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Abstract
This paper presents a general framework for analyzing

and designing embedded systems with energy and timing
requirements. A set of realistic assumptions is considered
in the model in order to apply the results in practical real-
time applications. For example, the processor is assumed
to have as a set of discrete operating modes, each charac-
terized by speed, power consumption. The transition delay
between modes is considered. To take I/O operations into
account, task computation times are modeled with a part
that scales with the speed and a part having a fixed dura-
tion. Given a set of real-time tasks, the proposed method
allows to compute the optimal sequence of voltage/speed
changes that approximates the minimum continuous speed
which guarantees the feasibility of the system. The analysis
is performed both under fixed and dynamic priority assign-
ments.

1. Introduction
The number of embedded systems operated by batteries

is increasing in different application domains. In these sys-
tems, reducing the energy consumption is of primary impor-
tance to prolong their lifetime. For this reason, a new gener-
ation of processors [13, 21, 30, 12] allow the application to
dynamically vary the voltage and the operating frequency to
balance computational speed versus energy consumption.

At the operating system level, suitable scheduling poli-
cies have been proposed in the literature to exploit voltage
variable processors. Such policies are referred to as Dy-
namic Voltage Scheduling (DVS), because the scheduler, in
addition to selecting the executing task, has also to select
the operating voltage and frequency.

We distinguish between static and dynamic DVS. Static
techniques use off-line parameters, such as periods (or min-
imum interarrival times) and worst-case execution cycles
(WCECs), to select the appropriate voltage/speed operat-
ing mode to be used. Dynamic techniques (based on slack
reclamation) take advantage of early completions of tasks
to further reduce the speed and save more energy [3, 27].

Static DVS can be further divided in two classes. In
the first class, a single optimal speed is computed off-line
and never changed. Pillai and Shin [22] derived the mini-

mal speed that can make a task set schedulable under EDF,
and proposed a near-optimal method under RM. Saewong
and Rajkumar provided an algorithm to find the optimal
speed value for fixed priority assignments [26], assuming
that the speed of the processor can be varied continuously
in a given range. In practice, however, processors provide a
finite number of discrete speeds. If the optimal speed is not
available on a processor, it has to be approximated with the
closest available discrete level higher than the optimal one.
This solution, however, may cause a waste of computational
capacity and, consequently, of energy, especially when the
number of available speeds is small. For this reason, Ishi-
hara and Yasuura [14] modeled processors with a limited
number of operating frequencies. However they did not
consider speed switching overhead and task preemptions.

In a second class of static DVS methods, the processor
speed is not fixed but statically decided before system ex-
ecution based on the task parameters. Some of these meth-
ods propose to assign a different speed to each task [3, 26].
Some others adopt a more general scheme, where the speed
switching instants are more freely chosen and, typically, oc-
cur at the activation/deadline of some job [31, 19]. The
energy saved by these methods is higher because the pro-
cessor speed can be tightly shaped in order to provide the
minimum number of cycles needed in every interval.

A major drawback of this approach, which prevents its
use in real-world applications, derives from the tight rela-
tionship established between the schedule and the power
management scheme. If, for some reason, some task ac-
tivation is lost or delayed, the entire speed assignment is
affected, resulting in a potential domino effect on the other
tasks in the system, which could miss their deadlines. In this
sense, such a speed assignment scheme is fragile because it
is affected by the misbehavior of a task. Running always
at a fixed speed is a more robust design practice, because it
avoids this potential problem.

Another weakness of many energy-aware algorithms
proposed in the literature is due to the set of assumptions,
often not realistic, which are made to simplify the solution.
Besides considering continuous voltage scaling, most meth-
ods neglect the delay due to a voltage transition. In some
approaches [15, 20] such a delay is considered in the pro-
cessor model, but the methods have been developed only for
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dynamic techniques aimed at reducing the slack time.
Another simplifying hypothesis usually made for reduc-

ing the complexity of the schedulability analysis is to con-
sider tasks with relative deadlines equal to periods [22], so
that task set feasibility can be checked using the simple
Liu and Layland utilization bound [18], both under RM and
EDF scheduling. Notice that, under fixed priority schedul-
ing, the use of the utilization bound is even more restrictive,
because the Liu and Layland schedulability test is only suf-
ficient, leaving many feasible task sets out of consideration,
thus preventing optimal solutions.

