
Resource Reservation for Mixed Criticality

Systems

Giuseppe Lipari1⋆, Giorgio C. Buttazzo2

1 LSV, ENS - Cachan, France
2 Scuola Superiore Sant’Anna, Italy

Abstract. This paper presents a reservation-based approach to sched-
ule mixed criticality systems in a way that guarantees the schedulability
of high-criticality tasks independently of the behaviour of low-criticality
tasks. Two key ideas are presented: first, to reduce the system uncer-
tainty and advance the time at which a high-criticality task reveals its
actual execution time, the initial portion of its code is handled by a ded-
icated server with a bandwidth reserved for the worst-case, but with a
shorter deadline; second, to avoid the pessimism related to off-line budget
allocation, an efficient reclaiming mechanism, namely the GRUB algo-
rithm [6], is used to exploit the budget left by high-criticality tasks in
favor of those low-criticality tasks that can still complete within their
deadline.

1 Introduction

With the progress of computer architectures, embedded computing systems are
required to execute more and more concurrent activities on the same hardware
platform. In mission-critical systems, computational activities may have different
levels of criticality, and therefore different guarantee requirements imposed by
certification authorities. In particular, more critical tasks are required to have
more conservative estimations for their computational requirements, with respect
to less critical activities. Such more conservative estimations increase system
predictability by over allocating computational resources to more critical tasks,
but also decrease the overall efficiency.

To partially compensate for such pessimistic estimations, Vestal [16] pro-
posed a new task model where each task can be specified with different levels
of criticality, each characterised by a different computation time estimate, de-
pending on the criticality level: the higher the criticality level, the higher the
computation time estimate. Slightly different models have been also proposed
by other authors.

In this paper, we consider a system with two criticality levels that must
execute a task set Γ of n periodic or sporadic tasks. Each task τi is characterised

⋆ The research leading to these results has received funding from the European
Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No.
246556.

Administrator
Proc. of the Workshop on Real-Time Systems: the past, the present, and the future, York, UK, March 14th, 2013.

by a criticality level Xi, which can be either high (HI) or low (LO), a worst-case
computation time (WCET) Ci (which depends on its criticality level), a period
(or minimum interarrival time) Ti, and a relative deadline Di. Tasks with low
criticality, denoted as LO-tasks (τLO

i), have a single WCET estimate Ci, whereas
tasks with high criticality, denoted as HI-tasks (τHI

i), have a normal WCET
estimate Ci and a more conservative one, Cov

i , to take overruns into account,
where Cov

i > Ci. Each task generates an infinite sequence of jobs, τi,1, τi,2, . . .,
where each job τi,j is characterised by a release time ri,j , a computation time
ci,j , and an absolute deadline di,j . The actual computation time requested by a
job τi,j is denoted by ei,j .

According to such a model, the task set Γ is partitioned in two subsets ΓLO

and ΓHI and the mixed criticality (MC) feasibility problem is formulated as
follows:

Definition 1. A task set Γ is MC-feasible if and only if both the following
conditions are verified:

1. If all HI-tasks execute for no more than their optimistic computation time
Ci, then there exists a schedule where all tasks in Γ complete within their
deadline.

2. If one or more HI-tasks exceed their optimistic computation time Ci (but
not their conservative estimate Cov

i), then there exists a schedule where all
tasks in ΓHI complete within their deadline.

The problem of optimally scheduling such mixed-criticality systems has been
shown to be highly intractable even under very simple system models [2]. The
complexity comes from the fact that optimal scheduling decisions depend on the
knowledge of the actual tasks execution times, which are not known off-line, but
will be available only when a task completes or exceeds its optimistic estimate.
Given such a dependency of scheduling decisions from future knowledge, it is
clear that optimality can only be achieved by an ideal clairvoyant scheduler. To
better clarify this issue, consider the task set reported in Table 1.

Xi Ci C
ov

i Ti Di

τ1 LO 3 3 8 4
τ2 HI 2 4 8 6

Table 1. Sample mixed criticality task set.

As illustrated in Figure 1, the task set is MC-feasible, since both conditions
stated in Definition 1 are verified.

