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Abstract. This work presents some methodologies for enhancing 
predictability in real-time computing systems, where explicit timing 
constraints have to be enforced on application processes. In order to provide 
an off-line guarantee of the critical timing constraints, deterministic and 
analyzable algorithms are required in all kernel mechanisms, especially 
involving scheduling, inter-task communication, synchronization and 
interrupt handling. This paper illustrates some problems that may arise in real-
time concurrent applications and some solutions that can be adopted in the 
kernel to overcome those problems. In particular, task scheduling algorithms 
and resource management policies will be considered in detail, as they have 
great influence on system behavior. Finally, a novel approach will be 
introduced for handling transient overloads and execution overruns in soft 
real-time systems working in dynamic environments. These techniques 
provide efficient support to real-time multimedia systems. 

1. Introduction 

Often, people say that real-time systems must react fast to external events. Such a 
definition, however, is not precise, because processing speed does not provide any 
information on the actual capability of the system to react timely to events. In fact, 
the effect of controller actions in a system can only be evaluated when considering 
the dynamic characteristics of the controlled environment. 

A more precise definition would say that a real-time system is a system in which 
performance depends not only on the correctness of the single controller actions, but 
also on the time at which actions are produced [24]. The main difference between a 
real-time task and a non real-time task is that a real-time task must complete within a 
given deadline. In other words, a deadline is the maximum time allowed for a 
computational process to finish its execution. In real-time applications, a result 
produced after its deadline is not only late, but can be dangerous. Depending on the 
consequences caused by a missed deadline, real-time activities can be classified in 
hard and soft tasks [23]. A real-time task is said to be hard if missing a deadline may 
have catastrophic consequences in the controlled system. A real-time task is said to 
be soft if missing a deadline causes a performance degradation, but does not 
jeopardize correct system behavior. An operating system able to manage hard tasks is 
called a hard real-time system [4][25]. 
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In general, hard real-time systems have to handle both hard and soft activities. In 
a control application, typical hard tasks include sensory data acquisition, detection of 
critical conditions, motor actuation, and action planning. Typical soft tasks include 
user command interpretation, keyboard input, message visualization, system status 
representation, and graphical activities. The great interest in real-time systems is 
motivated by the growing diffusion they have in our society in several application 
fields, including chemical and nuclear power plants, flight control systems, traffic 
monitoring systems, telecommunication systems, automotive devices, industrial 
automation, military systems, space missions, and robotic systems. 

Despite this large application domain, most of today’s real-time control systems 
are still designed using ad hoc techniques and heuristic approaches. Very often, 
control applications with stringent time constraints are implemented by writing large 
portions of code in assembly language, programming timers, writing low-level 
drivers for device handling, and manipulating task and interrupt priorities. Although 
the code produced by these techniques can be optimized to run very efficiently, this 
approach has several disadvantages. First of all, the implementation of large and 
complex applications in assembly language is much more difficult and time 
consuming than using high-level programming. Moreover, the efficiency of the code 
strongly depends on the programmer’s ability. In addition, assembly code 
optimization makes a program more difficult to comprehend, complicating software 
maintenance. Finally, without the support of specific tools and methodologies for 
code and schedulability analysis, the verification of time constraints becomes 
practically impossible. 

The major consequence of this state of affairs is that control software produced 
by empirical techniques can be highly unpredictable. If all critical time constraints 
cannot be verified a priori and the operating system does not include specific features 
for handling real-time tasks, the system apparently works well for a period of time, 
but may collapse in certain rare, but possible, situations. The consequences of a 
failure can sometimes be catastrophic and may injure people or cause serious damage 
to the environment. A trustworthy guarantee of system behavior under all possible 
operating conditions can only be achieved by adopting appropriate design 
methodologies and kernel mechanisms specifically developed for handling explicit 
timing constraints. 

1.1 Achieving predictability 

The most important property of a real-time system is not high speed, but 
predictability. In a predictable system we should be able to determine in advance 
whether all the computational activities can be completed within their timing 
constraints. The deterministic behavior of a system typically depends on several 
factors, ranging from the hardware architecture to the operating system, up to the 
programming language used to write the application. 

Architectural features that have major influence on task execution include 
interrupts, DMA, cache and pre-fetching mechanisms. Although such features 
improve the average performance of the processor, they introduce a non deterministic 
behavior in process execution, prolonging the worst-case response times. Other 
factors that significantly affect task execution are due to the internal mechanisms 
used in the operating system, such as the scheduling algorithm, the synchronization 

2 



mechanisms, the memory management policy, and the method used to handle I/O 
devices. The programming language has also an important impact on predictability, 
through the constructs it provides to handle the timing requirements specified for 
computational activities. 