1.1. Contributions of the paper

In this paper, we present a general framework for analyz-
ing and designing embedded systems with energy and tim-
ing requirements. The proposed approach allows minimiz-
ing energy consumption while guaranteeing task deadlines.
Our method can be classified as a static DVS algorithm, in
that it is able to compute off line the optimal sequence of
voltage/speed changes that minimize energy consumption
while guaranteeing the absence of deadline misses. In addi-
tion, a major contribution of this work is to consider more
realistic assumptions in the model, which allow the method
to be used in practical applications. In particular, the pro-
posed method presents the following characteristics:

• The algorithm applies to a set of periodic (or sporadic)
tasks, where deadlines are allowed to be less than or
equal to periods (or minimum interarrival times).

• The algorithm is independent of the task schedule, so
it is robust against potential domino effects due to the
misbehavior of one or more tasks.

• It does not assume a continuous range of available
speeds in the processor, but a set of discrete operating
modes, each characterized by speed, power consump-
tion, and transition delay.

• A more accurate task model, introduced by Seth et
al. [28], is considered in the analysis to take into ac-
count the effects of modern processors with variable
speed. According to this model, task computation
times consist of a part that scales with the speed and
a part having a fixed duration (typically due to the in-
structions accessing the external bus).

• The analysis is presented both for fixed and dynamic
priority systems, and it is easily extendible to any other
scheduling policy.

• The minimal energy solution within the proposed
scheme is found, since the algorithm is based on ex-
act schedulability analysis.

• The proposed method provides a general framework to
describe the schedulability domain, thus enabling the
user to select the appropriate design parameters based
on a given cost function.

2. System model
We consider a set of n periodic or sporadic tasks that

have to be scheduled on a single processor with voltage
control capabilities. A task τi is a sequence of jobs τi,k

(k = 1, 2, . . .), each characterized by a number Ci of worst-
case execution cycles (WCECs), a minimum interarrival
time Ti (often referred to as the task period), and a relative
deadline Di ≤ Ti. Tasks are fully preemptive and do not
perform blocking operations. Note that intertask commu-
nication can still be performed using non-blocking mecha-
nisms, as Cyclic Asynchronous Buffers [7].

As observed by Seth et al. [28], not all execution cy-
cles scale with the processor speed, because some opera-
tions deal with memory or other I/O devices, whose access
time is fixed. The typical example is provided by a memory
read: if the data to be read is present in the cache, then the
instruction runs at the speed of the processor and so it scales
with it. On the other hand, if a cache miss occurs the data
is read from the bus. In this case, the duration of the opera-
tion is imposed by the bus clock that does not scale with the
processor speed.

To take this into account, the number Ci of worst-case
execution cycles required by a task is split in two portions:
ci (processor cycles) scales with the clock frequency and
mi (seconds) does not. Thus we have [28]:

Ci = ci + α mi (1)

where α is the speed in cycles per second (cyc/sec).

2.1. Modeling the processor

In CMOS circuits, the power consumption due to dy-
namic switching dominates the power lost by leakage cur-
rents, and the dynamic portion of power consumption is
modelled by well known polynomial relationships [8, 11].
However, as the integration technology advances, it is ex-
pected that the leakage will significantly affect, if not dom-
inate, the overall energy consumption in integrated circuits
(ICs) [10, 25]. Very recently, some work addressed the is-
sue of scheduling a real-time application while reducing the
leakage power as well [24]. Also, an important fraction of
the consumed energy depends on the memory. It has been
shown [23] that at low frequencies the energy consumption
is dominated by the memory. At high frequencies the pro-
cessor core dominates the power consumption.

All these remarks have led us to formulate a model for
the processor energy consumption, which generalizes all
the former works. Throughout the paper we assume that
a power-aware processor is characterized by a set M =
{Λ1, Λ2, . . . , Λp} of p operating modes, where each mode
Λk = (αk, pk) is described by two parameters: αk is the
processor speed in mode k and it is measured as number of
cycles per second (cyc/sec); pk is the power consumed in
mode k, measured in Watts.

In a recent work, AbouGhazaleh et al. [1] proposed a
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detailed model for the speed switching overhead, consider-
ing software causes, due to the new speed computation, and
hardware causes, due to power management circuits.