Nevertheless, Figure 2 illustrates that no online algorithm can guarantee
the MC-schedulability of the task set, because for each decision taken at time
t = 0 (to schedule τ1 or τ2), there exists a situation in which a task misses its
deadline. This example shows that the correct decision that produces an MC-
feasible schedule can be taken only by a clairvoyant scheduler that knows (at
time t = 0) how much task τ2 will execute.

τ
LO
1

τ
HI
2

(a)

τ
LO
1

τ
HI
2

(b)

Fig. 1. If τ2 does not exceed C1, Γ is feasible (a), and if τ2 executes for Cov
2 , then Γ

HI

is feasible.

τ1

τ2

(a)

τ1

τ2

(b)

Fig. 2. If τ1 is scheduled at t = 0, τ2 can miss its deadline (a); and if τ2 is scheduled
at t = 0, τ1 will miss its deadline (b).

Contribution In this paper we propose a reservation-based approach to schedule
mixed criticality systems in a way that guarantees the schedulability ofHI-tasks
independently of the behavior of LO-tasks. Two key ideas are presented: first, to
reduce the system uncertainty and advance the time at which a HI-task reveals
its actual execution time, the initial portion of its code is handled by a dedicated
server with a bandwidth reserved for the worst-case, but with a shorter deadline;
second, to avoid the pessimism related to off-line budget allocation, an efficient
reclaiming mechanism, namely the GRUB algorithm [6], is used to exploit the
budget left by HI-tasks in favor of those LO-tasks that can still complete within
their deadline.

Paper structure The rest of the paper is organized as follows. Section 2 formally
presents the general approach. Section 3 presents the details of the reservation
server. Section 4 illustrates the simulation results obtained with the proposed
approach. Section 5 presents some related work. Section 6 concludes the paper
and presents some future work.

2 General approach

We consider a reservation-based real-time system where each task (or group of
tasks) can be assigned a reservation server that allocates a budget Qi every
period Pi. To better exploit the available computational resources, we assume
that all the servers are scheduled by the Earliest Deadline First (EDF) scheduling
algorithm [11].

Since HI-tasks must be guaranteed under all operating conditions and we
cannot know in advance how much they will execute, each HI-task τHI

i is as-
signed a dedicated reservation server (HI-server) with bandwidth αHI

i sufficient
to satisfy its more conservative execution time Cov

i . Therefore, each HI-task is
handled by a periodic reservation (Qi, Pi), where Qi = Cov

i and Pi = Ti, thus
having a bandwidth

αHI
i =

Cov
i

Ti

. (1)

The bandwidth remaining for serving all the LO-tasks is then:

αLO = 1−
∑

τi∈ΓHI

αHI
i . (2)

Let ULO be the total bandwidth required by the LO-tasks, that is,

ULO =
∑

τi∈ΓLO

Ci

Ti

. (3)

Note that, if ULO ≤ αLO, then there is enough bandwidth to complete all
LO-tasks within their deadline, even when the system runs in high-criticality
mode, hence the problem is trivially solved. In this paper, we consider the more
interesting case where ULO > αLO, so that not all LO-tasks can be guaranteed
to complete before their deadlines in all modes. Nevertheless, when the system
runs in low-criticality mode, that is, when all the HI-tasks do not exceed their
optimistic estimate Ci, we propose to use a reclaiming mechanism for distributing
the spare bandwidth saved by HI-task to LO-tasks. In particular, whenever a
HI-job τHI

i,j completes before its optimistic estimate (ei,j < Ci), the following
bandwidth can be reclaimed:

U rec
i,j =

Cov
i − ei,j
Ti

. (4)

When the system switches to high-criticality mode, there are two ways of
dealing with LO-tasks: they may be dropped, as proposed in most of the previous
research on mixed-criticality scheduling, or they can continue executing as soft
real-time tasks, without interfering with the HI-tasks. In this paper, we adopt
this second approach.

To schedule LO-tasks, we can follow two alternative approaches:

1. All LO-tasks are assigned a single reservation server (LO-server) with band-
width αLO.

2. Each LO-task is assigned a different server such that the sum of the band-
widths of these servers does not exceed αLO.

In this paper, these two approaches are compared to see whether any one
dominates the other.