2. Periodic task handling 

Periodic activities represent the major computational load in a real-time control 
system. For example activities such as actuator regulation, signal acquisition, 
filtering, sensory data processing, action planning, and monitoring, need to be 
executed with a frequency derived from the application requirements. 

A periodic task is characterized by an infinite sequence of instances, or jobs. 
Each job is characterized by a request time and a deadline. The request time r(k) of 
the k-th job of a task represents the time at which the task becomes ready for 
execution for the k-th time. The interval of time between two consecutive request 
times is equal to the task period. The absolute deadline of the k-th job, denoted with 
d(k), represents the time within which the job has to complete its execution, and r(k) 
< d(k) ≤ r(k+1). 

2.1 Timeline scheduling 

Timeline Scheduling (TS), also known as a cyclic executive, is one of the most used 
approaches to handle periodic tasks in defense military systems and traffic control 
systems. The method consists in dividing the temporal axis into slices of equal 
length, in which one or more tasks can be allocated for execution, in such a way to 
respect the frequencies derived from the application requirements. A timer 
synchronizes the activation of the tasks at the beginning of each time slice. In order 
to illustrate this method, consider the following example, in which three tasks, A, B 
and C, need to be executed with a frequency of 40, 20 and 10 Hz, respectively. By 
analyzing the task periods, it is easy to verify that the optimal length for the time slice 
is 25 ms, which is the Greatest Common Divisor of the periods. Hence, to meet the 
required frequencies, task A needs to be executed every time slice, task B every two 
slices, and task C every four slices. A possible scheduling solution for this task set is 
illustrated in Figure 1. 
 

task B
task C

0 25 50 100 125 15075

Minor Cycle

Major Cycle

t
 

task A

Fig. 1. Example of timeline scheduling 
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The duration of the time slice is also called a Minor Cycle, whereas the 

minimum period after which the schedule repeats itself is called a Major Cycle. In 
general, the major cycle is equal to the least common multiple of all the periods (in 
the example it is equal to 100 ms). 

In order to guarantee a priori that a schedule is feasible on a particular processor, 
it is sufficient to know the task worst-case execution times and verify that the sum of 
the executions within each time slice is less than or equal to the minor cycle. In the 
example shown in Figure 1, if CA, CB and CC denote the execution times of the tasks, 
it is sufficient to verify that 

 
CA + CB  ≤  25 ms 

CA + CC  ≤  25 ms 
 
The major relevant advantage of timeline scheduling is its simplicity. The 

method can be implemented by programming a timer to interrupt with a period equal 
to the minor cycle and by writing a main program that calls the tasks in the order 
given in the major cycle, inserting a time synchronization point at the beginning of 
each minor cycle. Since the task sequence is not decided by a scheduling algorithm in 
the kernel, but it is triggered by the calls made by the main program, there are no 
context switches, so the runtime overhead is very low. Moreover, the sequence of 
tasks in the schedule is always the same, can be easily visualized, and it is not 
affected by jitter (i.e., task start times and response times are not subject to large 
variations). 

In spite of these advantages, timeline scheduling has some problems. For 
example, it is very fragile during overload conditions. If a task does not terminate at 
the minor cycle boundary, we can either let it continue or abort it. In both cases, 
however, the system may enter in a risky situation. In fact, if we leave the failing task 
in execution, it can cause a domino effect on the other tasks, breaking the entire 
schedule (timeline break). On the other hand, if the failing task is aborted, the system 
may be left in an inconsistent state, jeopardizing correct system behavior. 

Another big problem of the timeline scheduling technique is its sensitivity to 
application changes. If updating a task requires an increase of its computation time or 
its activation frequency, the entire scheduling sequence may need to be reconstructed 
from scratch. Considering the previous example, if task B is updated to B’ and the 
code change is such that CA + CB’ > 25 ms, then we have to divide B’ in two or more 
pieces to be allocated in the available intervals of the timeline. Changing the task 
frequencies may cause even more radical changes in the schedule. For example, if the 
frequency of task B changes from 20 Hz to 25 Hz, the previous schedule is not valid 
any more, because the new Minor Cycle is equal to 10 ms and the new Major Cycle 
is equal to 200 ms. 

Finally, another limitation of the timeline scheduling is that it is difficult to 
handle aperiodic activities efficiently without changing the task sequence. 

