

of visual tra
king varies greatly.

For example, 
onsider a ball and plate 
ontrol sys-

tem based on visual feedba
k. A ball on the plate has

to follow a spe
i�ed 
ir
le on the plate, whi
h 
an be


ontrolled by a
ting on roll and pit
h rotations. To

speed up the visual tra
king pro
ess, predi
tive te
h-

niques are typi
ally used to sear
h for the ball in a small

mobile window 
entered in the estimated ball position

rather than sear
hing the whole image. Normally, the

ball is found in the small window and its position 
an

be 
omputed qui
kly. However, in most 
ontrol appli-


ations there are o

asional disturban
es. If the dis-

turban
e makes the ball move outside of the predi
ted

window, sear
hing has to be extended in a larger area.

This pro
ess may 
ontinue until, eventually, the entire

plate is s
anned.

In this example, the visual tra
king task's 
omputa-

tion time 
an be modeled as having a 
onstant normal

exe
ution time, due to the sear
hing operation in the

small window. In addition, it has a bounded probabilis-

ti
 exe
ution time during tra
king ex
eptions. Simi-

lar situations 
an be found in radar tra
king where a

sear
h window is 
entered on the predi
ted lo
ation of

the target.

It is worth noting that the sear
h time is a part of the


ontrol loop, sin
e the position information is needed

in 
ontrol 
omputations. With a normally short (
on-

trol loop) 
omputation time, but an o

asional long


omputation time, the use of worst-
ase 
omputation

times is ineÆ
ient. Nevertheless, to guarantee the 
on-

trol stability, we still need to 
lose the 
ontrol loop in

time, even if the worst 
ase arises.

If we reserve for the worst-
ase time, then most of

the time there is a large amount of reserved but un-

used exe
ution time budget. Although su
h an unused

reserved time 
an be re
laimed for soft real-time aperi-

odi
 appli
ations [8, 9, 10℄, su
h an aperiodi
 appli
a-

tion may or may not exist in a given appli
ation envi-

ronment. An alternative solution is to fully utilize the

reserved budget to optimize the 
ontrol performan
e in

spite of the variation in 
omputation time.

In digital 
ontrol, the system performan
e is a fun
-

tion of the sampling rate. For a given 
ontroller design

method, faster sampling will permit, up to a limit, a

better 
ontrol performan
e. So the idea is to in
rease

the 
ontrol loop frequen
y when the loop 
omputation



time is short and slow down the frequen
y when the

worst-
ase situation arises. However, there is a lower

bound on the frequen
y for ea
h task, f

min

i

, the mini-

mum frequen
y for ea
h task �

i

, below whi
h the per-

forman
e is una

eptable - the 
ontrol be
omes unsta-

ble. In this formulation, 1=f

min

i

represents the hard

deadline that ea
h instan
e of �

i

has to honor.

The frequen
y adjustment is parti
ularly easy when

the 
ommon method of digitized analog design is used,

sin
e this method does not require the 
hange of 
on-

trol gains. The s
heduler design method in this paper

is also appli
able to other 
ontrol design methods. In

this 
ase, it involves the design of 
ontrol gain s
hedul-

ing in 
onjun
tion with s
heduler design. However, ap-

pli
ation of this approa
h requires more work on the

analysis of system stability. Sin
e the fo
us of this pa-

per is on the s
heduler design, we shall assume that the

digitized analogy 
ontroller design method is used for

the system.

We refer the idea of dynami
ally adjusting the rates

to optimize the 
ontrol performan
e as an \elasti
 task

tuning". However, a simple-minded implementation

of this idea would not work. Consider the following

example:

Task WCET

i

(ms) 


n

i

(ms) f

min

i

(Hz)

�

1

25 20 9:9

�

2

25 20 20

Table 1. Task set parameters.

Example 1. A simple system is 
omposed of two

tasks whose parameters are shown in Table 1, where

WCET

i

is the worst-
ase exe
ution time in mse
, 


n

i

is the normal exe
ution time in mse
, and f

min

i

is the

minimal frequen
y in Hz. Suppose that when both

tasks exe
ute normally, the optimal frequen
y assign-

ment for �

1

is assumed to be 9:9 Hz, the same as

the minimal frequen
y. Suppose also that the opti-

mal frequen
y f

opt

2

assignment for task �

2

is 40 Hz,

twi
e that of the minimal frequen
y of 20 Hz, whereas

f

opt

1

= f

min

1

. Under this arrangement, these two tasks

use 20% and 80% of the CPU respe
tively. The idea

is that, should the worst 
ase arise, task �

2


ould slow

down from 40 Hz to 20 Hz to avoid overload. Unfortu-

nately, this idea would not work.

