
Proceedings of the 17th IEEE International Conference on Emerging Technology and Factory Automation (ETFA 2012)

Energy-Aware Algorithms for Tasks and Bandwidth Co-Allocation under Real-Time

and Redundancy Constraints

Francesco Prosperi, Mario Bambagini, Giorgio Buttazzo, Mauro Marinoni, Gianluca Franchino

{name.surname}@sssup.it

Scuola Superiore Sant’Anna, Pisa, Italy

Abstract—The energy consumption in distributed systems
depends on several inter-related factors, including task parti-
tioning, process redundancy, fault tolerance, task and mes-
sage scheduling, and communication bandwidth allocation.
Although some of these issues have been considered in the
literature in isolation, a systematic approach considering all the
constraints is still missing. This paper addresses the problem
of allocating a task set and the required communication
bandwidth on a distributed embedded system, aiming at
reducing energy consumption while guaranteeing timing and
redundancy constraints. Two heuristic approaches are pro-
posed and compared against a complete method and simulated
annealing. Simulation results show the effectiveness of the
proposed approaches.

I. INTRODUCTION

Today, a large number of embedded systems consists of a

set of computing nodes interconnected via wired or wireless

networks. In such systems, both node responsiveness and

energy consumption are affected by the policies used to

allocate and schedule tasks on the various nodes, schedule

messages over the network, and manage the other available

resources, such as the I/O devices.

In several situations (e.g., wireless sensor networks) re-

dundancy is required to guarantee high quality and reliability

in events detection. In fact, sensor nodes are typically

affected by high failure rates, so that a certain level of

replication is required in the system to increase reliability

in the measurements. Another context where redundancy

issues are relevant is an assembly line consisting of many

robots in charge of performing and supervising the various

production stages, where each robot may include different

sensors, actuators and control units that need to exchange

data and signals. Since a fault may jeopardize the quality of

products, sensor redundancy would increase reliability and

allow earlier failure detection and avoidance. Another benefit

that comes from redundancy is the possibility of increasing

measurement accuracy, where multiple observations from

different nodes are integrated to produce more reliable

aggregated values, used to reduce statistical uncertainty in

the measurements.

While redundancy improves reliability and precision, it

increases energy consumption due to CPU utilization, net-

work communication, etc. The problem is complicated by

the fact that there are situations in which reducing the

energy consumption on a node may increase the energy

dissipated in other nodes, so shortening the lifetime of the

entire system. A way to address this issue is to consider

the problem of co-scheduling tasks and messages with the

objective of minimizing energy consumption while meeting

timing constraints.

Contributions: This paper addresses the problem of par-

titioning tasks and communication messages on a distributed

embedded system with the objective of guaranteeing timing

constraints while minimizing the overall energy consumption

and maximizing task duplication.

A trade-off between such two conflicting objectives is

explored, ensuring task real-time requirements and guar-

anteeing a minimum number of task copies and system

lifetime. Bandwidth and communication buffer constraints

are also taken into account. Two heuristic approaches are

presented and evaluated with respect to simulated annealing

and a complete method based on branch and bound search.

Organization of the paper: Section II presents the

system model, in terms of processing nodes, communication

bandwidth, power model, computational and communica-

tion workload. The problem statement is introduced in

Section III, including the specification of all the system

constraints and the performance metric used to evaluate the

goodness of an allocation. Section IV illustrates the proposed

approaches, whereas Section V reports the experimental re-

sults. Finally, Section VI ends the paper with the concluding

remarks.

A. Related work

Although a lot of research has been focused on scheduling

on networked/multicore embedded systems [5], little work

has been done to optimize allocation taking multiple objec-

tives into account, such as real-time constraints for tasks and

messages, energy consumption, and redundancy issues.

Kim et al. [11] considered the problem of mapping

multimedia applications onto a multi-processor system-on-

chip (MPSoC) and proposed a framework for design space

exploration based on heterogeneous scheduling policies and

DPM techniques. Schranzhofer et al. [19] addressed a similar

problem proposing a dynamic mapping strategy able to

minimize energy consumption to prolong the system lifetime

for heterogeneous processing units.

1

Aydin et al. [2] proposed several methods for reducing

the overall energy consumption exploiting frequency scaling

in partitioning-based systems where EDF is the scheduler

used for each node. More precisely, they modified and

compared several well-known heuristics to consider the

energy consumption into the performance metric.

