
A Hyperbolic Bound for the Rate Monotonic Algorithm

Enrico Bini
Scuola Superiore S. Anna

Pisa, Italy
e.bini@sssup.it

Giorgio Buttazzo
University of Pavia, Italy

INFM Research Unit
buttazzo@unipv.it

Giuseppe Buttazzo
Department of Mathematics

University of Pisa, Italy
buttazzo@dm.unipi.it

Abstract

In this paper we propose a novel schedulability
analysis for verifying the feasibility of large peri-
odic task sets under the rate monotonic algorithm,
when the exact test cannot be applied on line due
to prohibitively long execution times. The proposed
test has the same complexity as the original Liu and
Layland bound but it is less pessimistic, so allowing
to accept task sets that would be rejected using the
original approach. The performance of the proposed
approach is evaluated with respect to the classical
Liu and Layland method, and theoretical bounds are
derived as a function of � (the number of tasks) and
for the limit case of � tending to infinity. The analy-
sis is also extended to include aperiodic servers and
blocking times due to concurrency control protocols.
Extensive simulations on synthetic tasks sets are pre-
sented to compare the effectiveness of the proposed
test with respect to the Liu and Layland method and
the exact response time analysis.

1 Introduction

During the last thirty years periodic task schedul-
ing received much consideration in the real-time re-
search community due to the large number of con-
trol applications using cyclical activities. Since a
few years ago, the most critical control applications
were developed using an off-line table-driven ap-
proach (timeline scheduling), according to which the
time line is divided into slots of fixed length (minor
cycle) and tasks are statically allocated in each slot
based on their rates and execution requirements [8].
The schedule is then constructed up to the least com-
mon multiple of all the periods (called the hyperpe-
riod or the major cycle) and stored in a table. At
runtime, tasks are dispatched according to the table
and synchronized by a timer at the beginning of each
minor cycle. From one hand, timeline scheduling is

straightforward to implement and does not introduce
significant runtime overhead (since scheduling deci-
sions are taken off-line). Moreover, tasks always ex-
ecute in their preallocated slots, so the experienced
jitter is very small.

On the other hand, timeline scheduling is frag-
ile during overload situations, since a task exceeding
its predicted execution time could generate (if not
aborted) a domino effect on the subsequent tasks,
causing their execution to exceed the minor cycle
boundary (timeline break). In addition, timeline
scheduling is not flexible enough for handling dy-
namic situations. In fact, a creation of a new task, or
a little change in a task rate, might modify the val-
ues of the minor and major cycles, thus requiring a
complete redesign of the scheduling table.

Such problems can be solved by using a priority-
based approach, according to which each task is as-
signed a priority (which can be fixed or dynamic)
and the schedule is generated on line based on the
current priority value. In 1973, Liu and Layland
[7] analyzed the properties of two basic priority as-
signment rules: the Rate Monotonic (RM) algorithm
(according to which priorities are inversely propor-
tional to task periods) and the Earliest Deadline First
(EDF) algorithm (according to which priorities are
inversely proportional to absolute deadlines). Their
major contribution was to derive two simple guaran-
tee tests to verify the schedulability of a periodic task
set under both algorithms.

Their results refer to the following task model.
Each periodic task �� consists of an infinite sequence
of jobs ���� (� � �� �� � � �), where the first job ����
is released at time ���� � �� (the task phase) and
the generic �th job ���� is released at time ���� �
�� � �� � ����, where �� is the task period. Each
job is characterized by a worst-case execution time
��, a relative deadline 	� and an absolute deadline

��� � ���� �	�. The ratio �� � ����� is called the
utilization factor of task �� and represents the frac-
tion of processor time used by that task. Finally, the

1

Proc. of the 13th Euromicro Conference on Real-Time Systems (ECRTS 2001), Delft, The Netherlands, June 13-15, 2001.

value

�� �

��
���

��

is called the total processor utilization factor and
represents the fraction of processor time used by the
periodic task set. Clearly, if �� � no feasible
schedule exists for the task set.