Following their scheme, in this paper, the overhead is
taken into account through a matrix of overheads O, where
each element oi,j , i �= j, is the time overhead required to
switch from the operating mode Λi to Λj . Moreover, we as-
sume that the power consumption during the transition from
Λi and Λj is pj . Note that, assuming a more detailed model
(such as considering the additional power for the DC-DC
regulator) is possible and it does not affect the schedulabil-
ity analysis, nor the validity of the presented results.

To handle the complexity of our system model we
make use of some recent results in the field of hierarchi-
cal scheduling [2, 9, 17, 29]. The advantage of using such
an approach is that the mechanism managing the processor
speed may be seen as a server providing processor cycles
to the requesting application. In this way, the speed man-
agement can be decoupled from the application events, thus
achieving a higher degree of robustness. Using this notion,
the problem is split in two separate subproblems: (1) the
characterization of the number of cycles demanded by the
application and (2) the characterization of the number of
cycles provided by the server mechanism.

3. Application demand analysis

In this section we present a model for expressing the
computational demand of the application to the processing
unit. We consider two major scheduling strategies: Earliest
Deadline First (EDF) and Fixed Priority (FP) scheduling.

3.1. EDF analysis

The feasibility of a periodic task set under EDF can
be analyzed through the Processor Demand Criterion, pro-
posed by Baruah, Howell and Rosier [4], according to
which a set of periodic tasks simultaneously activated at
time zero can be feasibly scheduled by EDF if and only if:

∀t ∈ dSet

n∑
i=1

jobsi(t)Ci ≤ t (2)

where jobsi(t) is the number of jobs of task τi having arrival
time and deadline in the interval [0, t] and dSet is the set of
all time instants where the test has to be performed.

It has been proved that, given a value of α, the set dSet

can be effectively computed and it is the set of deadlines
within the first busy period [4]. Unfortunately, the length of
the busy period depends on α, as well. Hence we assume
dSet to be equal to the entire set of all deadlines before the
hyperperiod. It is still an open question whether the set of
points in dSet can be tightly reduced. However the validity
of the presented results is not affected by this improvement.

If the processor runs at a constant fraction α of the nomi-
nal speed (α ≤ 1), only αt cycles are available in [0, t] and,

considering the execution model given in equation (1), the
schedulability condition becomes:

∀t ∈ dSet

n∑
i=1

jobsi(t) (ci + α mi) ≤ α t. (3)

We can derive the condition that α has to satisfy in order
to guarantee the schedulability of the task set:

∀t ∈ dSet α ≥

∑n

i=1 jobsi(t) ci

t −
∑n

i=1 jobsi(t)mi

. (4)

Then, the minimum speed αopt that ensures feasibility is

αopt = max
t∈dSet

∑n

i=1 jobsi(t) ci

t −
∑n

i=1 jobsi(t)mi

. (5)

When relative deadlines are equal to periods, it is known
that the maximum occurs when t is equal to the hyperperiod
H = lcm(T1 T2, . . . , Tn), thus we have that:

αopt =

∑n

i=1 ci/Ti

1 −
∑n

i=1 mi/Ti

(6)

which is equivalent to the result provided in [28].

3.2. FP analysis

When using a fixed priority assignment, the necessary
and sufficient feasibility condition is:

∀i = 1, . . . , n ∃t ∈ tSeti Ci +
i−1∑
j=1

⌈
t

Tj

⌉
Cj ≤ t

where tSeti is the set of schedulability points [16, 6] relative
to task τi, where the test has to be performed.

Considering a processor running at speed α and using the
more complete model for the task computation times [28],
we have

ci + α mi +

i−1∑
j=1

⌈
t

Tj

⌉
(cj + α mj) ≤ α t.

Hence, the optimal speed αopt is given by:

αopt = max
i=1,...,n

min
t∈tSeti

ci +
∑i−1

j=1

⌈
t

Tj

⌉
cj

t − mi −
∑i−1

j=1

⌈
t

Tj

⌉
mj

, (7)

which provides the minimum speed the processor can run
to feasibly schedule the task set with fixed priorities.

4. Power management
Once the application demand has been characterized

and the ideal speed αopt computed, different techniques
can be adopted to minimize the power consumption. In
the unlikely case of availability of an operating mode Λk

running exactly at the desired speed αopt, we simply se-
lect it. Otherwise we have to properly manage the pro-
cessor operating modes to minimize the energy consump-
tion. To characterize the effects of the management scheme
onto the application, we will follow the demand/supply ap-
proach [2, 9, 17, 29]. This framework has been successfully
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proposed to model a hierarchical scheduler for an applica-
tion that uses a fraction of the computational resource. The
key idea is that the time demanded by the application must
never be greater than the time supplied.