The problems outlined above can be solved by using priority based scheduling 
algorithms. 
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2.2 Rate Monotonic (RM) 

The Rate-Monotonic (RM) algorithm assigns each task a priority directly 
proportional to its activation frequency, so that tasks with shorter period have higher 
priority. Since a period is usually kept constant for a task, the RM algorithm 
implements a static priority assignment, in the sense that task priorities are decided at 
task creation and remain unchanged for the entire application run. RM is typically 
preemptive, although it can also be used in a non-preemptive mode. 

In 1973, Liu and Layland [17] showed that RM is optimal among all static 
scheduling algorithms, in the sense that if a task set is not schedulable by RM, then 
the task set cannot be feasibly scheduled by any other fixed priority assignment. 
Another important result proved by the same authors is that a set Γ = {τ1, …, τn} of n 
periodic tasks is schedulable by RM if 
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represents the processor utilization factor and denotes the fraction of time used by 
the processor to execute the entire task set. Table 1 shows the values of n(21/n − 1) for 
n from 1 to 10. As can be seen, the factor decreases with n and, for large n, it tends to 
the following limit value: 
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Table 1. Maximum processor utilization for the Rate Monotonic algorithm 

 
n n(21/n − 1) 
1 1.000 
2 0.828 
3 0.780 
4 0.757 
5 0.743 
6 0.735 
7 0.729 
8 0.724 
9 0.721 

10 0.718 
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We note that the Liu and Layland test only gives a sufficient condition for 
guaranteeing a feasible schedule under the RM algorithm. Hence, a task set can be 
schedulable by RM even though the utilization condition is not satisfied. 
Nevertheless, we can certainly state that a periodic task set cannot be feasibly 
scheduled by any algorithm if U > 1. A statistical study carried out by Lehoczky, 
Sha, and Ding [14] on randomly generated task sets showed that the utilization bound 
of the RM algorithm has an average value of 0.88, and becomes 1 for periodic tasks 
with harmonic period relations. 

In spite of the limitation on the schedulability bound, which in most cases 
prevents the full processor utilization, the RM algorithm is widely used in real-time 
applications, manly for its simplicity. At the same time, being a static scheduling 
algorithm, it can be easily implemented on top of commercial operating systems, 
using a set of fixed priority levels. Moreover, in overload conditions, the highest 
priority tasks are less prone to missing their deadlines. For all these reasons, the 
Software Engineering Institute of Pittsburgh has prepared a sort of user guide for the 
design and analysis of real-time systems based on the RM algorithm [11]. 

Since the RM algorithm is optimal among all fixed priority assignments, the 
schedulability bound can only be improved through a dynamic priority assignment. 

2.3 Earliest Deadline First (EDF) 

The Earliest Deadline First (EDF) algorithm consists in selecting (among the ready 
tasks) the task with the earliest absolute deadline. The EDF algorithm is typically 
preemptive, in the sense that, a newly arrived task can preempt the running task if its 
absolute deadline is shorter. 

If the operating system does not support explicit timing constraints, EDF (as 
RM) can be implemented on a priority-based kernel, where priorities are dynamically 
assigned to tasks. A task will receive the highest priority if its deadline is the earliest 
among those of the ready tasks, whereas it will receive the lowest priority if its 
deadline is the latest one. A task gets a priority which is inversely proportional to its 
absolute deadline. 

The EDF algorithm is more general than RM, since it can be used to schedule 
both periodic and aperiodic task sets, because the selection of a task is based on the 
value of its absolute deadline, which can be defined for both types of tasks. 
Typically, a periodic task that completed its execution is suspended by the kernel 
until its next release, coincident with the end of the current period. Dertouzos [8] 
showed that EDF is optimal among all on line algorithms, while Liu and Layland 
[17] proved that a set Γ = {τ1, τ2, …, τn} of n periodic tasks is schedulable by EDF if 
and only if 
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It is worth noting that the EDF schedulability condition is necessary and sufficient to 
guarantee a feasible schedule. This mean that, if it is not satisfied, no algorithm is 
able to produce a feasible schedule for that task set. 

6 



 
The dynamic priority assignment allows EDF to exploit the full processor, reaching 
up to 100% of the available processing time. When the task set has a processor 
utilization factor less than one, the residual fraction of time can be efficiently used to 
handle aperiodic requests activated by external events. In addition, compared with 
RM, EDF generates a lower number of context switches, thus causing less runtime 
overhead. On the other hand, RM is simpler to implement on a fixed priority kernel 
and is more predictable in overload situations, because higher priority tasks are less 
viable to miss their deadlines. 