The two schedulability conditions for RM and
EDF are derived for a set � of � periodic tasks
under the assumptions that all tasks start simulta-
neously at time � � 	 (that is, �� � 	 for all
� � �� � � � � �), relative deadlines are equal to periods
(that is,
��� � ���) and tasks are independent (that
is, they do not have resource constraints, nor prece-
dence relations). Under such assumptions, a set of �
periodic tasks is schedulable by the RM algorithm if

��
���

�� � ������ � ��� (1)

Throughout the paper, we will refer to the previous
schedulability condition as the LL-test. We recall
that

��
���

������ � �� �
 � � 	����

Under the EDF algorithm, a set of � periodic tasks is
schedulable if and only if

��
���

�� � �� (2)

Although EDF has a better schedulability bound
than RM, RM is easier to implement on top of
commercial kernels, since task rates can directly be
mapped into a small set of fixed priorities. RM is es-
pecially preferred in small embedded systems, where
managing deadlines would require more memory
space and a more sophisticated timer handling rou-
tine. For such reasons, a lot of work has been done
to improve the schedulability bound of the RM al-
gorithm or relax some restrictive assumption on the
task set. In [6], Lehoczky, Sha, and Ding performed
a statistical study and showed that for task sets with
randomly generated parameters the LL-test is able
to guarantee schedulability up to a processor utiliza-
tion of about 88%. Exact schedulability tests for RM
yielding to necessary and sufficient conditions have
been independently derived in [4, 6, 1]. Using the
method proposed in [1], a periodic task set is schedu-
lable with the RM algorithm if and only if the worst-
case response time of each task is less than or equal
to its deadline. The worst-case response time �� of
a task can be computed using the following iterative

formula:���
��
�
���
� � ��

�
���
� � �� �

�
����	��

�
�
�����
�

��

�
�� �

(3)

where the worst-case response time of task �� is
given by the smallest value of����

� such that����
� �

�
�����
� . It is worth noting, however, that the com-

plexity of the exact test is pseudo-polynomial, thus it
is not suited to be used for on-line admission control.
In [10], Sha, Rajkumar and Lehozcky extended the
rate monotonic analysis in the presence of resource
constraints, where access to resources is performed
using concurrency control protocols, such as the Pri-
ority Inheritance Protocol and the Priority Ceiling
Protocol. In [1], Audsley et al. generalized the re-
sponse time analysis including resource constraints,
and in [2], Burns, Davis, and Punnekats extended it
to take fault-tolerant constraints into account.

In this paper we present an efficient test for veri-
fying the feasibility of large periodic task sets under
the RM algorithm. The proposed method is partic-
ularly useful for achieving on-line admission con-
trol in small embedded systems, when EDF cannot
be implemented for efficiency reasons and the re-
sponse time analysis cannot be applied on line due
to prohibitively long execution times. The analysis
has the same complexity as the original LL-test, but
it is less pessimistic, so allowing to accept task sets
that would be rejected using the original approach.
A similar approach has been independently devel-
oped by Oh and Song in [9] to verify the schedu-
lability of task sets in a multiprocessor environment.
The authors, however, do not compare the effective-
ness of the method against other classical approaches
and the analysis is not extended to deal with resource
constraints and aperiodic servers.

The rest of the paper is organized as follows. Sec-
tion 2 presents the hyperbolic feasibility bound for
the RM algorithm, explaining its relation with the
classical Liu and Layland approach in the utiliza-
tion space. Section 3 evaluates the theoretical im-
provement of the proposed test with respect to the
Liu and Layland bound as a function of � (the num-
ber of tasks) and computes its asymptotic value as �
tends to infinity. Section 4 extends the schedulabil-
ity test to take aperiodic servers and resource con-
straints into account. Section 5 presents a number of
simulation experiments performed on synthetic task
sets aimed at comparing the proposed approach with
other classical ones as a function of the number of
tasks. Section 6 states our conclusions and future
work.

2

2 The hyperbolic bound

The schedulability test we propose in this paper is
derived from the same the worst-case scenario iden-
tified by Liu and Layland in [7] for a set on � pe-
riodic tasks. However, instead of minimizing the
processor utilization with respect to task periods, we
manipulate the feasibility condition in order to find a
tighter sufficient schedulability test as a function of
the individual task utilizations.

The following theorem provides a sufficient con-
dition for testing the schedulability of a task set un-
der the RM algorithm.