Following this approach the number of cycles supplied
by the processor is modeled using a function Z(t), defined
as the minimum number of cycles the processor can provide
in every interval of length t. More formally, if α(t) denotes
the processor speed at time t, Z(t) can be defined as

Z(t) = min
t0

∫ t0+t

t0

α(x) dx. (8)

We now consider the problem of expressing the proper
supply function Z(t) when a specific speed handling policy
is adopted for the processor.

If we fix the operating mode Λk such that αk ≥ αopt and
pk is minimum, then the switching overhead is not consid-
ered, because the speed is never changed. In this case the
supply function Z(t) is simply given by

Z(t) = αk t. (9)

Note that this is the most used method among the static ap-
proaches. However, if the gap between the selected speed
αk and the optimal one αopt is too high and the power con-
sumption is a critical design parameter, it is better to adopt
a different approach.

As suggested by Ishihara et al. [14], we propose to
switch between two operating modes, ΛL and ΛH , such
that αL < αopt < αH . Such a switching scheme will be re-
ferred to as the PWM-mode, for the similarity with the pulse
width modulation technique used to drive DC servomotors.
When using a PWM-mode, however, the speed switching
overhead has to be considered. An example of the speed
alternation scheme is illustrated in Figure 1.

oL,HoH,LQH QL

αH

αL

αopt

α(t)

t

Figure 1. An example of PWM-mode.

The effective speed αeff achieved by the processor stay-
ing for QL in mode ΛL and QH in mode ΛH can be com-
puted as follows:

αeff =
αH QH + αL QL

QH + QL

−
αH oL,H + αL oH,L

QH + QL

. (10)

Notice that the overheads oH,L, oL,H are included within
the length of QL, QH respectively.

In Equation (10) we can clearly notice the ideal term and
the loss due to the switching overhead. Notice that, the pres-
ence of the overhead does not allow QL and QH to be arbi-

trarily small, hence we need to specifically impose αeff to be
greater than αL (it would not make sense to use this scheme
if the effective speed is less than αL). Thus, imposing the
condition αeff > αL we find that

QH >
αH oL,H + αL oH,L

αH − αL

.

In addition, QL and QH need to be greater than oH,L and
oL,H , otherwise no useful processor cycles are available for
the task set. The power consumed in the PWM-mode can
also be expressed as a function of QL and QH as1:

peff =
pH QH + pL QL

QH + QL

(11)

which is less than pH , the power that would be consumed if
the processor were continuously running in mode ΛH , since
QL > 0 and QH > 0. The power saving of the PWM-mode
can be explicitly computed as follows:

psave = pH − peff =
1

1 + QH/QL

(pH − pL). (12)

Equation (12) shows that the power saving increases as the
ratio QH/QL decreases.

4.1. Selecting ΛL and ΛH

In this section we show how to select the two modes
to reduce power consumption. Due to the convexity of
the power-speed relationship [25], the speed pair (αL, αH)
which minimizes the power consumption in the PWM-
mode is given by the two speeds closest to αopt. However
the power-speed relationship may be different than the ideal
polynomial function [25] and there may be modes with the
same speed, but different power consumption (due to differ-
ent voltage). Also the presence of switching overhead alters
the ideal speeds because some processor cycles are wasted
during the speed transition time.

A convenient way to illustrate how to derive the mode
pair (ΛL, ΛH) which minimizes the power consumption
is to represent the operating modes of the processor in a
power/speed graph.

A qualitative example is shown in Figure 2, where the
black dots represent the operating modes and the dashed
lines contain all the possible pairs (αeff, peff) achievable by
varying QL and QH , which can reproduce the speed αopt.
For the moment the influence of the overheads is not shown
in the figure.