2.4 Tasks with deadlines less than periods 

Using RM or EDF, a periodic task can be executed at any time during its period. The 
only guarantee provided by the schedulability test is that each task will be able to 
complete its execution before the next release time. In some real-time applications, 
however, there is the need for some periodic task to complete within an interval less 
than its period. 

The Deadline Monotonic (DM) algorithm, proposed by Leung and Whitehead 
[16], extends RM to handle tasks with a relative deadline less than or equal to their 
period. According to DM, at each instant the processor is assigned to the task with 
the shortest relative deadline. In priority-based kernels, this is equivalent to assigning 
each task a priority Pi ∝ 1/Di inversely proportional to its relative deadline. 
With Di fixed for each task, DM is classified as a static scheduling algorithm. In the 
recent years, several authors [2][10][14] independently proposed a necessary and 
sufficient test to verify the schedulability of a periodic task set. For example, the 
method proposed by Audsley et al. [2] consists in computing the worst-case response 
time Ri of each periodic task. It is derived by summing its computation time and the 
interference caused by tasks with higher priority: 
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where hp(i) denotes the set of tasks having priority higher than task i and x denotes 
the ceiling of a rational number, i.e., the smaller integer greater than or equal to x. 
The equation above can be solved by an iterative approach, starting with Ri

(0) = Ci 
and terminating when Ri

(s) = Ri
(s-1). If Ri

(s) > Di for some task, then the task set cannot 
be feasibly scheduled by DM. 

Under EDF, the schedulability analysis for periodic task sets with deadlines less 
than periods is based on the processor demand criterion, proposed by Baruah, 
Howell, and Rosier [3]. According to this method, a task set is schedulable by EDF if 
and only if, in every interval of length L (starting at time 0), the overall 
computational demand is no greater than the available processing time, that is, if and 
only if 
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This test is feasible, because L can only be checked for values equal to task deadlines 
no larger than the least common multiple of the periods. 

3. Aperiodic task handling 

Although in a real-time system most acquisition and control tasks are periodic, there 
exist computational activities that must be executed only at the occurrence of external 
events (typically signalled through interrupts), which may arrive at irregular times. 
When the system must handle aperiodic requests of computation, we have to balance 
two conflicting interests: on the one hand, we would like to serve an event as soon as 
possible to improve system responsiveness; on the other hand, we do not want to 
jeopardize the schedulability of periodic tasks. 

If aperiodic activities are less critical than periodic tasks, then the objective of a 
scheduling algorithm should be to minimize their response time, while guaranteeing 
that all periodic tasks (although being delayed by the aperiodic service) complete 
their executions within their deadlines. If some aperiodic task has a hard deadline, we 
should try to guarantee its timely completion off-line. Such a guarantee can only be 
done by assuming that aperiodic requests, although arriving at irregular intervals, do 
not exceed a maximum given frequency, that is, they are separated by a minimum 
interarrival time. An aperiodic task characterized by a minimum interarrival time is 
called a sporadic task. 

Let us consider an example in which an aperiodic job Ja of 3 units of time must 
be scheduled by RM along with two periodic tasks, having computation times C1 = 1, 
C2 = 3 and periods T1 = 4, T2 = 6, respectively. As shown in Figure 2, if the aperiodic 
request is serviced immediately (that is, with a priority higher than that assigned to 
periodic tasks), then task τ2 will miss its deadline. 

 

4 8

0 6
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0 64 82 1

τ1

τ2

Ja

120

dead line
m iss

 

0

Fig. 2. Immediate service of an aperiodic task. Periodic tasks are scheduled by RM 
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The simplest technique for managing aperiodic activities while preserving the 
guarantee for periodic tasks is to schedule them in background. This means that an 
aperiodic task executes only when the processor is not busy with periodic tasks. The 
disadvantage of this solution is that, if the computational load due to periodic tasks is 
high, the residual time left for aperiodic execution can be insufficient for satisfying 
their deadlines. 

Considering the same task set as before, Figure 3 illustrates how job Ja is 
handled by a background service. 
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Fig. 3. Background service of an aperiodic task. Periodic tasks are scheduled by RM 

 
 

The response time of aperiodic tasks can be improved by handling them through a 
periodic server dedicated to their execution. As any other periodic task, a server is 
characterized by a period Ts and an execution time Cs, called the server capacity (or 
budget). 