3 Server mechanism

As discussed in the previous section, we assign each HI-task a dedicated server
with bandwidth αHI

i sufficient to cover the largest computational requirements
Cov

i of the task. At the same time, as soon as each job of a HI-task τi completes,
the remaining budget is reclaimed and assigned to the LO-tasks. To be able to
reclaim such an extra budget in advance, we are interested in advancing the
completion time of HI-tasks as soon as possible. To achieve this goal, we use a
technique similar to the EDF-VD algorithm, proposed in [4,3]. This technique
consists in using two different deadlines and budgets for a HI-task, depending
on whether it completes before or after its normal worst-case execution time Ci.
The following section describes how to modify the GRUB server to achieve this
objective.

3.1 High-criticality servers

A HI-server for a HI-task τi is defined as a tuple (Qi, Q
ov
i , Pi), where Qi = Ci,

Qov
i = Cov

i , and Pi = Ti. The server is assigned a bandwidth αHI
i = Qov

i /Pi

sufficient to guarantee the more conservative execution time. At run time, the
server manages a capacity qi, a virtual time vi, a scheduling deadline di, and
a criticality mode γi. Moreover, the server has an internal state which can be
IDLE, READY, EXECUTING, RECHARGING and RELEASING. The server
is initially in the IDLE state and its criticality mode is γi = LO. The state
diagram for the server is shown in Figure 3.

IDLE EXEC

RECHARGING

READY

RELEASING

Budget exhausted

Arrival

preemption

Recharged

dispatch

finishing

Virtual finishing

Fig. 3. State diagram for the HI-Server.

A server that is not IDLE is said to be active. Let A be the set of active
servers. The algorithm maintains a global variable

Uact =
∑

Si∈A

αHI
i . (5)

The server uses the following rules:

1. When a HI-task is activated at time t, the server moves from the IDLE to
the READY state. Correspondingly, its budget is replenished at qi = Qi and
its deadline is set at:

di = t+
Qi

Qov
i

Pi = t+
Qi

αHI
i

= t+
qi

αHI
i

.

Note that such a deadline is shorter than the usual server deadline (t+ Pi).
Moreover, the capacity (Qi = Ci) is also less than the maximum one (Qov

i =
Cov

i). However, the server bandwidth is still αHI
i .

Also, the server moves to the active set A, therefore the value of Uact is
updated to Uact + αHI

i .
2. When in READY, the HI-server with the earliest scheduling deadline is

executed and moves to EXECUTING.
3. When in EXECUTING, the server capacity is decreased as:

dqi = −U
actdt

If the system is fully utilised and all servers are active (Uact = 1), this
translates in reducing the capacity of the server at unit rate. When the
system is not fully utilized, or when some server is IDLE, the capacity is
decreased as a lower rate, so that the server can actually reclaim the free
system bandwidth.

4. If, while in EXECUTING, the server is preempted by another server with
earlier deadline, it moves back to READY, and its capacity is not decre-
mented anymore.

5. If, while in EXECUTING, the capacity is exhausted, then the server behaves
according to the values of the criticality mode:
(a) If the criticality mode γi = LO, then the capacity is immediately recharged

to qi = Qov
i −Qi, and the deadline is postponed to

di ← di +
Qov

i −Qi

αHI
i

= di +
qi

αHI
i

.

(Notice that this corresponds to the deadline of the original HI-task).
Also, the criticality level is raised to γi ← HI.

(b) If the criticality mode is γi = HI, a system exception is raised, as a
HI-task should never exceed its budget Qov

i .
6. If, while in EXECUTING, the task completes the execution of the current

job, the server moves to the RELEASING state. Correspondingly, the virtual
time is computed for the server as follows:

vi ← di −
qi

αHI
i

7. The server remains in state RELEASING until t ≥ vi. At that point, the
server moves to IDLE state and the criticality level is set to γi ← LO. If
t > vi, then an extra capacity of αHI

i (vi − t) is donated to the first server in
the ready queue. Also, the server is removed from the set of active servers
A, and the overall utilization is decreased to Uact ← Uact − αHI

i .