Theorem 1 Let � � ���� � � � � ��� be a set of � peri-
odic tasks, where each task �� is characterized by a
processor utilization ��. Then, � is schedulable with
the RM algorithm if

��
���

��� � �� � �� (4)

Proof. Without loss of generality, we may assume
that tasks are ordered by increasing periods, so that
�� is the task with the highest priority and �� is the
task with the lowest priority. Liu and Layland [7]
have shown that the worst-case scenario for a set on
� periodic tasks occurs when all the tasks start si-
multaneously (e.g., at time � �) and periods are
such that

�� � �� � � � � � �� � �� � ����

Moreover, among the tasks that fully utilize the pro-
cessor, the total utilization factor is minimized when
computation times have the following relations:������
�����

�� � �� � ��
�� � �� � ��
� � �
���� � �� � ����
�� � �� �

	���
��� �� � ��� � ���

(5)

Starting from such a worst-case scenario, the least
upper bound of the processor utilization factor can
be found by minimizing the expression of �� with
respect to periods. However, we show that the min-
imization process does not simplify the final re-
sult, but only reduces its applicability. In fact, an
equally simple, but less stringent, result can be de-
rived by manipulating equations (5) as described be-
low. Defining

�� �
��	�

��
�� �� �

��
��
�

equations (5) can be written as follows:������
�����

�� � �� � �
�� � �� � �
� � �
���� � ���� � �
�� � ������ � ��

(6)

Now we notice that:

����
���

�� �
��
��

��
��

� � � ��
����

�
��
��
�

Hence, the feasibility condition for a task set which
fully utilizes the processor and minimizes the total
utilization factor can be written as:

�� � �
���
��� ��

� ��

Since �� � �� �� for all � � �� � � � � �� �, we have

��� � ��
����
���

��� � �� � �

and finally
��
���

��� � �� � ��

which proves the theorem. �

Notice that the Liu and Layland bounds ex-
pressed by equations (1) and (2) can easily be rep-
resented in the task utilization space, denoted as the
U-space from now on. In such a space, a point
� � ���� ��� � � � � ��� represents a periodic task set
whose tasks have utilizations ��, ��, � � � � and ��,
respectively. Notice, however, that different task sets
with different period relations, but the same tasks’
utilizations, are mapped on the same point.

In the U-space, the Liu and Layland bound for
RM (LL bound) is represented by a �-dimensional
plane which intersects each axis in �
����� �
������ � ��, whereas the EDF bound is represented
by a �-dimensional plane which intersects each axis
in 1. All points below the RM surface represent
periodic task sets that are feasible with both RM
and EDF, whereas the region above the EDF surface
identifies those task sets whose total utilization is
greater than one, and hence are not feasible with any
algorithm. Finally, the region located between the
two parallel planes of RM and EDF identifies those
task sets which are schedulable by EDF but cannot
be guaranteed to be schedulable by RM using condi-
tion (1).

3

In the U-space, the RM bound expressed by equa-
tion (4), is represented by a �-dimensional hyper-
bolic surface, tangent to the RM plane and having
the same axis intersections as the EDF plane. For
this reason, it will be referred to as the hyperbolic
bound, or H-bound for short. Figure 1 illustrates
such bounds for � � �. Notice that the asymptots
of the hyperbole are at �� � ��. From the plots, we
can clearly see that the feasibility region below the
H-bound is larger than that below the LL-bound, and
the gain is given by the dark grey area.

U2

U1Ulub(2)

Ulub(2)

1

1

H-bound

EDF-bound

LL-bound

Figure 1. Schedulability bounds for RM
and EDF in the utilization space.

A quantitative evaluation of the gain (in terms
of schedulability) achieved by the H-bound over the
classical LL-bound as a function of the number of
tasks is presented in Section 3.

2.1 Reducing pessimism

By relaxing the worst-case condition for which
�� � �� � ���, a better schedulability test can be
found. In this section, we present the analysis for the
simple case of two tasks. By defining

� �

�
��
��

�
�

the worst-case situation occurs when
�� � �� � ���
�� � �� � �� � �����

(7)

Hence, the schedulability condition can be written as

�� � ���
�
� � �

�����
� �

�
�

Now, observing that

��
��

� �� � ��

the schedulability condition becomes

�� � �
�
� � �

�� � �
� �

�

that is
��

�
� � � � � �

�� � �

and finally

��
���

�
��
�

� �

�
� �

�
� �� (8)

Figure 2 plots equation 8 in the U-space for dif-
ferent values of the � parameter. As we can see, the
asymptots intersect each axis in �� , so the hyper-
bole tends to approach the EDF line as � gets larger.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F=1
F=2
F=5

Hyperbolic bound

0 10.2 0.4 0.6 0.8
0

U
1

LL bound0.2

0.4

0.6

0.8

2

U1

EDF bound

Figure 2. Hyperbolic RM bound for dif-
ferent values of � .