Kandhalu et al. [8] proposed an approach for reducing

the energy dissipation in multi-core platforms with a single

voltage/frequency domain using a partitioned fixed-priority

scheduler. They showed that balancing the workload is

crucial as the core with the highest load is likely to impose

the common frequency.

Other partitioned approaches take into account precedence

dependencies among tasks [20], [15]. The major difficulty

in this problem is to take precedence relations into account

in the schedulability analysis. Buttazzo et al. [4] approached

this issue by assigning intermediate deadlines to tasks ac-

cording to the dependency graph, and then scheduling them

according to EDF. In this context, other authors [9], [18]

applied genetic algorithms to allocate tasks and generate

a static schedule using DVFS techniques to reduce energy

consumption. Huang et al. [7] addressed the problem of

allocating and scheduling dependent tasks on a set of hetero-

geneous cores also considering communication costs. Three

solutions were compared to solve the problem, one based

on Integer Linear Programming (ILP) and two based on

simulated annealing.

Concerning task redundancy, timing and precedence con-

straints, Ramamritham [17] proposed an approach that guar-

antees the allocation of a given number of subtask copies,

where each task is described by a precedence graph.

Auluck and Agrawal [1] proposed a method for allocating

and scheduling non-preemptive tasks on a heterogeneous

system to guarantee the execution of a real-time task set

in case of a processor fault. Once the task graph has

been allocated, the algorithm keeps allocating selected task

duplicates until all the processors are utilized.

Qin et al. [16] proposed a fault-tolerant algorithm to han-

dle a single processor failure in a fully connected network of

heterogeneous nodes running real-time dependent tasks. In

their model, failure conditions are supposed to be detected

after a fixed period.

Other researches focused on networked embedded sys-

tems. Xie et al. [21] considered a single-hop network com-

posed by heterogeneous devices without DVS capability and

provided a task allocation method aimed at reducing the

latency and the energy consumption of the system, taking

into account both computation and communication activities.

Kim et al. [10] proposed a method to dynamically assign

tasks in a single-hop wireless network of mobile nodes

with DVS mechanism, guaranteeing time constraints and a

minimum lifetime of eight hours. To this end, the authors

proposed and compared a set of dynamic mapping heuristics.

Xue et al. [22] considered a network-wide dynamic energy

management mechanism for a system composed by wireless

nodes with DVS capability, executing real-time tasks with

precedence constraints. The proposed method assigns tasks

and DVS levels to each node, taking into account both radio

sleep intervals and the application parallelism.

Grid computing systems with mobile nodes have been

considered by Chunlin and Layuan [13], who proposed

a method to guarantee both lifetime and time constraints

of grid applications. The authors modeled the problem as

a distributed energy constrained resources allocation, and

proposed a price-based algorithm to provide an optimal

solution.

None of the papers existing in the literature, however,

addressed all the constraints considered in this work, hence

they cannot be compared with the proposed approaches.

II. SYSTEM MODEL

This work considers a distributed system of m homoge-

neous nodes Ψ1, . . . ,Ψm logically connected as illustrated

in Figure 1. Each node performs sensory acquisition and

sends messages to a coordinator node (Ψ0), according to a

star topology, using a TDMA-based communication proto-

col that guarantees a bounded transmission delay. In each

TDMA time wheel, each node Ψi is assigned a bandwidth

slot of length wi. Note that, the coordinatorΨ0 is not subject

to the analysis carried out in this work, since it is assumed

to be always on and available to the nodes.

Since the system is intended as a network of nodes,

throughout the rest of the paper, the terms system and

network are used interchangeably.

...Ψ1 Ψ2 Ψ3 Ψm

w1 ,Γ1 w2 ,Γ2 w3 ,Γ3 wm ,Γm

Ψ0

Figure 1. A sample network with a node coordinator.