In general, the server is scheduled using the algorithm adopted for periodic tasks 
and, once activated, it starts serving the pending aperiodic requests within the limit of 
its current capacity. The order of service of the aperiodic requests is independent of 
the scheduling algorithm used for the periodic tasks, and it can be a function of the 
arrival time, computation time or deadline. 

During the last years, several aperiodic service algorithms have been proposed in 
the real-time literature, differing in performance and complexity. Among the fixed 
priority algorithms we mention the Polling Server and the Deferrable Server 
[13][27], the Sporadic Server [20], and the Slack Stealer [15]. Among those servers 
using dynamic priorities (which are more efficient on the average) we recall the 
Dynamic Sporadic Server [9][21], the Total Bandwidth Server [22], the Tunable 
Bandwidth Server [5], and the Constant Bandwidth Server [1]. 

In order to clarify the idea behind an aperiodic server, Figure 4 illustrates the 
schedule produced, under EDF, by a Dynamic Deferrable Server with capacity Cs = 
1 and period Ts = 4. We note that, when the absolute deadline of the server is equal 
to the one of a periodic task, priority is given to the server in order to enhance 
aperiodic responsiveness. We also observe that the same task set would not be 
schedulable under a fixed priority system. 
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Fig. 4. Aperiodic service performed by a Dynamic Deferrable Server. Periodic tasks, including 
the server, are scheduled by EDF. Cs is the remaining budget available for Ja 

 
 

Although the response time achieved by a server is less than that achieved through 
the background service, it is not the minimum possible. The minimum response time 
can be obtained with an optimal server (TB*) which assigns each aperiodic request 
the earliest possible deadline which still produces a feasible EDF schedule [5]. The 
schedule generated by the optimal TB* algorithm is illustrated in Figure 5, where the 
minimum response time for job Ja is equal to 5 units of time (obtained by assigning 
the job a deadline da = 7). 

As for all the efficient solutions, the better performance is achieved at the price 
of a larger runtime overhead (due to the complexity of computing the minimum 
deadline). However, adopting a variant of the algorithm, called the Tunable 
Bandwidth Server [5], overhead cost and performance can be balanced in order to 
select the best service method for a given real-time system. An overview of the most 
common aperidic service algorithms (both under fixed and dynamic priorities) can be 
found in [4]. 
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Fig. 5. Optimal aperiodic service under EDF 

10 



4. Protocols for accessing shared resources 

When two or more tasks interact through shared resources (e.g., shared memory 
buffers), the direct use of classical synchronization mechanisms, such as semaphores 
or monitors, can cause a phenomenon known as priority inversion: a high priority 
task can be blocked by a low priority task for an unbounded interval of time. Such a 
blocking condition can create serious problems in safety critical real-time systems, 
since it can cause deadlines to be missed. 

For example, consider three tasks, τ1, τ2 and τ3, having decreasing priority (τ1 is 
the task with highest priority), and assume that τ1 and τ3 share a data structure 
protected by a binary semaphore S. As shown in Figure 6, suppose that at time t1 task 
τ3 enters its critical section, holding semaphore S. During the execution of τ3, at time 
t2, assume τ1 becomes ready and preempts τ3. 

 

normal execution

∆

τ 1

τ 2

τ 3
t1 t2 t3 t4 t5 t6 t7t0  

critical section

 

Fig. 6. Example of priority inversion 

 
At time t3, when τ1 tries to access the shared resource, it is blocked on semaphore S, 
since the resource is used by τ3. Since τ1 is the highest priority task, we would expect 
it to be blocked for an interval no longer than the time needed by τ3 to complete its 
critical section. Unfortunately, however, the maximum blocking time for τ1 can 
become much larger. In fact, task τ3, while holding the resource, can be preempted by 
medium priority tasks (like τ2), which will prolong the blocking interval of τ1 for 
their entire execution! 

The situation illustrated in Figure 6 can be avoided by simply preventing 
preemption inside critical sections. This solution, however, is appropriate only for 
very short critical sections, because it could cause unnecessary delays for high 
priority tasks. For example, a low priority task inside a long critical section would 
prevent the execution of a high priority task, even though they do not share any 
resource. 