Unfortunately, generalizing equation (8) to the
case of � tasks is not trivial, and will be investigated
as a future work.

3 Comparative evaluation

In this section we compute the gain (in terms of
schedulability) achieved by the hyperbolic test over
the classical Liu and Layland test as a function of
the number of tasks. This is done by computing the
volume in the U-space of the regions underlying the
bounds and plotting their ratio as a function of �.

4

To evaluate the efficiency of Liu and Layland test,
we will compute the measure of the region �����
defined as:

����� �

�
� � �� � �� � ��

��
���

�� � �

�
� (9)

In the following we denote by ��� the �-dimensional
measure of a subset � of��.

Lemma 1 For every integer � and for all � 	 we
have

������� � ��

��
� (10)

Proof. We will proceed by induction on �. For
� � �, ����� reduces to the interval �	� ��, hence,
its measure is clearly �.

Now, assume that equality (10) is true for � � �
and for all � 	. In particular, we have

�������� ���� � ��� ������
��� ���

�

Therefore

������� �

�

�

��

�
���������

�� � � �
����

�

�

�

��� ������
��� ���

��

and defining � � ��� ��� we can write:

������� �
�

�

����

��� ���

� �

��

��

as required. �

To evaluate the effectiveness of the hyperbolic
test, we will compute the measure of the region
����� defined as

����� �

�
���� � �� � ��

��
���

������ � �

�
� (11)

Lemma 2 For every integer � and for all � 	 � we
have

������� � �����

�
���

����
���

�� �	���

�

�
� (12)

Proof. We will proceed by induction on �. For
� � �, ����� reduces to the interval �	� � � ��,
whose measure is clearly �� �.

Now, assume equality (12) is true for � � � and
for all � 	 �. In particular, we have�������

�
�

� � ��

����
� �������

�
��

�

� � ��

����
���

�

�

�
� �	

�

� � ��

���
�

Therefore

������� �

� ���

�

���

�
�����

�
����

�

��� � � � �����

�

� ���

�

�������

�
��

�

� � ��

����
���

�

�

�
� �	

�

� � ��

���
���

and defining � � �� � ��� we have:

�������

�

� �

�

�������

�
��

�

	

����
���

�

�

�
� �	

�

	

��
�
�	

� �������

�
	 ��

����
���

�����

�� � ��

�
�	

�

	

����
����
���

� �������

�
�� � ��

����
���

�� �	�����

�� � ��

�

� �����

�
���

����
���

�� �	���

�

�

as required. �

To evaluate the gain of the hyperbolic test with
respect to the LL test, we have to compute the ratio

�� �
����������� ������� � ��

��� � (13)

In fact,

 according to equation (11), ������� represents
the hypervolume in the � -space of the task sets
found schedulable by the hyperbolic test;

 according to equation (9),
���� ������� � ��

���
represents the hypervolume in the � -space of
the task sets found schedulable by the LL test.

Proposition 1 As � tends to infinity, the asymptotic
behavior of �� is

�� �
�
� ��������

Proof. By observing that

�
�
� � ���

�

 �

�

�
� � �

 �

�
�

� �

���
��

�
���

�

5

we can write:

����� ������� � ��
���� �

�
�
�
�
�
�� �

���
��

�

� �

��

�
� �

 �

��
��

�
���

���

�

� �

��
���

�
�

�
� �

 �

��
��

�
���

���

�

� �

��
���

�

 �

�
��

�
���

��

�
�
�

� �

��

�
� ��

�
���

��
�

If we now define

����� �

��
���

��

��

by Taylor expansion of �� we obtain

�� � ����� �
��	�

�� � ���
� ��

��	�

�� � ���

where � � ��� 	�. Therefore

������
 ��

� ��
� � � ��
 ���

��

�
�� ��
 �

�� �

�

�
�

�
� �����

� �

��

�
�� ��
 �

�� �

�

where � � ��
 �� 	�. Thus, we have:

������� � ����� ��� �������
 ���

� �

� �

��

�
�� ��
 �

�� �

�

� �

� �

��

�
� ��

�
���

��
which gives

�� �
�
� ��

�
���

�
(14)

as required. �

4 Extensions

In this section we extend the hyperbolic approach
to take aperiodic servers and shared resources into
account. First, we derive a schedulability condition
for a Polling Server [5] scheduled by RM at the high-
est priority, and then generalize the analysis to a De-
ferrable Server. Finally, we show how to take block-
ing times into account.