As shown in Figure 1, both tasks start at time t = 0.

At time t = 101, an ex
eption is raised by the system

be
ause task �

1

is asking to exe
ute more than 


n

i

units

of time. Unfortunately, at this point, there is nothing

task �

2


an do to assist task �

1

. As a result, �

1

will

miss its deadline at t

ov

= 101.

t
ov

τ
1

τ
2

0

0 25 50 75 100

time-overflow

ms

ms

Figure 1. Example of time­overflow due to an

exception.

To make the idea of elasti
 
ontrol work, the 
hal-

lenge is to develop a method that will adjust the task

frequen
ies to produ
e the optimal system 
ontrol per-

forman
e, subje
t to the 
onstraint of guaranteeing

that when the worst 
ase 
omes, no deadlines will be

missed.

The problem of handling exe
ution overruns in real-

time systems has been re
ently addressed in the litera-

ture using various approa
hes. In [4℄, Gardner and Liu


ompared the behavior of three 
lasses of s
heduling

algorithms for s
heduling real-time systems in whi
h

jobs may overrun their allo
ated pro
essor time, po-

tentially 
ausing the system to be overloaded. In their

work, ea
h task is 
hara
terized by a guaranteed exe
u-

tion time, whi
h is zero for non real-time tasks, equal to

the worst-
ase exe
ution time for hard real-time tasks,

and somewhere in between for soft real-time tasks.

They introdu
ed the Overrun-Server Method (OSM)

and the Isolation-Server Method (ISM) as s
heduling

algorithms. Under OSM, a job is released for exe
u-

tion and s
heduled in the same manner as it would be

a

ording to Deadline Monotoni
 (DM) [5℄ or Earliest

Deadline First (EDF) [6℄ (in a �xed priority or dynami


priority environment, respe
tively). At the time of ex-


eption, the exe
ution of the job is interrupted and

the remaining exe
ution time of the job is released as

an aperiodi
 request to a server. Using the ISM te
h-

nique, jobs are submitted as aperiodi
 requests to the

server assigned to their task at the time of their release

and exe
ute 
ompletely under server 
ontrol. However,

these s
heduling strategies 
an guarantee those jobs

whi
h do not generate ex
eptions meet their deadlines

but are unable to guarantee a maximum response time

for those whi
h do.

Stankovi
, Lu, Son and Tao, in [11, 12℄, des
ribe

another approa
h to in
rease the performan
e of a

s
heduling algorithm in unpredi
table dynami
 sys-

tems whose workloads 
annot be a

urately modeled.

Usually, real-time systems are designed based on worst-




ase workload parameters. When a

urate system

workload models are not available, su
h an approa
h


an result in a highly underutilized system based on

extremely pessimisti
 estimation of workload. In this

work, they propose a new s
heduling paradigm, 
alled

feedba
k 
ontrol real-time s
heduling, whi
h de�nes er-

ror terms for s
hedules, monitors the amount of error,

and 
ontinuously adjusts the s
hedules to maintain sat-

isfa
tory performan
e. Using 
ontrol theory methodol-

ogy, they de�ned the per
entage of tasks that miss their

deadlines as the 
ontrolled variable and the requested

CPU utilization as the manipulated variable. By do-

ing this, the deadline miss ratio 
an be 
ontrolled by

varying the admission strategy of tasks on-line. How-

ever, this te
hnique reje
ts jobs to keep the system not

fully loaded. The te
hnique also is unable to isolate

an overloaded task from the other tasks, a�e
ting the

performan
e of all the other tasks.

The problem of sele
ting the set of 
ontrol task fre-

quen
ies to optimize the system 
ontrol performan
e

subje
t to s
hedulability 
onstraints was addressed by

Seto, Leho
zky, Sha and Shin [7℄. In this formula-

tion, ea
h 
ontrol task �

i

is 
hara
terized by a per-

forman
e loss index (PLI

1

) as a fun
tion of the sam-

pling frequen
y. In fa
t, let J and J

D

(f) be the per-

forman
e indi
es generated by a 
ontinuous-time 
on-

trol and its digital implementation at sampling fre-

quen
y f , respe
tively; a performan
e loss index 
an

be provided as �J(f) = jJ

D

(f) � J j whi
h is 
on-

vex and monotoni
ally de
reasing. Hen
e, if we note

that �J(f) exponentially de
reases with the frequen
y,

then, for ea
h 
ontrol task, it 
an be approximated by

�J

i

(f

i

) = �

i

e

��

i

f

i

, where f

i

is the frequen
y of �

i

, �

i

is a magnitude 
oeÆ
ient and �

i

is the de
ay rate.