3.2 Low-criticality servers

A similar algorithm is used for implementing the LO-server for serving LO-
tasks, with a few modifications to the rules. A LO-Server is defined by only
two parameters, the budget Qi and the period Pi. As stated in Section 2, the
LO-server is assigned a bandwidth αLO

i given by Equation (2). At run-time, the
server manages a capacity qi, a scheduling deadline di, and has a state. The state
diagram for a LO-server is the same as a HI-server, and is shown in Figure 3.
The following rules change:

1 If the server is IDLE, when one of the LO-tasks served by the server is
activated at time t, the server moves from IDLE to the READY state. Cor-
respondingly, its budget is replenished at the value qi = Qi and the server
deadline is set at:

di = t+ Pi = t+
Qi

αLO
i

= t+
qi

αLO
i

.

Notice that this is the same equation as the HI-server. Also, the server
moves to the active set A, therefore the value of Uact is updated to Uact ←

Uact + αLO
i .

5 If, while in EXECUTING, the capacity is exhausted, then the server moves
to the RECHARGING state and a recharging time is set at di. The server
is suspended from execution until the capacity replenishment.

6 If, while in EXECUTING, the task completes the execution of the current
job, and there are no more tasks in the server local queue, the server moves
to the RELEASING state. Correspondingly, the virtual time is computed
for the server as follows:

vi ← di −
qi

αLO
i

.

8 If, while the server is in RECHARGING state, t = di, then the server budget
is replenished at qi ← Qi, the server deadline is postponed at di ← di + Pi,
and the server is moved to the READY state.

9 If, while the server is in RELEASING state, a new LO-task is activated
locally in the server, then the server moves to the READY state, with the
same capacity and deadline.

3.3 An example

Consider a simple MC task set consisting of only two tasks: a LO-task τ1 =
(C1 = 4, T1 = 6) and a HI-task τHI

2 = (C2 = 2, Cov
2 = 4, T2 = 8). To schedule

this task set, we start by defining a HI-server S2 = (Q2 = 2, Qov
2

= 4, P2 = 8);
the server bandwidth is αHI

2 = 0.5. The first question is: how much budget we
can reserve for τ1? Clearly, we cannot reserve (Q1 = 4, P1 = 6), as there is not
enough bandwidth left. Therefore, the LO-server is defined with a bandwidth
αLO
1 = 1 − αHI

2 = 0.5, a period P1 = T1 = 6, and a budget Q1 = αLO
1 P1 = 3.

The schedule produced by the proposed algorithm is shown in Figure 4.

0 2 4 6 8 10 12 14 16 20 22 2418

τ1

τ2

Fig. 4. Example of reclamation.

– At time 0, task τ2 starts executing inside its server. Both servers are active
(because they both arrive at time t = 0), so the capacity is updated at the
following rate while it executes:

dq2
dt

= −Uact = −1

Therefore, when task τ2 completes, the server has budget q2 = 0. The server
moves to state RELEASING and virtual time is computed as v2 = 4. There-
fore, the server remains active until time t = 4, and from then it becomes
inactive until time t = 8.

– At time t = 2, task τ1 starts executing. Its budget is initially q1 = 3. Again,
all servers are active (remember that Server S2 will become inactive at time
4), hence capacity is decreased at unit rate.

– At time t = 4, the server S2 becomes IDLE. Therefore, the capacity rate for
task τ1 changes. First of all, let us observe that at time t = 4 its value is
q1 = 1. The new rate is:

dq2
dt

= −Uact = −0.5.

This means that, at the current rate, the task can still execute for 2 units of
time. That is exactly what we need to complete the task at time t = 6.

– At time t = 6, the first instance of task τ1 completes, but the second one is
activated. Therefore, the server recharges its budget at q1 = 3, and continues
to execute with deadline at d1 = 12. Since the other server is still inactive,
the rates for the virtual time and the deadline do not change.

– At time t = 8, task τ2 is activated again and S2 becomes active. The current
value of the capacity is q1 = 2. Suppose the scheduler decides to continue
executing τ1. Therefore, the new rates is now:

dq2
dt

= −1

And this means that τ1 can execute for two more units of time, completing
its executing at time t = 10.

In this example we have seen that τ1 is able to complete execution of all its
jobs within its deadline, even if the assigned budget is less than its execution
requirements, thanks to the reclaiming mechanism.

However, it is still to be understood how much capacity can be reclaimed by
LO-tasks. In fact, it is easy to build an example in which the LO-server does
not receive enough extra capacity to complete all its tasks before their deadlines.
For example, if the LO-tasks have very short relative deadlines compared to the
HI-tasks, they will executed before them most of the times, and hence they will
not be able to reclaim any capacity.