A more efficient solution is to regulate the access to shared resource through the 
use of specific concurrency control protocols, designed to limit the priority inversion 
phenomenon. 
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4.1 Priority Inheritance Protocol 

An elegant solution to the priority inversion phenomenon caused by mutual exclusion 
is offered by the Priority Inheritance Protocol (PIP) [19]. Here, the problem is 
solved by dynamically modifying the priorities of tasks that cause a blocking 
condition. In particular, when a task τa blocks on a shared resource, it transmits its 
priority to the task τb that is holding the resource. In this way, τb will execute its 
critical section with the priority of task τa. In general, τb inherits the highest priority 
among the tasks it blocks. Moreover, priority inheritance is transitive, thus if task τc 
blocks τb, which in turn blocks τa, then τc will inherit the priority of τa through τb. 

 
Figure 7 illustrates how the schedule shown in Figure 6 is changed when 

resources are accessed using the Priority Inheritance Protocol. Until time t3 the 
system evolution is the same as the one shown in Figure 6. At time t3, the high 
priority task τ1 blocks after attempting to enter the resource held by τ3 (direct 
blocking). In this case, however, the protocol imposes that τ3 inherits the maximum 
priority among the tasks blocked on that resource, thus it continues the execution of 
its critical section at the priority of τ1. Under these conditions, at time t4, task τ2 is not 
able to preempt τ3, hence it blocks until the resource is released (push-through 
blocking). 

 
In other words, although τ2 has a nominal priority greater than τ3, it cannot 

execute, because τ3 inherited the priority of τ1. At time t5, τ3 exits its critical section, 
releases the semaphore and recovers its nominal priority. As a consequence, τ1 can 
proceed until its completion, which occurs at time t6. Only then τ2 can start executing. 

 
 
 

normal execution

τ 1

τ 2

τ 3
t1 t2 t3 t4 t5 t6 t7t0

direct blocking

push-through blocking

 

critical section

 

Fig. 7. Schedule produced using Priority Inheritance on the task set of Figure 6 
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The Priority Inheritance Protocol has the following property [19]: 

 
Given a task τ, if n is the number of tasks with lower priority sharing 
a resource with a task with priority higher or equal to τ and m is the 
number of semaphores that could block τ, then τ can be blocked for at 
most the duration of min(n,m) critical sections. 

 
Although the Priority Inheritance Protocol limits the priority inversion phenomenon, 
the maximum blocking time for high priority tasks can still be significant, due to 
possible chained blocking conditions. Moreover, deadlock can occur if semaphores 
are not properly used in nested critical sections. 

4.2 Priority Ceiling Protocol 

The Priority Ceiling Protocol (PCP) [19] provides a better solution for the priority 
inversion phenomenon, also avoiding chained blocking and deadlock conditions. 

The basic idea behind this protocol is to ensure that, whenever a task τ enters a 
critical section, its priority is the highest among those that can be inherited from all 
the lower priority tasks that are currently suspended in a critical section. If this 
condition is not satisfied, τ is blocked and the task that is blocking τ inherits τ’s 
priority. 

This idea is implemented by assigning each semaphore a priority ceiling equal to 
the highest priority of the tasks using that semaphore. Then, a task τ is allowed to 
enter a critical section only if its priority is strictly greater than all priority ceilings of 
the semaphores held by the other tasks. As for the Priority Inheritance Protocol, the 
inheritance mechanism is transitive. 

The Priority Ceiling Protocol, besides avoiding chained blocking and deadlocks, 
has the property that each task can be blocked for at most the duration of a single 
critical section. 

4.3 Schedulability Analysis 

The importance of the protocols for accessing shared resources in a real-time system 
derives from the fact that they can bound the maximum blocking time experienced by 
a task. This is essential for analyzing the schedulability of a set of real-time tasks 
interacting through shared buffers or any other non-preemptable resource, e.g., a 
communication port or bus. 

To verify the schedulability of task τi using the processor utilization approach, 
we need to consider the utilization factor of task τi, the interference caused by the 
higher priority tasks and the blocking time caused by lower priority tasks. If Bi is the 
maximum blocking time that can be experienced by task τi, then the sum of the 
utilization factors due to these three causes cannot exceed the least upper bound of 
the scheduling algorithm, that is: 
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where hp(i) denotes the set of tasks with priority higher than τi. The same test is valid 
for both the protocols described above, the only difference being the amount of 
blocking that each task may experience. 