The performan
e loss index of the overall sys-

tem �J(f

1

; :::; f

n

) is de�ned as �J(f

1

; :::; f

n

) =

P

i

w

i

�J

i

(f

i

), where w

i

is a design parameter deter-

mined from the appli
ation. For instan
e, it 
an be the

importan
e of the asso
iated 
ontrol system to have a

better performan
e than the others.

Given the minimum frequen
y f

min

i

and the worst-


ase exe
ution time (WCET

i

) of ea
h task �

i

, Seto,

Leho
zky, Sha and Shin provide an algorithm to 
om-

pute the frequen
ies f

opt

i

whi
h minimizes the PLI of

the system while guaranteeing the s
hedulability 
on-

straints (ensuring ea
h task 
an meet its deadlines).

However, in [7℄, f

opt

i

were 
omputed based on

WCET s. If the normal 
omputation times 


n

i

are mu
h

less than WCET

i

, then f

opt

i


an be too low.

In the following of this paper, we assume that ea
h

1

In the original formulation, the performan
e loss index was

simply 
alled performan
e index or PI. In the following, it will

be 
alled PLI for more 
larity.

task has a given performan
e index fun
tion.

The rest of the paper is organized as follows. Se
-

tion 2 introdu
es some terminology and assumptions

we will use in the rest of the paper. Se
tion 3 presents

the main results 
onsisting in a lo
al approa
h for han-

dling overruns, and an example is shown to illustrate

the improvement in the performan
e we 
an a
hieve us-

ing our approa
h. Se
tion 4 brie
y re
alls the Constant

Bandwidth Server (CBS) algorithm and introdu
es an

extension of it (CBS

hd

) for eÆ
iently s
hedule peri-

odi
 tasks whi
h generate overruns. Finally, Se
tion 5

presents our 
on
lusions and future work.

2 Terminology and assumptions

In this se
tion we introdu
e the elasti
 
ontrol model

developed for improving the performan
e of a real-time


ontrol system with large variations in 
omputation

time. We will assume that the task set is s
heduled by

the EDF algorithm, whi
h assigns priorities inversely

proportional to absolute deadlines.

For ea
h task we introdu
e a normal 
omputation

time 


n

i

�WCET

i

and we assume that it 
an be 
om-

puted by analyzing the probabilisti
 distribution of the

task 
omputation time. Hen
e, ea
h task is des
ribed

by �

i

(


n

i

;WCET

i

; f

min

i

;�J

i

(f

i

)), whereWCET

i

is the

worst 
ase exe
ution time, f

min

i

is the minimum fre-

quen
y �

i


an exe
ute at, and �J

i

(f

i

) is the PLI of

�

i

. We require that ea
h task must 
omplete at or

before its hard deadline D

hd

i

= 1=f

min

i

). Noti
e, how-

ever, that task �

i

will be normally s
heduled using a

dynami
 deadline D

i

less than or equal to D

hd

i

.

The goal of this approa
h is to 
ompute the optimal

frequen
y f

opt

i

, using the normal 
omputation time 


n

i

rather thanWCET

i

, while guaranteeing that ea
h task

will never miss its hard deadline D

hd

i

. Furthermore,

to simplify runtime management, we require that the

worst 
ase should be handled lo
ally by ea
h task, with-

out a�e
ting the frequen
ies of the other tasks.

We shall develop an algorithm whi
h will give ea
h

task a 
omputation budget as a per
entage of the CPU.

This budget will guarantee that every task will always

meet its deadline. In addition, given the budgets, task

frequen
ies 
an be adjusted in su
h a way that the 
on-

trol performan
e is optimal when tasks are using their

normal exe
ution times. The 
omputation budgets 
an

be implemented as a server that maintains the assigned

budgets for ea
h task.

In this model, ea
h task 
an 
hange its frequen
y

dynami
ally depending on the 
urrent load. If

~

d

i;j

is

the soft deadline used by the server to s
hedule the job

J

i;j

and its overrun (whenever it o

urs), the next job

J

i;j+1

will start at time:



a

i;j+1

= max(a

i;j

+

1

f

opt

i

;

~

d

i;j

): (1)

Hen
e, ea
h task instan
e (job J

i;j

) has a variable

period T

i;j

= a

i;j+1

� a

i;j

. Using this formalism and

assuming that ea
h instan
e has to 
omplete by its �
-

titious deadline

~

d

i;j

, we need to guarantee that

8 i; j T

i;j

�

1

f

min

i

: (2)

In the next se
tion we will show how to handle over-

runs 
orre
tly and how to perform an o�-line guarantee

of the task set. Noti
e that no restri
tions are assumed

on the number of overruns that a task 
an generate.