Theorem 2 Let � � ���� � � � � ��� be a set of � peri-
odic tasks, where each task �� is characterized by
a processor utilization ��, and let � be a Polling
Server with utilization �� � �����, such that �� �
������ � � � � ��� (that is, S is assigned the highest
priority). Then, � is schedulable with the RM algo-
rithm in the presence of server S if

��
���

��� � �� � �

�� � �
� (15)

Proof. Without loss of generality, assume that tasks
are ordered by increasing periods, so that �� is the
task with the highest priority and �� is the task with
the lowest priority.

Lehoczky, Sha, and Strosnider proved in [5] that
the worst-case scenario for the task set occurs when
all the tasks start simultaneously (e.g., at time � �)
and����������
���������

�� � �� � ��� �� � �� � � � � �
�� � �� � ��
�� � �� � ��
�� � �� � ��
� � �
���� � �� � ����
�� � �� � �� �

	���
��� �� � ��� � ���

(16)

Hence, the feasibility condition for a task set which
fully utilizes the processor and minimizes the total
utilization factor can be written as

�� � ��� � ��
or (dividing both sides by ��) as

��� � �� � �
��
��
� (17)

Following the same approach used for proving The-
orem 1, we define (for all � � �)

�� �
��	�

��

and notice that

��
��

� �� � �

��
��

�

����
���

�� �

����
���

��� � ���

Hence, equation (17) can be written as

��� � ��
��
��

� �
��
��

6

which leads to

��
���

��� � �� � �

�� � �

as required. �

For a Deferrable Server, the analysis performed
in [5] by Lehoczky, Sha, and Strosnider can also be
expressed in the hyperbolic form. By following the
same reasoning presented in [5], in the presence of a
high priority Deferrable Server, the constraint on ��

can be written as:

�� � ��� � ���
where � � ��	�

���	� . Hence, the feasibility condition
becomes

��
���

��� � �� � �� � �

��� � �
�

Analogous considerations can be done for the more
precise analysis presented in [12], but they are omit-
ted due to space limitations.

In the presence of resource constraints, blocking
times due to mutual exclusion can be taken into ac-
count in the hyperbolic test by increasing tasks’ ex-
ecution times by a suitable blocking factor. Hence,
the � schedulability conditions derived by Sha, Ra-
jkumar, and Lehoczky in [10], can be expressed as
follows:

�� � �� � � � � �
����
���

��� � ��

�
�� � �

��
� �

�
� ��

5 Simulation results

In this section, we present some simulation exper-
iment we performed on synthetic task sets to eval-
uate the tightness of the H-bound (denoted by HB
in the graphs), with respect to the Liu and Layland
bound (LL in the graphs) and the exact test given by
(3), resulting from the response time analysis (de-
noted by RTA in the graphs). Simulations have been
conducted on randomly generated tasks sets, having
desired total utilization.

In our experiment, we generated �	� task sets
uniformly distributed in the region ����� of the U-
space, as defined by equation (9). This is the region
where task sets are schedulable by EDF. For differ-
ent values of �, we computed the number of task sets
guaranteed by the LL test, by the hyperbolic test, and
by the exact test, respectively. Figure 3 reports such
ratios with respect to the total number of generated

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14 16 18 20

sc
he

du
la

bi
lit

y
w

ith
 r

es
pe

ct
 to

 E
D

F

number of tasks

RTA/EDF ratio
HB/EDF ratio
LL/EDF ratio

Figure 3. Feasibility ratios with respect
to EDF as a function of �.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 4 6 8 10 12 14 16 18 20

sc
he

du
la

bi
lit

y
w

ith
 r

es
pe

ct
 to

 R
T

A

number of tasks

HB/RTA ratio
LL/RTA ratio

Figure 4. Feasibility ratios with respect
to RTA as a function of �.

task sets (we recall that all task sets are generated to
be feasible with EDF). Figure 4 compares the LL-
test and the H-test with respect to the exact RTA test.