Among the possible pairs, the one which provides the de-
sired speed αopt and, at the same time, minimizes the power
consumption can be obtained by the lowest intersection be-
tween the dashed lines (representing the mode pairs) and the
vertical line at speed αopt. It is worth noticing that, due to
the convexity of the power/speed relationship, the optimal
pair (ΛL, ΛH) is always given by the two points closest to
αopt [14]. We now show how to consider the overhead due

1Remember we are assuming that the power consumed in mode Λk is
equal to pk for the entire duration of Qk .
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pk

αk

αL αHαopt

ideal power/speed curve

peff

Figure 2. The operating modes in the
power/speed space.

to speed switching.
If we set f = 1

QL+QH
as the frequency of the PWM-

mode scheme, and λL = QLf as the portion of the period
1/f running at mode ΛL, Equation (10) can be rewritten as
follows:

αeff = λLαL + (1 − λL)αH − (oH,LαL + oL,HαH)f

αeff = λL(αL − ∆L,Hf) + (1 − λL)(αH − ∆L,Hf)
(13)

where ∆L,H = oH,LαL + oL,HαH is the number of pro-
cessor cycles we lose because of the transition delay.

From Equation (13) the effect of the overhead is high-
lighted: the introduction of the overhead oH,L, oL,H

in the PWM-mode (ΛL, ΛH) is equivalent to left-
translating the dashed lines in the power/speed space by
an amount equal to ∆L,Hf . Since the optimal choice of
the two modes depends on the frequency f , it may happen
that a particular pair is only optimal for some range of fre-
quency f .

The optimal pair (ΛL, ΛH) for a given frequency f can
be found using a simple polynomial algorithm implemented
by means of a Matlab code prototype [5]. From now on we
assume the two operating modes (ΛL, ΛH) are fixed. Note
that due to the presence of the overheads, mode ΛL and ΛH

may not be adjacent.

4.2. Processor supply function

This section describes how to derive the processor sup-
ply function Z(t) when the CPU operates according to the
PWM-mode illustrated in Figure 1. Since α(t) has period-
icity P = QL + QH , we can restrict the study of Z(t) in
the interval [0, P ), in fact:

Z(t) = Z(t − kP ) + k αeffP (14)

so that the Z(t) only needs to be defined in [0, P ).
Due to the speed switching overhead, the longest

time where no processor cycles are available is omax =
max{oL,H , oH,L}. For this reason Z(t) = 0 for t ∈
[0, omax). Then, for t ≥ omax some cycles are available. In

the worst case, the available cycles increase with the speed
of αL. This amount of processor cycles is provided for
QL − oH,L. Then the second (shorter) switching overhead
occurs. Finally, in the last part of the period P , the cycles
are provided at the maximum speed αH . The resulting pro-
file of Z(t) in the interval [0, P ) is the following:

Z(t)=




0 t ∈ [0, omax)
αL(t − omax) t ∈ [omax, omax + QL − oH,L)
αL(QL−oH,L) t ∈ [omax+QL−oH,L, QL+oL,H)
αH(t − P ) + αeffP t ∈ [QL + oL,H , P )

(15)
where:

P = QL + QH

αeff =
αL(QL − oH,L) + αH(QH − oL,H)

QL + QH

omax = max{oH,L, oH,L}

The supply function Z(t) for the PWM-mode is also il-
lustrated in Figure 3.

Z(t) − k αeffP

t − kP

ominomax QL−oH,L QH−oL,H

αL(QL−oH,L)

αeffP

Figure 3. The supply function Z(t).

5. Computing the optimal QL and QH

In this section the results achieved in Sections 3
and 4 are merged to identify the schedulability region
in the (QL, QH) space, for determining the optimal pair
(Qopt

L , Qopt
H ) that guarantees the feasibility of the task set

while minimizing energy consumption.
We first notice that a necessary schedulability condition

for the task set is:
αeff ≥ αopt

meaning that the effective speed cannot be smaller than the
optimal speed required by the application, otherwise some
deadline will be missed. To derive the necessary and suf-
ficient schedulability region, however, we need to compute
the exact supply function Z(t) according to Equation (8).

When adopting the EDF scheduling algorithm, the exact
schedulability condition based on the demand bound func-
tion becomes:

∀t ∈ dSet Z(t) ≥

n∑
i=1

jobsi(t)Ci (16)

meaning that the demanded cycles must not exceed the pro-
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vided cycles, which are modeled by the function Z(t) of
Equation (15).

In a similar fashion, when tasks are scheduled by fixed
priorities, the exact schedulability condition is:

∀i = 1, . . . , n ∃t ∈ tSeti Z(t) ≥ Ci +

i−1∑
j=1

⌈
t

Tj

⌉
Cj .

Notice that in both scheduling algorithms the basic con-
dition that needs to be checked can be expressed in the form:

Z(t) ≥ W (17)

where the scheduling algorithm only affects the way in
which W is defined and the instants t where the inequal-
ity has to be verified to ensure schedulability.