3 Lo
al overrun handling

In this se
tion, we introdu
e a simple poli
y for han-

dling overruns. The proposed approa
h allows ea
h

task to handle its overruns lo
ally, without a�e
ting

the frequen
ies of the other tasks. In this way, every

time an overrun o

urs, we only require a very small

overhead to handle it.

In the following we assume that the optimal fre-

quen
y f

opt

i

has already been 
omputed for ea
h task

�

i

, based on 


n

i

, using the algorithm proposed in [7℄.

The method is based on reserving a bandwidth U

i

=

f

opt

i




n

i

for ea
h task �

i

. In normal 
onditions (without

overruns), ea
h task has a 
onstant period T

i

= 1=f

opt

i

and ea
h task behaves as a 
lassi
 periodi
 task

2

. When

a generi
 job J

i;j

generates an overrun, a new deadline

is 
omputed for J

i;j

to avoid that the bandwidth 
on-

sumed by �

i

ex
eeds its reserved bandwidth U

i

.

Let

~

d

i;j

be the soft deadline assigned by the server

before the overrun o

urs. That is,

~

d

i;j

= a

i;j

+

1

f

opt

i

:

If J

i;j

tries to exe
ute more than 


n

i

, the new deadline

~

d

0

i;j

of J

i;j

be
omes:

~

d

0

i;j

=

~

d

i;j

+

WCET

i

� 


n

i

U

i

: (3)

The following example illustrates how an overrun

is handled by the s
heduling algorithm. The task set


onsists of two periodi
 tasks, �

1

and �

2

, with minimum

frequen
ies 1=20 and 1=12, worst 
ase exe
ution times

5 and 6, normal exe
ution times 4 and 2, respe
tively.

Moreover, let us suppose that the optimal frequen
ies

2

Periodi
 tasks 
onsist of an in�nite sequen
e of identi
al a
-

tivities, 
alled instan
es or jobs, that are regularly a
tivated at

a 
onstant rate.

8

8

τ

d

�����
�����
�����
�����

2,2
d’

2

~

2,2

~

0

1

0 4

16

τ

16 20

24

24

Figure 2. Example of overrun handled locally.


omputed by the Seto, Leho
zky, Sha and Shin (SLSS)

algorithm are f

opt

1

= 1=8 and f

opt

2

= 1=4. Therefore,

ea
h server has assigned a bandwidth U

1

= U

2

= 0:5.

Figure 2 shows what happens when �

2

generates an

overrun at time t = 8. Initially, the server assigns a soft

deadline

~

d

2;2

= 8 to job J

2;2

. At time t = 8, an overrun

o

urs and the server 
omputes the new soft deadline

~

d

0

2;2

=

~

d

2;2

+ (WCET

2

� 


n

2

)=U

2

= 16. After handling

the overrun, the next job J

2;3

of task �

2

arrives at time

a

2;3

= 16 and it will be exe
uted again at its optimal

frequen
y.

A simple ne
essary and suÆ
ient 
ondition states

how it is possible to handle overruns lo
ally; this result

is expressed by the following theorem:

Theorem 1 Given a set � of periodi
 tasks

�

i

(


n

i

;WCET

i

; f

min

i

) where ea
h task is handled

by a dedi
ated server with bandwidth U

i

, then ea
h

task instan
e (job J

i;j

) has a period T

i;j

� 1=f

min

i

if

and only if:

8 �

i

U

i

� f

min

i

WCET

i

: (4)

Proof.

If. Suppose equation (4) holds; then the worst 
ase

o

urs when a task �

k

is s
heduled with a bandwidth

U

k

= f

min

k

WCET

k

and �

k

raises an overrun at the end

of its period needing a 
omputation time equal to its

WCET

k

. Supposing that a

k

is the arrival time of the


urrent instan
e of �

k

, an overrun equal toWCET

k

�


n

k

is dete
ted at t

ovr

= a

k

+


n

k

=U

k

. Now, we 
ompute the

response time R

k

of �

k

in
luding the interval of time

required by the server to s
hedule the overrun:

R

k

=




n

k

U

k

+

WCET

k

� 


n

k

U

k

=




n

k

U

k

+

WCET

k

U

k

�




n

k

U

k

=

=

WCET

k

U

k

=

WCET

k

f

min

k

WCET

k

=

1

f

min

k

:



Thus, the \if 
ondition" follows.

Only if. By 
ontradi
tion, suppose that a task ~�

exists su
h that equation (4) is not veri�ed, that is:

9 ~� j

~

U < f

min

WCET but still the task set is

s
hedulable. If ~� requests a 
omputation time equal to

its WCET, then the a
tual frequen
y

~

f of ~� be
omes:

~

f =

~

U

WCET

< f

min

whi
h means that the task set is

not s
hedulable. A 
ontradi
tion.