5. New applications and trends 

In the last years, real-time system technology has been applied to several application 
domains, where computational activities have less stringent timing constraints and 
occasional deadline misses are typically tolerated. Examples of such systems include 
monitoring, multimedia systems, flight simulators and, in general, virtual reality 
games. In such applications, missing a deadline does not cause catastrophic effects on 
the system, but just a performance degradation. Hence, instead of requiring an 
absolute guarantee for the feasibility of the schedule, such systems demand an 
acceptable Quality of Service (QoS). It is worth observing that, since some timing 
constraints need to be handled anyway (although not critical), a non real-time 
operating system, such a Linux or Windows, is not appropriate: First of all, such 
systems do not provide temporal isolation among tasks, thus a sporadic peak load on 
a task may negatively affect the execution of other tasks in the system. Furthermore, 
the lack of concurrency control mechanisms which prevent priority inversion makes 
these systems unsuitable for guaranteeing a desired QoS level. 

On the other hand, a hard real-time approach is also not well suited for 
supporting such applications, because resources would be wasted due to static 
allocation mechanisms and pessimistic design assumptions. Moreover, in many 
multimedia applications, tasks are characterized by highly variable execution times 
(consider, for instance, an mpeg player), thus providing precise estimations on task 
computation times is practically impossible, unless one uses overly pessimistic 
figures. 

In order to provide efficient as well as predictable support for this type of real-
time applications, several new approaches and scheduling methodologies have been 
proposed. They increase the flexibility and the adaptability of a system to on-line 
variations. For example, temporal protection mechanisms have been proposed to 
isolate task overruns and reduce reciprocal task interference [1][26]. Statistical 
analysis techniques have been introduced to provide a probabilistic guarantee aimed 
at improving system efficiency [1]. 

Other techniques have been devised to handle transient and permanent overload 
conditions in a controlled fashion, thus increasing the average computational load in 
the system. One method absorbs the overload by regularly aborting some jobs of a 
periodic task, without exceeding a maximum limit specified by the user through a 
QoS parameter describing the minimum number of jobs between two consecutive 
abortions [7][12]. Another technique handles overloads through a suitable variation 
of periods, managed to decreased the processor utilization up to a desired level [6]. 
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6. Conclusions 

This paper surveyed some kernel methodologies aimed at enhancing the efficiency 
and the predictability of real-time control applications. In particular, the paper 
presented some scheduling algorithms and analysis techniques for periodic and 
aperiodic task sets. Two concurrency control protocols have been described to access 
shared resources in mutual exclusion while avoiding the priority inversion 
phenomenon. Each technique has the property to be analyzable, so that an off-line 
guarantee can be provided for feasibility of the schedule within the timing constraints 
imposed by the application. 

For soft real-time systems, such as multimedia systems or simulators, the hard 
real-time approach can be too rigid and inefficient, especially when the application 
tasks have highly variable computation times. In these cases, novel methodologies 
have been introduced to improve average resource exploitation. They are also able to 
guarantee a desired QoS level and control performance degradation during overload 
conditions. 

In addition to research efforts aimed at providing solutions to more complex 
problems, a concrete increase in the reliability of future real-time systems can only be 
achieved if the mature methodologies are actually integrated in next generation 
operating systems and languages, defining new standards for the development of 
real-time applications. At the same time, programmers and software engineers need 
to be educated to the appropriate use of the available technologies. 

References 

1. Abeni, L., and G. Buttazzo: “Integrating Multimedia Applications in Hard Real-
Time Systems”, Proceedings of the IEEE Real-Time Systems Symposium, 
Madrid, Spain, December 1998. 

2. Audsley, N. C., A. Burns, M. Richardson, and A. Wellings: “Hard Real-Time 
Scheduling: The Deadline Monotonic Approach”, IEEE Workshop on Real-
Time Operating Systems, 1992. 

3. Baruah, S. K., R. R. Howell, and L. E. Rosier: “Algorithms and Complexity 
Concerning the Preemptive Scheduling of Periodic Real-Time Tasks on One 
Processor,” Real-Time Systems, 2, 1990. 

4. Buttazzo, G. C.: HARD REAL-TIME COMPUTING SYSTEMS: Predictable 
Scheduling Algorithms and Applications, Kluwer Academic Publishers, Boston, 
1997. 

5. Buttazzo, G. C. and F. Sensini: “Optimal Deadline Assignment for Scheduling 
Soft Aperiodic Tasks in Hard Real-Time Environments”, 3rd IEEE 
International Conference on Engineering of Complex Computer Systems 
(ICECCS), Como, Italy, September 1997. 

15 



6. Buttazzo, G. C., G. Lipari, and L. Abeni: “Elastic Task Model for Adaptive Rate 
Control”, Proceedings of the IEEE Real-Time Systems Symposium, Madrid, 
Spain, December 1998. 