Computing the amount of capacity reclaimed by LO-tasks is a difficult and
open problem that will be the subject of our future research. In this paper we
just compare two methods for scheduling LO-tasks inside a LO-server: using a
single server for serving all the LO-tasks; or using a dedicated LO-server for
each LO-task.

4 Experimental results

To evaluate the performance of the reclamation algorithm presented in Section 3,
we performed a set of simulation experiments. The server algorithms have been
implemented in RTSim [12], a scheduling simulation tool for modeling real-time
systems.

In each simulation run, we generated 4 HI-tasks and 4 LO-tasks. Computa-
tion times and the periods of the HI-tasks have been randomly selected to get
a cumulative utilization equal to 50%:

∑

τi∈ΓHI

Cov

Ti

= 0.5.

In the first set of experiments, the periods of the HI-tasks have been chosen
according to a uniform distribution in the range [1000, 5000], in multiples of 100.
In the second set of experiments, they were chosen in the interval [6000, 10000].

Computation times in low-criticality mode were computed as a fixed fraction
of the computation times in high-criticality mode:

∀τi ∈ ΓHI Ci = r · Cov
i

where r was varied between [0.2, 0.75].
Computation times and periods of the LO-tasks were chosen to achieve a

cumulative utilization equal to 0.5
0.75

. In this way, for all values of parameter r,
we have: ∑

τHI

i

Ci

Ti

+
∑

τLO

i

Ci

Ti

≤ 1.

In other words, we made sure that the system is never overloaded in low-
criticality mode. In the first set of experiments, the periods of the LO-tasks
were chosen in the range [6000, 10000], whereas in the second set of experiments
periods were chosen in [1000, 5000].

For each HI-task we prepared a HI-server with bandwidth αHI
i = Cov

i /Ti.
For the LO-tasks, we made two different choices: assigning all LO-tasks to a

single LO-server with utilization equal to 50% and period P = 100; or assign
each LO-task to a different LO-server with bandwidth proportional to its com-
putational requirements, scaled down so that the sum of the bandwidth assigned
to the LO-server was 50%. In the single server case, LO-tasks inside the server
were scheduled by the EDF local scheduler.

For each combination of parameters, we generated 30 different task sets with
random periods and computation times. Each simulation was run for 10.000.000
units of simulation time. We only analysed the low-criticality mode, to test the
effectiveness of the reclaiming algorithm in that condition. Therefore, HI-tasks
never execute more than their optimistic computation time Ci. We measured
the average number of deadlines missed and the tardiness of the LO-tasks. Sim-
ulation results are reported in the following sections.

4.1 First set of experiments

In this first set of experiments, the periods of the HI-tasks have been chosen to
be all lower than the periods of the LO-tasks. Therefore, at least at the beginning
of the schedule, LO-tasks execute after HI-tasks have been completed, and so
they can immediately take advantage of the reclaimed bandwidth.

The deadline miss percentage of the LO-tasks is shown in Figure 5 for the
case of separate servers, and single server. It is evident that the deadline miss
percentage is very low in all cases. Even for the case of r = 0.75 (where the total
system utilization is very close to 100%), it never goes above 5% of the total
number of deadlines. Also notice that putting all LO-tasks in a single server is
very effective, as we observed 0 deadlines missed in all the experiments.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

%
 D

ea
dl

in
e

M
is

s

Ratio of execution LO/HI of HI-tasks

Deadline Misses of LO-tasks

Separate Servers
Single Server

Fig. 5. Deadline miss percentage of LO-tasks, using dedicated servers, or a single
cumulative server. The LO-tasks have larger periods than the HI-tasks.

A very similar trend can be observed for the tardiness reported in Figure
6. Such small values of the tardiness indicate that the reclaiming mechanism is
very effective, even with very highly loaded systems.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

T
ar

di
ne

ss

Ratio of execution LO/HI of HI-tasks

Tardiness of LO-tasks

Separate Servers
Single Server

Fig. 6. Tardiness of LO-tasks, using dedicated servers or a single cumulative server.
The LO-tasks have larger periods than the HI-tasks.