2

Using the result of Theorem 1, we 
an 
ompute the

optimal frequen
ies f

opt

i

and guarantee a minimum fre-

quen
y f

min

i

for ea
h task �

i

even in the presen
e of

overruns. Like in the 
lassi
al SLSS algorithm, in this

approa
h a task set is guaranteed if and only if:

X

i

f

min

i

WCET

i

� 1: (5)

If the task set is feasible, a new lower-bound

~

f

min

i

of frequen
y 
an be 
omputed for ea
h task �

i

in order

to take overruns into a

ount. In fa
t the parameter

~

f

min

i

is de�ned as follows:

8 �

i

~

f

min

i

=

f

min

i

WCET

i




n

i

: (6)

Finally, the SLSS algorithm will be used to 
ompute

the optimal frequen
ies using 


n

i

as 
omputation time

(instead of WCET

i

) and

~

f

min

i

as minimum frequen
y

(instead of f

min

i

) for ea
h task �

i

.

Note that the SLSS algorithm is optimal among the

algorithms whi
h handle overruns lo
ally (that is, with-

out a�e
ting the other tasks performan
e) even though

the value of

~

f

min

i

is used as minimum frequen
y in-

stead of f

min

i

. This is easy to prove, be
ause the value

~

f

min

i

represents the minimum frequen
y permitted to

ea
h task �

i

in order to handle overruns lo
ally. Hen
e,

in this model, ea
h optimal frequen
y f

opt

i

must be

greater than or equal to

~

f

min

i

.

The performan
e 
ost of lo
al handling provides us

with the opening to 
onsider global handling of over-

runs; that is, when an overrun o

urs, instantaneously

ea
h task 
ould de
rease its frequen
y in order to free

bandwidth for handling the overrun. However, this dif-

ferent approa
h is out of the s
ope of this paper.

3.1 An example

We illustrate the e�e
t of the proposed te
hnique on

a bubble 
ontrol system, whi
h is a simpli�ed model de-

signed to study diving 
ontrol in submarines. The same

system was des
ribed by Seto, Leho
zky, Sha and Shin

in [7℄. Here, we des
ribe a modi�ed version of it, to em-

phasize the advantages a
hievable using our te
hnique.

The bubble 
ontrol system 
onsidered here 
onsists of a

tank �lled with air and immersed in the water. Depth


ontrol of the diver is a
hieved by adjusting the piston


onne
ted to the air bubble. In this example, a 
amera

monitors the diver as sensor for getting its position.

Now, suppose that two su
h systems with di�erent

physi
al dimensions are installed on an underwater ve-

hi
le to 
ontrol the depth and orientation of the vehi
le,

and assume they are 
ontrolled by one on-board pro-


essor. Hen
e, ea
h 
ontrol task is 
hara
terized by two

di�erent fun
tions; the �rst one reads the image mem-

ory �lled by the 
amera frame grabber and determines

the a
tual position of diver, and the se
ond one 
om-

putes the next value of the 
ontrol variable de�ned as

the piston velo
ity. The �rst fun
tion of ea
h 
ontrol

task is 
hara
terized by a variable 
omputation time

whi
h depends on the 
urrent position of ea
h diver;

hen
e, we 
an assume that ea
h task is 
hara
terized

by a worst 
ase exe
ution time (WCET

i

) and by a

normal 
omputation time 


n

i

. The task set parameters

are shown in Table 2, where, for ea
h bubble 
ontrol

system i, WCET

i

(ms) is the 
ontrol task worst-
ase

exe
ution time in ea
h sampling period, f

min

i

(Hz) is

the lower bound on sampling frequen
y, and w

i

is the

weight assigned to system i.

The following data are given for the 
ontrol design

and s
heduling problem: �J

i

= �

i

e

��

i

f

i

, i = 1; 2,

where the frequen
ies f

i

must be determined.

Task �

i

�

i

WCET

i

(ms) f

min

i

(Hz) w

i

b

1

1 0.4 25 10 2

b

2

1 0.1 25 20 1

Table 2. Task parameters for the bubble con­
trol system.

A simple 
omputation shows that the total CPU

utilization of the overall bubble system is 75% when

the minimum task frequen
ies are assigned. Suppos-

ing the total CPU utilization available for the bubble

systems is 100%, Table 3 shows, at di�erent values of




n

, the optimal frequen
ies 
omputed from the SLSS

algorithm and the resulting performan
e loss index of

the overall system. Note that system performan
e in-


reases as the performan
e loss index de
reases. More-

over, 


n

= kWCET means that all normal 
omputa-

tion times are redu
ed by that fra
tion. So, for in-

stan
e, 


n

= 0:9WCET means that 


n

1

= 0:9WCET

1

and 


n

2

= 0:9WCET

2

.