The system is assumed to run an application Γ consisting

of a set of n sporadic real-time tasks Γ = {τ1, . . . , τn}. Each

task τj is characterized by a worst-case execution time Cj ,

a minimum inter-arrival time Tj , and a relative deadline Dj

(assumed to be equal to Tj). Each task generates an infinite

sequence of jobs, τj,k, each having release time rj,k and

absolute deadline dj,k = rj,k + Dj . Each job τj,k sends a

message of payload Mj to node Ψ0 at its termination, which

can occur any time in the interval (rj,k, rj,k + Dj]. The

overhead of transferring a message generated by a task into

the transmission buffer is accounted in Cj . The utilization

of task τj is denoted by uj and is computed as Cj/Tj .

Each node Ψi hosts a subset Γi of Γ. The utilization of

node Ψi and the system utilization are denoted as Ui and

Utot, respectively. Note that a task τj can run in more than

one node, but each node can execute at most one copy of

τj . The number of running instances of task τj on the entire

network is denoted as µj .

For each task τj , the application specifies a reward

function denoted as γj , which grows with the number of

task instances and, hence, measures the satisfaction of the

task redundancy across the system.

Tasks in each node are scheduled by the Earliest Deadline

First (EDF) [14] algorithm, but the analysis can easily be

extended to different scheduling policies.

The timing parameters introduced above are summarized

in Figure 2.

��������
��������
��������
��������

��������
��������
��������
��������

rj dj

Mj

Tj

Cj

wi

time

time

Figure 2. Timing parameters.

A. Bandwidth model

The communication between the nodes and the coordina-

tor is managed by a TDMA-based communication protocol,

according to a star topology. Each node Ψi is assigned a

time slot wi in each TDMA wheel where it can transmit

its messages. The messages produced by the tasks running

in node Ψi are enqueued in a transmission buffer of length

Θi adopting a FIFO policy and then sent as soon as the

bandwidth becomes available.

A necessary condition to guarantee that each node can

transmit its messages without overflowing the transmission

buffer requires the wheel length W to be no shorter than the

minimum period in the task set, hence W is set as

W = min
j∈[1..n]

Tj. (1)

Each task τj of node Ψi is assigned a time budget

Qj sufficient to ensure the correct delivery of the related

message within 2Tj from the associated job release time

rj,k. Then, wi is set as the sum of the budgets Qj’s of the

tasks allocated to node Ψi:

wi =
∑

τj∈Γi

Qj . (2)

The task budget Qj is computed as follows:

Qj =
Mj
⌊

Tj

W

⌋ . (3)

Observe that
⌊

Tj

W

⌋

represents the number of complete

TDMA wheels available during a task period Tj , i.e., the

number of time slots that the node running τj can exploit

to transmit the message generated by such a task. Since Mj

is the length of any message generated by τj , the rationale

behind the computation of Qj is to assign a time budget

sufficient to send a message of length Mj every Tj time

units.

If wcom denotes the sum of the slots wi assigned to

the nodes, the overall communication load on the network

is wcom/W . Since for each node Ψi, the time slot wi is

computed in such a way the node can send all messages

generated by its tasks, it follows that a necessary and

sufficient condition to guarantee all message deadlines is:

wcom ≤ W. (4)

To save energy, the adopted bandwidth scheme reserves a

slot S = W − wcom over each W in which the communi-

cation is not allowed and all the nodes turn their transceiver

off.

Consider a sample scenario featuring three nodes

(Ψ1,Ψ2,Ψ3) and a task set composed by two tasks (τ1, τ2),

where node Ψ1 hosts both the tasks, node Ψ2 hosts τ1, and

node Ψ3 hosts τ2. The resulting TDMA wheel partition is

illustrated in Figure 3. Note that, throughout the paper, the

slot lengths wi are ordered by the node indexes inside the

wheel, while the budgets Qj inside the slot are ordered by

the task indexes.

Q1Q1 Q2Q2

W

wcom S

w1 w2 w3

time

Figure 3. Bandwidth allocation example.

B. Power Model

Since this paper focuses on a network-wide approach for

reducing energy consumption, a simplified power model is

adopted for the nodes to estimate their power consumption.

A finer model would be unnecessarily detailed in this con-

text, considering that each node could apply further runtime

strategies to save energy.

In particular, each device (i.e., CPU or transceiver) is

assumed to be in one of the following states:

• active. In this state, the device performs its job execut-

ing tasks or handling messages. The power consumed in

this state is denoted by PCPU
a and P com

a , respectively.