We now proceed by computing the optimal pair
(Qopt

L , Qopt
H ) that minimizes energy consumption. To do that

we assume the two speeds αL and αH are fixed, as derived
by the procedure explained in Section 4.1. We first intro-
duce the notion of basic Q-domain:

Definition 1 The basic Q-domain Q(t, W ) is the set of
pairs (QL, QH) such that

Z(t) ≥ W, (18)

where Z(t) is the cycle supply function, which depends on
(QL, QH), of the related PWM scheme. Formally:

Q(t, W ) = {(QL, QH) : Z(t) ≥ W} (19)

Using the last definition, it follows from Equation (16)
that a task set scheduled by EDF will never miss a deadline
in a PWM scheme iff:

∀t ∈ dSet (QL, QH) ∈ Q

(
t,

n∑
i=1

jobsi(t)Ci

)

(QL, QH) ∈
⋂

t∈dSet

Q

(
t,

n∑
i=1

jobsi(t)Ci

)
. (20)

For the same reasoning, when fixed priorities are used,
the set of admissible (QL, QH) is:

(QL, QH) ∈
⋂

i=1,...,n

⋃
t∈tSeti

Q


t, Ci +

i−1∑
j=1

⌈
t

Tj

⌉
Cj


 .

(21)
We first focus our attention on finding the basic Q-

domain Q(t, W ) in general, so that Equations (20) and (21)
can be computed by combining them.

The analytical expression of the set is found by invert-
ing Equation (17), assuming Z(t) as in Equation (15), thus
expressing (QL, QH) as function of W , t, αL, oH,L, αH

and oL,H . First we set k =
⌊

t
P

⌋
. Using the property in

Equation (14), the condition of Equation (17) becomes:

Z(t − kP ) + k αeffP ≥ W (22)

As we can see from Equation (15), the possible values of
Z(t) are four and they need to be considered ad hoc. In the

first case, from the expansion of Equation (22), we have

k αeff P ≥ W

αLQL + αHQH ≥
W

k
+ ∆L,H . (23)

In the second case (i.e. when the slope of Z(t) is αL):

αL(t − kP − omax) + k αeffP ≥ W

QH ≥
W + k∆L,H − αL(t − omax)

k(αH − αL)
. (24)

When Z(t) is constant and equal to αL(QL − oH,L):

αL(QL − oH,L) + k αeffP ≥ W

(k + 1)αLQL + kαHQH ≥ W + αLoH,L + k∆L,H .
(25)

In the fourth and last case we have:

αH(t − (k + 1)P ) + (k + 1)αeffP ≥ W

QL ≤
αHt − (k + 1)∆L,H − W

(k + 1)(αH − αL)
. (26)

Thanks to Equations (23), (24), (25) and (26) the region
of all the feasible pairs (QL, QH) is constructed.

5.1. Example of applicability

In order to clarify the design strategy we propose two
examples of PWM-mode design.

The case of one task. Let us suppose we have only one
task whose data are:

• scalable computation time c1 = 240 · 103cyc;

• non-scalable computation time m1 = 400 µsec;

• period and deadline T1 = 9.6 msec.

From Equation (6) we find that:

αopt =
c1/T1

1 − m1/T1
= 26.087MHz. (27)

We suppose this speed is not available and the two clos-
est available operating modes are ΛL = (20MHz, 480mW),
ΛH = (40MHz, 810mW) and the overheads oH,L =
160µsec, oL,H = 240µsec. Since we do not know when
the non-scalable computation time occurs during task ex-
ecution (that is, when running at αL or at αH ), we must
maximize the worst-case execution cycles by setting

C1 = c1 + m1αH = 256 · 103cyc. (28)

However we remind that, as shown in [28], the impact of mi

vs. ci is minor, meaning that this overestimation is tight.
In order to schedule the task, the PWM-mode must sup-

ply at least C1 cycles in every interval T1. So it must be:

Z(T1) ≥ C1.

where the overhead is already included in Z(t). Notice that
this condition ensures the task schedulability in both the
scheduling algorithms (FP and EDF), because the two al-

Proceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS’05) 
0-7695-2400-1/05 $20.00 IEEE 



gorithms coincide when only one task is in the system. The
resulting set Q(T1, C1) is shown in Figure 4.
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Figure 4. Schedulability region in the Q-
Space.