The results reported in Table 3 demonstrate that the


ontrol system performan
e signi�
antly improves as

the normal 
omputation time is de
reased with respe
t






n

f

opt

1

(Hz) f

opt

2

(Hz) �J

WCET 12.16 27.84 0.0772

0:9WCET 13.05 31.40 0.0541

0:8WCET 14.16 35.84 0.0347

0:7WCET 15.59 41.56 0.0196

0:6WCET 17.49 49.17 0.0091

0:5WCET 20.16 59.84 0.0031

Table 3. Optimal frequencies and correspond­

ing �J for different values of 
n.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

P
e
rf

o
rm

a
n
c
e
 L

o
s
s
 I
n
d
e
x

Normal computation time as fraction of WCET

Figure 3. �J vs. normal computation time 


n.

to the WCET, be
ause tasks 
an run at higher fre-

quen
ies. Figure 3 illustrates the relation between the

performan
e loss index �J and the value of 


n

. In the

graph, the normal 
omputation time on the x-axis is ex-

pressed as a fra
tion of WCET. For instan
e, a value of

0.9 means that 


n

1

= 0:9WCET

1

and 


n

2

= 0:9WCET

2

.

Note that a little di�eren
e between 


n

and WCET

gives a signi�
ant gain in performan
e; for example,

the performan
e loss index halves its value when ea
h

task has the normal 
omputation time equal to 80% of

its WCET.

In the following se
tion we des
ribe the 
hara
ter-

isti
s of a servi
e me
hanism whi
h allows us to eÆ-


iently implement the overrun handling algorithm de-

s
ribed above.

4 S
heduling algorithm

In [1℄, Abeni and Buttazzo proposed a s
heduling

methodology, the Constant Bandwidth Server (CBS),

devised for handling real-time tasks under a temporal

prote
tion me
hanism. In order to provide task isola-

tion, ea
h task is assigned a fra
tion of the pro
essor (a

�xed bandwidth) and it is s
heduled in su
h a way that

it will never ex
eed its spe
i�ed bandwidth, indepen-

dently of its a
tual requests. This is a
hieved by assign-

ing ea
h task a suitable (dynami
) deadline, 
omputed

as a fun
tion of the reserved bandwidth and its a
tual

requests. If a task needs to exe
ute more than its ex-

pe
ted 
omputation time, its deadline is postponed so

that its bandwidth is not ex
eeded. As a 
onsequen
e,

overruns o

urring on task �

a

will only delay task �

a

,

but will not steal the bandwidth assigned to the other

tasks, whi
h are then isolated and prote
ted from re-


ipro
al interferen
e. In [2℄, the same authors present a

statisti
al analysis for performing a probabilisti
 guar-

antee of soft tasks handled by the CBS algorithm.

In the following se
tion we will brie
y re
all the CBS

algorithm and its main properties.

4.1 The CBS algorithm

A CBS is 
hara
terized by an ordered pair (Q

s

; T

s

),

where Q

s

is the maximum budget and T

s

is the period

of the server. The ratio U

s

= Q

s

=T

s

is denoted as the

server bandwidth.

At ea
h instant, a �xed deadline d

s;k

and a budget




s

is asso
iated with the server. Every time a new job

J

i;j

has to be served, it is assigned a dynami
 deadline

d

i;j

equal to the 
urrent server deadline d

s;k

. The 
ur-

rent budget 


s

represents the amount of 
omputation

time s
hedulable by the CBS using the 
urrent server

deadline. Whenever a served job exe
utes, the budget




s

is de
reased by the same amount and, every time




s

= 0, the server budget is re
harged to the maxi-

mum value Q

s

and a new server deadline is generated

as d

s;k+1

= d

s;k

+ T

s

.

T =6

=3

6

12

12

s

Q
s

s
c

0

0 4

3

14

3

1

Figure 4. Example of a CBS server.

Figure 4 illustrates an example in whi
h two jobs J

1

and J

2

are served by a CBS having a budget Q

s

= 3

and a period T

s

= 6. The �rst job arrives at time



r

1

= 0 and it is assigned a deadline d

s;1

= r

1

+ T

s

= 6.

Initially, 


s

is equal toQ

s

= 3; at time t = 3, the budget

is exhausted, so a new deadline d

s;2

= d

s;1

+ T

s

= 12

is generated and 


s

is replenished. At time t = 4, J

1

�nishes and the server budget 


s

is equal to 2 units;

hen
e, the CBS is still available to s
hedule two units

of 
omputation time using the same server deadline

d

s;2

. At time r

2

= 5, the se
ond job arrives and is

served with the a
tual server deadline (d

s;2

= 12).