• sleep. In this state, the device is completely turned off

and consumes the least amount of power, denoted as

PCPU
s and P com

s , respectively.

The overhead to switch between power states for both the

devices is assumed to be negligible, both in terms of time

and energy.

The node power consumption is estimated as follows:

Pi = UiP
CPU
a + (1− Ui)P

CPU
s +

wi

W
P com
a +

(

1−
wi

W

)

P com
s . (5)

The node and system mean power consumption is esti-

mated assuming that each node exploits the idle intervals

in task and message schedules turning the CPU and the

transceiver off during idle periods and outside bandwidth

slots, respectively, as follows:

P = UtotP
CPU
a + (m− Utot)P

CPU
s +

wcom

W
P com
a +

(

m−
wcom

W

)

P com
s . (6)

The current energy level of node Ψi is denoted by Ei and

every node is provided with the same initial energy E(0).

C. Lifetime model

The system lifetime is a key element for evaluating sensor

networks. Its definition is not univocal because it depends

from a lot of application parameters (e.g., number of sensors,

network coverage, quality of service, etc) and its value is

an aggregation of all nodes statuses. The network can only

fulfill its purpose as long as it is considered alive, but not

after that. Therefore, the lifetime is an indicator for the

maximum utility a sensor network can provide.

There are a lot of lifetime definitions [6], but the most

common and most frequently used in the literature is the m-

of-m lifetime. In this definition, the distributed system life-

time L ends as soon as the first node fails, thus L = min
i

Li,

with Li representing the lifetime of node Ψi computed as

Ei/Pi.

A common constraint on the lifetime imposes a minimum

amount of time (L) in which the system has to stay alive.

The minimum lifetime could be formalized as:

min
i

Ei

Pi

> L.

D. Allocation specific parameters

An allocation describes the distribution of the tasks in-

stances among the nodes of the system. Since a task τj can

run on different nodes simultaneously, an allocation matrix

A ∈ {0, 1}m×n is defined to keep track of such a distribution

on the network. The generic element aij of the allocation

matrix A is a boolean variable indicating whether task τj is

present on node Ψi or not. Note that each node can execute

at most one copy of τj . In the following, a set of previously

defined parameters are formalized based on A.

The subset Γi of tasks running on node Ψi is expressed

as

Γi = {τj |aij = 1}, (7)

while the length wi of the communication bandwidth slot

assigned to the node Ψi is computed as

wi =

n
∑

j=1

aijQj. (8)

The total utilization Ui of node Ψi and the system

utilization Utot are formally defined as

Ui =

n
∑

j=1

aijuj (9)

and

Utot =
m
∑

i=1

Ui. (10)

The actual number µj of instances of task τj across the

system is computed as

µj =

m
∑

i=1

aij . (11)

The worst case scenario for the transceiver buffer occurs

when two instances of the same task generate a message

between the end of the previous Qj and the start of the

next one, as depicted in Figure 4. In the example illustrated

in the figure, the Qj is supposed to occur at the beginning

of each wheel. More than two generations are not possible

because the wheel is equal to the minimum task period. This

leads to consider that the minimum required size Θmin
i of

the transceiver internal buffer on node Ψi is computed as:

Θmin
i = 2

m
∑

j=1

aijMj .

b
u

ff
er

CPU

slots
comm.

TjTjTj

τj,1 τj,2 τj,3

WWW

Qj,1 Qj,2

Mj

2Mj

time

time

time

Figure 4. Example of worst-case buffer usage.

III. PROBLEM STATEMENT

This paper addresses the problem of allocating a real-time

task set over a distributed system composed by homoge-

neous embedded nodes. Such an allocation has to meet a

set of constraints:

Task schedulability: All the tasks running in each

node have to terminate within their deadlines. Under the

assumption that all the tasks have relative deadlines equal

to periods and are scheduled by EDF, such a constraint is

expressed as follows:

∀i ∈ [1,m] Ui ≤ 1. (12)

Bandwidth: To guarantee the schedulability of the

messages produced by the tasks, the sum wcom of all the

slots assigned to the nodes must not exceed the wheel length

W :

wcom ≤ W. (13)

Buffer: For each node, the transmission buffer (whose

length Θ is equal for each node) must be long enough to

contain all the messages generated in the worst case, that is:

∀i ∈ [1,m] Θ ≥ Θmin
i . (14)