It is worth noting that, although all the ratios tends
to zero as � tends to infinity, the schedulability gain
achieved by the H-test over the LL-test increases as
� gets larger. This can be clearly seen in Figure 5,
which reports the ratio of the number of task sets
guaranteed by the H-test and the number of task sets
guaranteed by the LL-test, as a function of �. We
observe that the ratio tends to

�
�, as predicted by

the asymptotic analysis presented in Section 3.

6 Conclusions

In this paper we presented a hyperbolic schedula-
bility bound for the Rate Monotonic algorithm and
evaluated its effectiveness with respect to the classi-

7

1.1

1.15

1.2

1.25

1.3

1.35

1.4

2 4 6 8 10 12 14 16 18 20

sc
he

du
la

bi
lit

y
ga

in
 o

f H
B

 o
ve

r
LL

number of tasks

HB/LL ratio

Figure 5. Hyperbolic test versus LL-test
as a function of �.

cal Liu and Layland utilization bound and the nec-
essary and sufficient condition computed through a
response time analysis. The asymptotic behaviour of
the hyperbolic bound relative to the LL bound was
also computed for � tending to infinity and found
to be equal to

�
�. Since the hyperbolic test has an

���� complexity, it can be effectively used to per-
form on-line admission control in large periodic task
sets under the RM algorithm, when the exact schedu-
lability analysis cannot be applied for efficiency rea-
sons.

We believe that the proposed analysis can be im-
proved by relaxing other pessimistic assumptions
typically made on the task set, and we are investigat-
ing the possibility of deriving a tighter schedulability
condition with polynomial complexity as a function
of arbitrary period relations.

References

[1] N.C. Audsley, A. Burns, M. Richardson,
K. Tindell and A. Wellings, “Applying New
Scheduling Theory to Static Priority Preemp-
tive Scheduling”, Software Engineering Jour-
nal 8(5), pp. 284-292, September 1993.

[2] A. Burns, R. Davis, and S. Punnekkat “Fea-
sibility Analysis of Fault-Tolerant Real-Time
Task Sets,” IEEE Proceedings of the Euromi-
cro Workshop on Real-Time Systems, pp. 29-
33, June 1996.

[3] M.L. Dertouzos, “Control Robotics: the Proce-
dural Control of Physical Processes,” Informa-
tion Processing, 74, North-Holland, Publishing
Company, 1974.

[4] M. Joseph and P. Pandya, “Finding Response
Times in a Real-Time System,” The Computer
Journal, 29(5), pp. 390-395, 1986.

[5] J. P. Lehoczky, L. Sha, and J. K. Strosnider,
“Enhanced Aperiodic Responsiveness in Hard
Real-Time Environments,” Proceedings of the
IEEE Real-Time Systems Symposium, pp. 261-
270, 1987.

[6] J. P. Lehoczky, L. Sha, and Y. Ding, “The
Rate-Monotonic Scheduling Algorithm: Ex-
act Characterization and Average Case Be-
haviour,” Proceedings of the IEEE Real-Time
Systems Symposium, pp. 166-171, 1989.

[7] C.L. Liu and J.W. Layland, “Scheduling Algo-
rithms for Multiprogramming in a Hard real-
Time Environment,” Journal of the ACM 20(1),
1973, pp. 40–61.

[8] C.D. Locke, “Software Architecture for Hard
Real-Time Applications: Cyclic Executives vs.
Fixed Priority Executives”, Real-Time Systems,
4, pp. 37-53, 1992.

[9] Y. Oh and S. H. Son, “Allocating Fixed-Priority
Periodic Tasks on Multiprocessor Systems,”
Real-Time Systems, 9, pp. 207-239, 1995.

[10] L. Sha, R. Rajkumar, and J. P. Lehoczky,
“Priority Inheritance Protocols: An Approach
to Real-Time Synchronization,” IEEE Trans-
actions on Computers, 39(9), pp. 1175-1185,
1990.

[11] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic
Task Scheduling for Hard Real-Time System,”
Journal of Real-Time Systems, 1, pp. 27-60,
June 1989.

[12] J.K. Strosnider, J.P. Lehoczky, and L. Sha,
“The Deferrable Server Algorithm for En-
hanced Aperiodic Responsiveness in Hard
Real-Time Environments”, IEEE Transactions
on Computers, 44(1), January 1995.

8