4.2 Second set of experiments

In this second set of experiments, the periods of the HI-tasks have been chosen
to be all higher than the periods of the LO-tasks. Therefore, at least at the
beginning of the schedule, LO-tasks execute before HI-tasks, so they cannot
immediately take advantage of the reclaimed bandwidth.

The deadline miss percentage of the LO-tasks is shown in Figure 7 for the
case of separate servers and single server.

Once again, a very similar trend can be observed for the tardiness in Figure 8.
Notice that in this case we detected very small values of the tardiness for r ≥ 0.6
due to a very small number of deadline misses (not visible in the graphs).

While these simulations cannot conclusively establish the theoretical per-
formance guarantees for LO-tasks, they indicate that it is indeed worthwhile
to perform further investigation on reclamation techniques for mixed criticality
systems.

5 Related work

The problem of scheduling mixed criticality systems has been addressed by sev-
eral authors under slightly different models and assumptions.

Lakshmanan et al. [5,8,9] proposed a slack-aware approach on top of fixed pri-
ority scheduling, providing a schedulability test that guarantees that all deadlines

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

%
 D

ea
dl

in
e

M
is

s

Ratio of execution LO/HI of HI-tasks

Deadline Misses of LO-tasks

Separate Servers
Single Server

Fig. 7. Deadline miss percentage of LO-tasks, using dedicated servers, or a single
cumulative server. The LO-tasks have smaller periods than the HI-tasks.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

T
ar

di
ne

ss

Ratio of execution LO/HI of HI-tasks

Tardiness of of LO-tasks

Separate Servers
Single Server

Fig. 8. Tardiness of LO-tasks, using dedicated servers or a single cumulative server.
The LO-tasks have smaller periods than the HI-tasks.

of HI-tasks are met regardless of the runtime behavior of LO-tasks, provided
the execution of at most one HI-task overruns its lower WCET estimate.

Baruah et. al. [1] proposed an effective algorithm, called OCBP (Own Criti-
cality Based Priority), to schedule a set of non-recurrent jobs. Although OCBP
is able to achieve the highest speedup factor among all the fixed-job-priority
algorithms, it cannot be applied to recurrent tasks.

Li and Baruah [10] proposed an algorithm, referred to as LB, to extend OCBP
to sporadic tasks, but it relies on very pessimistic schedulability tests based on
load bound conditions. Moreover, it introduces large run-time overhead as it
needs on-line pseudo-polynomial priority assignment recomputation. To over-
come the limitations of LB, Guan et al. [7] presented a new algorithm, referred to
as PLRS (Priority List Reuse Scheduling) to schedule certifiable mixed-criticality
sporadic task systems.

Pellizzoni et al. [13] proposed a reservations-based approach to ensure strong
isolation among subsystems of different criticality. Petters et. al. [14] also con-
sidered the use of temporal isolation of subsystems for mixed-criticality systems,
and addressed many practical issues in building such systems in reality. In gen-
eral, the drawback of the resource/temporal isolation approach is that it relies on
severely over-provisioning computing resources, which may result in significant
cost and energy waste.

Baruah et al. proposed the EDF-VD algorithm [3,4], which is similar to the
server mechanism proposed in this paper. In particular, they propose to antic-
ipate the deadlines of HI-tasks so that when executing in LO-criticality mode
their completion is anticipated. Their formula for computing the anticipated
deadline is global, i.e. it relies on the global utilisation of HI-tasks, whereas
in this paper we propose a different formula that accounts for the bandwidth
of each different HI-task separately and independently. In [3], the authors also
propose a test for checking the schedulability of LO-tasks in LO-criticality mode,
and compute the speed-up factor of their algorithm to be 4/3.

Santy et al. [15] propose an algorithm for letting some of the LO-criticality
task execute even after the system has switched to HI-criticality mode, as long
as their execution does not compromise the schedulability of HI-tasks. Also, they
propose a method to reset the system criticality level at certain specified idle in-
tervals. In this paper, we also propose to continue executing LO-criticality tasks
as soft real-time tasks even after the system switches to HI-criticality: the tem-
poral isolation mechanism guarantees that the HI-tasks will not be influenced.

6 Conclusions

We presented a reservation-based approach to schedule mixed criticality systems
in a way that guarantees the schedulability of high-criticality tasks independently
of the behavior of low-criticality tasks. Pessimism related to off-line budget allo-
cation is avoided by an efficient reclaiming mechanism that exploits the budget
left by high-criticality tasks for those active low-criticality tasks that can still
complete within their deadlines.