For each value of k (remember that k = �t/P �) the do-
main boundary is composed by four segments, since Z(t) is
defined on four different intervals.

As expected, for small values of (QL, QH), the region
Q(T1, C1) approximates the ideal fluid allocation. How-
ever, a greater amount of power is saved for big values of
(QL, QH), as shown by the power savings level curves.
For this reason, the pair within the admissible region that
achieves the greatest power saving is at the vertex with
QL = 5.76 msec and QH = 3.84 msec.

Three tasks scheduled by FP. In the second more re-
alistic example (also available in [5]), we assume to
have a processor whose operating modes are listed in Ta-
ble 1. Tasks are scheduled by FP and their parameters
(ci[Kcycles], mi[µsec], Ti[msec]) are: τ1 = (10, 0, 2.2),
τ2 = (20, 100, 10) and τ3 = (20, 20, 35).

k 1 2 3 4 5 6 7 8 9
ak 0 0 2 5 10 20 40 50 80
pk 0 1 10 20 50 50 50 200 500

Table 1. An example of processor operating
modes.

Our goal is to find the pair of operating modes which
guarantees feasibility and minimizes the energy consump-
tion. By means of Equation (7) we compute the optimal
speed, which results to be αopt = 74.124 MHz. Applying
the rules explained in Section 4.1, we find that the two op-
erating modes to be alternated are Λ7 and Λ9. Note that due
to the parameters of the operating modes, Λ8 is not the best
choice for ΛL. For the selected pair the speed switching
overhead are o7,9 = 20 µsec and o9,7 = 0.2 msec.

Then we maximize the number of cycles required by the

non-scalable computation time mi assuming it runs at the
higher speed αH :

Ci = ci + mi αH (29)

and we obtain C1 = 100 000 cycles, C2 = 208 000 cycles

and C3 = 201 600 cycles.
For task τ1, the set of schedulability points tSet1 only

contains the deadline D1 = 2.2 msec. Hence the pairs
(QL, QH) that can feasibly schedule task τ1 are within
Q(D1, C1) = Q(2.2 · 10−3, 105), which is above the line
labeled by “τ1”, in Figure 5.

Task τ2 has two schedulability points at D2 = 10 msec

and
⌊

D2

T1

⌋
T1 = 8.8 msec. The region of the admissible

pairs (QL, QH), also plotted in Figure 5, is then given by
the union of the two basic Q-domains resulting from each
schedulability point. Similarly, the set of schedulability
points for τ3, in msec, is tSet3 = {35, 33, 30, 28.6} and
the region of admissible pairs is above the boundary labeled
by “τ3”.

In Figure 5, we plot the Q-domain of the admissible
pairs (QL, QH), as found from Equation (21). This final
region is the intersection of the three regions previously
found, because all the tasks must be schedulable. The thick
black dashed line is the final domain containing the admis-
sible pairs. As depicted in the plot, the pair that minimizes
the energy corresponds to the point QL = 1.2 msec and
QH = 8.8 msec. The power consumed at this working point
is 446 mW, as given by Equation (11), which is 10.8% less
than always running in the mode ΛH = Λ9.
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Figure 5. The Q-domain for Example 2.

6. Conclusions and future work

In this paper we presented a method for minimizing the
energy consumption in periodic/sporadic task systems ex-
ecuting in processors with a discrete number of operating
modes, each characterized by speed, power consumption,
and transition delay. The proposed approach allows the user
to compute the optimal sequence of voltage/speed changes
that minimize energy consumption while guaranteeing the
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feasibility of the schedule.
The analysis has been carried out under a set of realistic

assumptions and the increased complexity has been handled
through a hierarchical scheduling approach [2, 9, 17, 29],
which considers the processor speed manager as a server
providing processor cycles to the requesting application. By
means of this separation of concerns, the problem has been
divided into the analysis of the number of cycles demanded
by the application and the analysis of the number of cycles
provided by the processor.

This approach has the benefit of proposing a general
framework to describe the schedulability domain, applica-
ble under fixed as well as dynamic priority assignments,
thus enabling the user to select the appropriate design pa-
rameters based on a given cost function.

In the future we plan to combine our static analysis to dy-
namic algorithms, in order to combine the advantages of our
PWM-mode management with the greater amount of power
savings due to reclamation of unused processor cycles.
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