Redundancy: To improve the accuracy level of mea-

surements, a minimum number µmin
j of running instances

for each task τj must be guaranteed to be executed in the

system, that is:

∀j ∈ [1, n] µj ≥ µmin
j . (15)

Lifetime: To guarantee a desired system lifetime L, the

initial energy E(0) available in each node must be sufficient

to keep the entire network alive for the required duration,

that is:

∀i ∈ [1,m]
E(0)

Pi

≥ L. (16)

A. Performance evaluation

To evaluate the performance of a generic allocation, three

distinct normalized indexes (∈ [0, 1]) are introduced to

measure redundancy, energy saving, and uniformity. Such

factors are combined to obtain a normalized scalar function

able to compare the goodness of different allocations.

The performance function is modeled to operate also in

the case of unfeasible allocations. Such a function is built so

the co-domain range of the performance function is [−3, 1],
equally distributed between the feasible situations ([0, 1])
and the unfeasible ones ([−3, 0)).

As already explained in Section II, more instances of each

task can execute on the network. Note that an implicit limit

on the running instances of a task τj exists as at most m

nodes can run a single instance of τj .

For each task τj , a monotonic function γj is provided by

the application designer to specify the reward according to

the actual number of task instances running in the system,

from µmin
j to m. γj is a function with bounded output value

in [0, 1). The redundancy index ρ is defined as

ρ ,

∑n
j=1 γj

n
.

The overall energy consumption of the system is a key

parameter taken into account by the analysis carried out in

this work. The index ξ measures the energy saving of an

allocation with respect to the highest power consumption

Pmax that the system can experience, that is:

ξ ,
max(0, Pmax − P)

Pmax

.

Notice that Pmax refers to an ideal allocation in which

all the nodes are fully loaded (i.e. all nodes have utilization

equal to 1) and the bandwidth slots are assigned in such a

way that wcom is equal to W .

Based on the definition of system lifetime assumed in this

work, how task instances are spread across the system nodes

is of key importance, as a more uniform load distribution

results in a longer global lifetime (due to the proportionality

between utilization and power consumption at node level).

The utilization uniformity of the allocation is evaluated

through the variance σ2 of the total utilization Ui of each

node Ψi computed as follows:

σ2 ,
1

m

m
∑

i=1

(

Ui −
Utot

m

)2

.

As for the previous indexes, the uniformity of the allo-

cation is evaluated through an index α normalized in the

interval [0, 1]:

α ,
max(0, σ2

max − σ2)

σ2
max

,

where σ2
max denotes the variance in the worst-case scenario

in which half nodes are fully loaded and half are empty,

leading to a value of σ2 equal to 0.25.

Considering the trade-off between redundancy and power

consumption, a parameter η ∈ [0, 1] is introduced to balance

the two contributions. Notice that such a parameter remains

constant throughout all the optimization process.

For a feasible allocation, the performance function Φ is

defined as follows:

Φ+
η (A) = α[ηρ+ (1 − η)ξ], (17)

whereas, for an unfeasible allocation, it is defined as follows:

Φ−(A) = −
1

n

n
∑

j

max(0, µmin
j − µj)

µmin
j

+

−

∑m

i max(0, Ui − 1)

(Utot − 1)m
+

−
max(0, wcom −W)

m
∑n

j Qj

. (18)

Such a function is composed by three terms, each in-

troduced to weigh the violation of one of the evaluated

constraints. Note that while the second term is defined at

a node level, since it concerns CPU overrun, the last term

operates at a system level, as the communication wheel is

shared among all the nodes.

IV. PROPOSED ALGORITHMS

This section presents three types of algorithms that try

to maximize a user-defined performance function under the

constraints formalized in Section III.

The cost of each approach is measured through the num-

ber of performance evaluations, rather than through the total

processing time, since the execution time of an algorithm is

affected by several factors (e.g., processor speed, memory,

and implementation efficiency). The complexity to evaluate

a specific allocation is O(nm).

A. Complete Search

A branch and bound search has been implemented to

evaluate the distance of the optimal solution with respect

to the other methods, at least for a small system size. The

exhaustive search uses an EDF feasibility test on single

nodes to prune unfeasible branches.