7. Buttazzo, G. C., and M. Caccamo: “Minimizing Aperiodic Response Times in a 
Firm Real-Time Environment”, IEEE Transactions on Software Engineering, 
Vol. 25, No. 1, pp. 22-32, January/February 1999. 

8. Dertouzos, M. L.: “Control Robotics: the Procedural Control of Physical 
Processes”, Information Processing 74, North-Holland Publishing Company, 
1974. 

9. Ghazalie, T. M. and T. P. Baker: “Aperiodic Servers In A Deadline Scheduling 
Environment”. The Journal of Real-Time Systems, 1995. 

10. M. Joseph and P. Pandya, “Finding Response Times in a Real-Time System,” 
The Computer Journal, 29(5), pp. 390-395, 1986. 

11. Klein, M.H., et al.: A Practitioners’ Handbook for Real-Time Analysis: Guide to 
Rate Monotonic Analysis for Real-Time Systems. Boston, MA: Kluwer 
Academic Publishers, 1993. 

12. Koren, G., and D. Shasha: “Skip-Over: Algorithms and Complexity for 
Overloaded Systems that Allow Skips”, IEEE Real-Time System Symposium, 
December 1995. 

13. Lehoczky, J. P., L. Sha, and J. K. Strosnider: “Enhanced Aperiodic 
Responsiveness in Hard Real-Time Environments”, IEEE Real-Time Systems 
Symposium, pp. 261-270, San Jose, CA, December 1987. 

14. Lehoczky, J. P., L. Sha, and Y. Ding: “The Rate-Monotonic Scheduling 
Algorithm: Exact Characterization and Average Case Behaviour”, IEEE Real-
Time Systems Symposium, pp. 166-171, 1989. 

15. Lehoczky, J. P., and S. Ramos-Thuel: “An Optimal Algorithm for Scheduling 
Soft-Aperiodic Tasks in Fixed-Priority Preemptive Systems”, IEEE Real-Time 
Systems Symposium, 1992. 

16. Leung, J., and J. Whitehead: “On the Complexity of Fixed Priority Scheduling 
of Periodic Real-Time Tasks”, Performance Evaluation, 2(4), pp. 237-250, 
1982. 

17. Liu, C. L., and J. W. Layland: “Scheduling Algoritms for Multiprogramming in 
a Hard-Real-Time Environment”, Journal of ACM, Vol. 20, No. 1, January 
1973. 

18. Rajkumar, R.: Synchronous Programming of Reactive Systems, Kluwer 
Academic Publishing, 1991. 

16 



19. Sha, L., R. Rajkumar, and J. P. Lehoczky: “Priority Inheritance Protocols: An 
Approach to Real-Time Synchronization”, IEEE Transactions on Computers, 
Vol. 39, No. 9, September 1990. 

20. Sprunt, B., L. Sha, and J. Lehoczky: “Aperiodic Task Scheduling for Hard Real-
Time System”, Journal of Real-Time Systems, 1, pp. 27-60, June 1989. 

21. Spuri, M., and G. C. Buttazzo: “Efficient Aperiodic Service under Earliest 
Deadline Scheduling”, 15th IEEE Real-Time Systems Symposium, San Juan, 
Puerto Rico, 1994. 

22. Spuri, M., and G. C. Buttazzo: “Scheduling Aperiodic Tasks in Dynamic 
Priority Systems”, Journal of Real-Time Systems, Vol. 10, No. 2, pp. 1-32, 
1996. 

23. Stankovic, J., and K. Ramamritham: Tutorial on Hard Real-Time Systems, IEEE 
Computer Society Press, 1988. 

24. Stankovic, J.: “A Serious Problem for Next-Generation Systems”, IEEE 
Computer, pp. 10-19, October 1988. 

25. Stankovic, J., M. Spuri, M. Di Natale, G. Buttazzo: “Implications of Classical 
Scheduling Results for Real-Time Systems”, IEEE Computer, Vol. 28, No. 6, 
pp. 16-25, June 1995. 

26. Stoica, I., H-Abdel-Wahab, K. Jeffay, S. Baruah, J.E. Gehrke, and G. C. 
Plaxton: “A Proportional Share Resource Allocation Algorithm for Real-Time 
Timeshared Systems”, IEEE Real-Time Systems Symposium, Dec. 1996 

27. Strosnider, J. K., J. P. Lehoczky and L. Sha: “The Deferrable Server Algorithm 
for Enhanced Aperiodic Responsiveness in Hard Real-Time Environments”, 
IEEE Transactions on Computers, Vol. 44, No. 1, pp. 73-91, January 1995. 

17 