In the model presented in this paper, ea
h hard task

�

i

must be s
heduled with a reserved bandwidth U

i

in

order to isolate the e�e
ts of task overruns; however,

we also need to guarantee that ea
h task �

i

always has

a frequen
y greater than or equal to f

min

i

. In order to

provide hard guarantee, for su
h tasks, we propose a

new version of the CBS, 
alled the CBS

hd

.

4.2 The CBShd algorithm

The CBS

hd

maintains the CBS properties and per-

mits us to 
ompute the dynami
 deadline of ea
h task

in a more 
exible way. In fa
t, ea
h time an overrun

o

urs, the plain CBS re
harges the budget to its max-

imum value and the task deadline is postponed by a

�xed amount. In this way, however, the budget amount


ould be greater than the maximum overrun and the


urrent task deadline would move too far away. In or-

der to bound the task delay introdu
ed by the overrun,

the budget 
an be re-
harged in a more �t way.

The CBS

hd

rules are very similar to CBS rules. The

new feature 
onsists of a di�erent way of re-
harging

the server budget and setting the new server deadline

every time 


s

= 0. In parti
ular, the server budget is

not always re
harged to the maximum value Q

s

. If 


r

i;j

is the remaining 
omputation time of the 
urrent served

job J

i;j

when the budget is exhausted, then every time




s

= 0, the following rule is applied for re-
harge the

budget:

if (


r

i;j

� Q

s

) f




s

= Q

s

;

d

s;k+1

= d

s;k

+ T

s

;

g else f




s

= 


r

i;j

;

d

s;k+1

= d

s;k

+ 


r

i;j

=U

i

;

g

Using CBS

hd

, the overrun is divided in 
hunksH

j;k

,

ea
h 
hara
terized by a release time a

j;k

and a �xed

deadline d

j;k

. In this way, if the overrun is less than its

maximum value, the 
urrent job will be s
heduled more

eÆ
iently, avoiding 
omputing the overrun deadline too

pessimisti
ally.

In the following we propose to s
hedule ea
h task �

i

using a dedi
ated CBS

hd

where the maximum budget

Q

s

is equal to 


n

i

and the period of the server T

s

is

equal to 1=f

opt

i

.

8

8

2
τ

~

d
2,4

~

d’
2,4

1

d’’

τ

~

�
�
�
�
��
��
��
��

0

2,4

0 4

16

16 20

24

2412

2,4
H’’

2,4
H’

Figure 5. Example of overrun handled by

CBS

hd.

8

8

2
τ

~

1

2,4

τ

d’
2,4

���
���
���
���

0

d

0 4

16

~

24

18 22

Figure 6. Example of overrun not handled by
CBS

hd.

An example of 
hunks produ
ed by a CBS

hd

is

shown in Figure 5. The task set of the example 
on-

sists of two periodi
 tasks, �

1

and �

2

, with minimum

frequen
ies 1=20 and 1=12, WCETs 5 and 6, normal

exe
ution times 4 and 1, respe
tively. It is supposed

that the optimal frequen
ies 
omputed by the SLSS al-

gorithm, are f

opt

1

= 1=8 and f

opt

2

= 1=2. Therefore,

ea
h CBS

hd

is assigned a bandwidth U

1

= U

2

= 0:5,

where the �rst server is 
hara
terized by the pair (4,8),

and the se
ond one by (1,2).

Figure 5 shows the s
hedule produ
ed when �

2

gen-

erates an overrun at t = 8. Initially, the CBS

hd

assigns

J

2;4

a soft deadline

~

d

2;4

= 8; at time t = 8, an over-

run o

urs and the server budget has to be re
harged.

Sin
e 


r

2;4

= 5 is greater than Q

s

= 1, the server 
om-

putes a new deadline

~

d

0

2;4

=

~

d

2;4

+T

s

= 10 for the �rst


hunk H

0

2;4

. The overrun does not �nish, so another


hunk H

00

2;4

needs to be s
heduled in order to handle

the whole overrun. However, at the end of the se
ond


hunk, the overrun 
ompletes and at time t = 12 the



next job J

2;5

arrives. Figure 6 shows how the same sit-

uation would be handled by a plain CBS. In this 
ase,

the overrun deadline is 
omputed using equation (3).

Note that, even if we insert a re
laiming me
hanism,

the period of J

2;4


annot be less than 8 units of time,

whereas the previous example shows that T

2;4

= 6.

5 Con
lusions

In this paper we presented a novel approa
h for

in
reasing the eÆ
ien
y of digital 
ontrol systems in

whi
h the 
omputation times of periodi
 a
tivities

have signi�
ant variations. The proposed method was

proved to be parti
ularly e�e
tive for those 
ontrol a
-

tivities, as visual tra
king tasks, in whi
h the worst-


ase 
omputation time is mu
h greater than the typi
al


omputation time required in normal operations.