Note that, at low total utilizations, the number of feasible

(single node) allocations is exponential on the number

of tasks, since very low tasks utilizations make any task

combination feasible, and drops down at higher utilizations.

Since the embedded nodes composing the system are ho-

mogeneous, several solutions are symmetric, thus leading to

the same performance. To avoid the generation of symmetric

allocations, this approach combines the solutions previously

found to reduce the number of possible configurations.

B. Heuristics

This section presents two heuristic approaches, Heuristic

A and Heuristic B.

Heuristic A starts from an empty allocation and, at each

step, generates all the possible configurations that differ from

the current one by a single task (by switching a single

element of matrix A from 0 to 1). Then, the configuration

with the highest performance is selected. In the case of

multiple configurations featuring the highest performance,

the first occurrence is selected. The algorithm stops as soon

as it fails to improve the current best performance.

Since at each step the approach performs at most n×m
evaluations, its worst-case complexity is O(n3m3), as it is

possible to insert at most n×m instances to fill the A matrix.

Heuristic B is a variation of Heuristic A, since at each

step it selects the node with the lowest utilization, testing

the resulting performance at each addition. Since at each

step the approach has to evaluate n different configurations,

the worst-case complexity is O(n3m2). Like Heuristic A,

the approach stops as soon as it fails to improve the current

best performance.

C. Simulated Annealing

Simulated Annealing [12] is an effective technique for

finding an acceptably good solution in a fixed amount of

time, even in large search spaces. In this approach, a generic

point s of the search space is called a state, and the

neighborhood of a state s is defined as the set of states

produced from s by suitable alterations.

In this implementation, a state is represented by a global

allocation, and its neighborhood is the set of allocations that

differ from the starting one only for one boolean element of

the matrix A. This means that the neighborhood of a state

is another allocation in which a single task is added (if it

was not present) or removed (if it was present). The other

parameters, that is the cooling factor, the maximum number

of tries at fixed temperature, and the temperature threshold,

are selected to improve performance.

In this work, the simulated annealing has been imple-

mented according to two approaches, which differ for their

initial state. The first approach starts from the empty al-

location matrix and it is referred to as Basic Simulated

Annealing (BSA), while the second one lies upon the result

of Heuristic A and, hence, it is referred to as Heuristic

Simulated Annealing (HSA).

V. EXPERIMENTAL RESULTS

This section presents a set of experimental results of

the approaches proposed in Section IV. Such results are

obtained by simulation on synthetic workloads adopting the

power profile taken by the Microchip dsPIC1 datasheet,

interpolating the typical consumptions. To test the behavior

of the various approaches, a C simulator has been developed.

An execution scenario is characterized by the tuple

(n,m,U,B), where n denotes the number of tasks, m
the number of nodes in the network, U the total task

set utilization, and B the total communication bandwidth

required by the task set (B =
∑n

j=1 Mj/Tj).

Given a total utilization factor (U and B), the task set

features (Cj , Tj and Mj) are computed according to a

uniform distribution [3]. From such values, the wheel length

W and task bandwidth slots (Qj) are computed according

to Equation (1) and Equation (3).

As already exposed in Section III-A, the application

designer has to specify the reward function γj for each task

τj . If µsat
j denotes the number of running instances of τj

beyond which the measures have no gain on accuracy, in

this set of experiments γj is set as

γj =
(

1− e∆j
)

,

where

∆j =
−5(µj − µmin

j)

µsat
j − µmin

j

.

For all the experiments, µsat
j is set equal to the number of

nodes m. The balancing parameter η between redundancy

and energy saving is chosen to be 0.5.

Due to the complexity of considering all the parameters

introduced in the analysis, the set of experiments described

in this section do not check the violation of the constraints

1dsPIC33FJ256MC710 microcontroller

on the minimum buffer and the minimum lifetime formalized

in Equation (14) and Equation (16), respectively.