We are currently investigating a test for guaranteeing the schedulability of
LO-tasks in LO-criticality mode, by computing a lower bound on the amount
of reclaiming available in any time interval. We will then compare the schedula-
bility test with the one proposed in [3] to evaluate the performance of the two
approaches.

References

1. S. Baruah, H. Li, and L. Stougie. Towards the design of certifiable mixed-criticality
systems. In Proceedings of the 16th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS 2010), 2010.

2. Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Haohan Li, Alberto
Marchetti-Spaccamela, Nicole Megow, and Leen Stougie. Scheduling real-time
mixed-criticality jobs. IEEE Transactions on Computers, 61(8):1140 – 1152, 2012.

3. Sanjoy K. Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Haohan Li, Alberto
Marchetti-Spaccamela, Suzanne van der Ster, and Leen Stougie. The preemptive
uniprocessor scheduling of mixed-criticality implicit-deadline sporadic task sys-
tems. In ECRTS’12, pages 145–154, 2012.

4. Sanjoy K. Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Alberto Marchetti-
Spaccamela, Suzanne Van Der Ster, and Leen Stougie. Mixed-criticality scheduling
of sporadic task systems. In Proceedings of the 19th European conference on Algo-
rithms, ESA’11, pages 555–566, Berlin, Heidelberg, 2011. Springer-Verlag.

5. D. de Niz, K. Lakshmanan, and R. Rajkumar. On the scheduling of mixed-
criticality real-time task sets. In Proceedings of the 30th IEEE Real-Time Systems
Symposium (RTSS 2009), December 2009.

6. G.Lipari and S.K. Baruah. Greedy reclaimation of unused bandwidth in constant
bandwidth servers. In IEEE Proceedings of the 12th Euromicro Conference on
Real-Time Systems, Stokholm, Sweden, June 2000.

7. Nan Guan, Pontus Ekberg, Martin Stigge, and Wang Yi. Effective and efficient
scheduling of certifiable mixed-criticality sporadic task systems. In Proceedings of
the 32nd IEEE Real-Time Systems Symposium (RTSS 2011), 2011.

8. K. Lakshmanan, D. de Niz, and R. Rajkumar. Resource allocation in distributed
mixed-criticality cyber-physical systems. In Proceedings of the 30th International
Conference on Distributed Computing Systems (ICDCS 2010), 2010.

9. K. Lakshmanan, D. de Niz, and R. Rajkumar. Mixed-criticality task synchro-
nization in zero-slack scheduling. In Proceedings of the 17th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS 2011), 2011.

10. H. Li and S. Baruah. An algorithm for scheduling certifiable mixedcriticality spo-
radic task systems. In Proceedings of the 31st IEEE Real-Time Systems Symposium
(RTSS 2010), December 2010.

11. C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. Journal of the Association for Computing Machinery,
20(1):46–61, January 1973.

12. Luigi Palopoli, Giuseppe Lipari, Luca Abeni, Marco Di Natale, Paolo Ancilotti, and
Fabio Conticelli. A tool for simulation and fast prototyping of embedded control
systems. In Seongsoo Hong and Santosh Pande, editors, LCTES/OM, pages 73–81.
ACM, 2001.

13. R. Pellizzoni, P. Meredith, M.Y. Nam, M. Sun, M. Caccamo, and L. Sha. Handling
mixed criticality in soc-based real-time embedded systems. In Proceedings of the
ACM International Conference on Embedded Software (EMSOFT 2009), 2009.

14. S. Petters, M. Lawitzky, R. Heffernan, and K. Elphinstone. Towards real multi-
criticality scheduling. In 15th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA 2009), 2009.

15. François Santy, Laurent George, Ph. Thierry, and Joël Goossens. Relaxing mixed-
criticality scheduling strictness for task sets scheduled with fp. In IEEE Computer
Society, editor, ECRTS, pages 155–165, July 2012.

16. Steve Vestal. Preemptive scheduling of multi-criticality systems with varying de-
grees of execution time assurance. In Proceedings of the 28th IEEE Real-Time
Systems Symposium (RTSS 2007), pages 239–243, December 2007.