The work presented in the paper integrates and ex-

tends two re
ent advan
es in real-time 
omputing - the

optimization of 
ontrol performan
e subje
t to s
hedu-

lability analysis and the Constant Bandwidth Server

algorithm - to 
reate an innovative approa
h to elasti



ontrol that allows us to fully utilize the pro
essor to

optimize the 
ontrol performan
e and yet guarantee the

s
hedulability of all tasks under worst 
ase 
onditions.

It was shown that the proposed method is optimal

among the algorithms whi
h handle overruns lo
ally

(that is, without a�e
ting the performan
e of the other

tasks). An example was also des
ribed in order to il-

lustrate the e�e
t of the proposed te
hnique, showing

that the 
ontrol system performan
e signi�
antly im-

proves as the normal 
omputation time is de
reased

with respe
t to the WCET. In parti
ular, the example

des
ribed in Se
tion 3.1 illustrates that a little di�er-

en
e between 


n

and WCET provides a signi�
ant gain

in performan
e: the performan
e loss index halves its

value when ea
h task has a normal 
omputation time

equal to 80% of its WCET. Finally, an improvement of

the CBS algorithm was des
ribed in order to s
hedule

the periodi
 
ontrol tasks more eÆ
iently.

As a future work, we plan to investigate a te
hnique

for handling overruns globally, so that, when an over-

run o

urs, ea
h task 
an de
rease its frequen
y in or-

der to 
reate free bandwidth for handling the overrun.

We are also investigating how the 
urrent methodology


an be extended in the presen
e of resour
e 
onstraints.

Referen
es

[1℄ L. Abeni and G. Buttazzo, \Integrating Multi-

media Appli
ations in Hard Real-Time Systems",

Pro
. of the IEEE Real-Time Systems Symposium,

Madrid, Spain, De
ember 1998.

[2℄ L. Abeni and G. Buttazzo, \QoS Guarantee Us-

ing Probabilisti
 Deadlines" , IEEE Pro
eedings

of the 11th Euromi
ro Conferen
e on Real-Time

Systems, York, UK, pp. 242-249, June 1999.

[3℄ G. Buttazzo, G. Lipari, and L. Abeni, \Elasti


Task Model for Adaptive Rate Control", Pro
. of

the IEEE Real-Time Systems Symposium, Madrid,

Spain, De
ember 1998.

[4℄ M. K. Gardner and J. W.S. Liu, \Performan
e of

algorithms for s
heduling real-time systems with

overrun and overload", IEEE Pro
eedings of the

11th Euromi
ro Conferen
e on Real-Time Sys-

tems, York, UK, June 1999.

[5℄ J. Leung and J. Whitehead, \On the 
omplexity

of �xed-priority s
heduling of periodi
, real-time

tasks", Performan
e Evaluation, 2:237-250, 1982.

[6℄ C.L. Liu and J.W. Layland, \S
heduling Algo-

rithms for Multiprogramming in a Hard real-Time

Environment", Journal of the ACM 20(1), 1973,

pp. 40{61.

[7℄ D. Seto, J.P. Leho
zky, L. Sha and K.G. Shin

\On Task S
hedulability in Real-Time Control

System", Pro
. of the IEEE Real-Time Systems

Symposium, De
ember 1996.

[8℄ M. Spuri and G.C. Buttazzo, \EÆ
ient Aperiodi


Servi
e under Earliest Deadline S
heduling", Pro
.

of the IEEE Real-Time Systems Symposium, San

Juan, Portori
o, De
ember 1994.

[9℄ M. Spuri, G. Buttazzo and F. Sensini, \Robust

Aperiodi
 S
heduling Under Dynami
 Priority

Systems", Pro
. of the 16th IEEE Real-Time Sys-

tems Symposium, Pisa, Italy, De
ember 1995.

[10℄ M. Spuri and G.C. Buttazzo, \S
heduling Ape-

riodi
 Tasks in Dynami
 Priority Systems", The

Journal of Real-Time Systems, 10(2), 1996.

[11℄ J. A. Stankovi
, C. Lu, S. Son and G. Tao, \The

Case for Feedba
k Control Real-Time S
hedul-

ing", IEEE Pro
eedings of the 11th Euromi
ro

Conferen
e on Real-Time Systems, York, UK,

June 1999.

[12℄ C. Lu, J. A. Stankovi
, G. Tao and S. H. Son,

\Design and Evaluation of a Feedba
k Control

EDF S
heduling Algorithm", Pro
eedings of the

IEEE Real-Time Systems Symposium, Phoenix,

Arizona, De
ember 1999.