The first experiment evaluates the complexity of the

algorithms as a function of the product n × m, for all

the approaches, setting U = m/2 and B = 0.3. Table I

reports the number of performance evaluations averaged on

50 runs of each approach. As described in Section IV-A,

the Complete Search (CS) approach represents an effective

method to find the optimal solution only for small problem

size, as the number of evaluations becomes too high already

at n × m = 10x6. The number of evaluations performed

by each approach reflects the complexity values reported in

Section IV. Simulated annealing techniques have a higher

number of evaluations since they explore the search space

until the system is cooled but with a conditional stop

criterion on the stability of the result. The performance

difference between CS and the other approaches is under

5%.

n×m CS Heu A Heu B BSA HSA

5x4 519 161 40 14684 20603

10x6 4.8·109 1186 168 22561 50234

15x8 - 4036 432 43598 63678

20x8 - 7139 787 57663 79626

25x10 - 15101 1309 91628 126059

Table I
PROBLEM COMPLEXITY.

The second experiment evaluates the performance index

Φ as a function of the task set utilization U , and results are

shown in Figure 5. All the approaches have been tested with

n = 25, m = 10 and B = 0.3. The utilization is normalized

on the number of nodes m.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

U/m

Φ

Heuristic B

HSA

Heuristic A

BSA

Figure 5. Performance analysis of the approaches.

As Figure 5 shows, Heuristic B outperforms all the

approaches. BSA performs poorly at utilizations higher than

0.5. Heuristic A is often able to find a reasonable solution,

although it can be improved by HSA, whose performance is

very similar to that of Heuristic B.

The third experiment deeply investigates Heuristic B,

analyzing the three components of the performance index as

a function of the utilization U , normalized on the number

of nodes m.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

U/m

α
ρ
ξ

Figure 6. Performance components.

The results are reported in Figure 6, which clearly shows

that the α factor is about constant, revealing that the so-

lutions found by Heuristic B are characterized by uniform

allocations. As expected, both the redundancy and energy

saving indexes decrease with the growing of the normalized

CPU load. This occurs because tasks with higher utilization

are difficult to spread across the network without violating

the schedulability constraint and causing a sensible increase

of power consumption.

The fourth and last experiment analyzes Heuristic B as

a function of both n and m, for a bandwidth utilization

B = 0.3. The values of n range in {5, 10, 15, 20, 25}, while

the values of m range in {4, 6, 8, 10, 12}. In this experiment,

the utilization U is always set to m/2.

 5

 10

 15

 20

 25

 4

 6

 8

 10

 12

 0.2

 0.3

 0.4

 0.5

Φ

of tasks# of nodes

Φ

Figure 7. Performance analysis of Heuristic B when B=0.3.

As reported in Figure 7, the performance obtained by

Heuristic B improves as the number of tasks increases. This

is due to the higher fragmentation of the task set, that results

in a wider feasible solution space. Instead, the performance

index decreases as the number of nodes grows. Since the

utilization U is always set to the half of m, the tasks result

in a higher utilization. As for the third experiment, the

approach is able to spread only a few tasks instances across

the network paying a higher power consumption.

VI. CONCLUSIONS

This paper addressed the problem of allocating a set of

real-time tasks on a distributed system consisting of sensors

nodes sending data to a coordinator, with the objective of

satisfying feasibility constraints, while minimizing the over-

all energy consumption and maximizing task duplication.

Trade-offs between such two conflicting goals have been

explored, by comparing two heuristic approaches against

a complete method and simulated annealing. Simulation

results show that one of the heuristic algorithms provides a

reasonable solution, outperforming simulated annealing both

in terms of efficiency and performance, especially for larger

task set utilizations.

REFERENCES

[1] N. Auluck and D. P. Agrawal. A scalable task duplication
based algorithm for improving the schedulability of real-time
heterogeneous multiprocessor systems. In ICPP Workshops,
pages 89–96, 2003.

[2] H. Aydin and Q. Yang. Energy-aware partitioning for
multiprocessor real-time systems. In Proceedings of the
17th International Symposium on Parallel and Distributed
Processing, IPDPS ’03, pages 113.2–, Washington, DC, USA,
2003. IEEE Computer Society.

[3] E. Bini and G. C. Buttazzo. Biasing effects in schedulability
measures. In Proceedings of the 16th Euromicro Conference
on Real-Time Systems, Catania, Italy, June 2004.

[4] G. Buttazzo, E. Bini, and Y. Wu. Partitioning parallel
applications on multiprocessor reservations. In Proceedings of
the 2010 22nd Euromicro Conference on Real-Time Systems,
ECRTS ’10, pages 24–33, Washington, DC, USA, 2010. IEEE
Computer Society.

[5] R. Davis and A. Burns. A survey of hard real-time scheduling
algorithms and schedulability analysis techniques for multi-
processor systems. techreport YCS-2009-443, University of
York, Department of Computer Science, 2009.

[6] I. Dietrich and F. Dressler. On the lifetime of wireless sensor
networks. ACM Trans. Sen. Netw., 5(1):1 – 39, Feb 2009.

[7] J. Huang, C. Buckl, A. Raabe, and A. Knoll. Energy-aware
task allocation for network-on-chip based heterogeneous mul-
tiprocessor systems. In PDP, pages 447–454, 2011.

[8] A. Kandhalu, J. Kim, K. Lakshmanan, and R. R. Rajkumar.
Energy-aware partitioned fixed-priority scheduling for chip
multi-processors. Real-Time Computing Systems and Appli-
cations, International Workshop on, 1:93–102, 2011.

[9] V. Kianzad, S. S. Bhattacharyya, and G. Qu. Casper: An
integrated energy-driven approach for task graph scheduling
on distributed embedded systems. In Proceedings of the
2005 IEEE International Conference on Application-Specific
Systems, Architecture Processors, ASAP ’05, pages 191–197,
Washington, DC, USA, 2005. IEEE Computer Society.

[10] J.-K. Kim, H. J. Siegel, A. A. Maciejewski, and R. Eigen-
mann. Dynamic resource management in energy constrained
heterogeneous computing systems using voltage scaling.
IEEE Trans. Parallel Distrib. Syst., 19(11):1445–1457, 2008.

[11] M. Kim, S. Banerjee, N. Dutt, and N. Venkatasubramanian.
Energy-aware cosynthesis of real-time multimedia applica-
tions on mpsocs using heterogeneous scheduling policies.
ACM Trans. Embed. Comput. Syst., 7(2):1–19, 2008.

[12] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization
by simulated annealing. Science, 220:671–680, 1983.

[13] C. Li and L. Li. Energy constrained resource allocation
optimization for mobile grids. J. Parallel Distrib. Comput.,
70(3):245–258, 2010.

[14] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. Journal
of the ACM, 20(1):46–61, 1973.

[15] M. Lombardi and M. Milano. Optimal methods for resource
allocation and scheduling: a cross-disciplinary survey. Con-
straints, 17(1):51–85, January 2012.

[16] X. Qin and H. Jiang. A novel fault-tolerant scheduling
algorithm for precedence constrained tasks in real-time het-
erogeneous systems. Parallel Comput., 32(5):331–356, June
2006.

[17] K. Ramamritham. Allocation and scheduling of precedence-
related periodic tasks. IEEE Trans. Parallel Distrib. Syst.,
6(4):412–420, April 1995.

[18] M. Schmitz, B. Al-Hashimi, and P. Eles. Energy-efficient
mapping and scheduling for dvs enabled distributed embed-
ded systems. In Proceedings of the conference on Design,
automation and test in Europe, DATE ’02, pages 514–,
Washington, DC, USA, 2002. IEEE Computer Society.

[19] A. Schranzhofer, J.-J. Chen, L. Santinelli, and L. Thiele.
Dynamic and adaptive allocation of applications on mpsoc
platforms. In Proc. of the 15th IEEE Conf. on Asia and South
Pacific Design Automation Conference (ASP-DAC’10), pages
885 – 890, Taipei, Taiwan, Jan. 2010.

[20] K. Shin and D. Peng. Static Allocation of Periodic Tasks with
Precedence Constraints in Distributed Real-time Systems.
Technical report (International Computer Science Institute).
International Computer Science Institute, 1988.

[21] T. Xie, X. Qin, and M. Nijim. Solving energy-latency
dilemma: Task allocation for parallel applications in hetero-
geneous embedded systems. In ICPP ’06: Proceedings of the
2006 International Conference on Parallel Processing, pages
12–22, Washington, DC, USA, 2006. IEEE Computer Society.

[22] C. J. Xue, Z. Yuan, G. Xing, Z. Shao, and E. Sha. Energy
efficient operating mode assignment for real-time tasks in
wireless embedded systems. In Proceedings of the 14th
IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), pages 237–
246, Kaohsiung, Taiwan, August 2008.

