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ABSTRACT
Wearable devices are driving the development of post-surgery
rehabilitation procedures, also helping in reducing the recov-
ery time and social costs. This paper presents a real-time
monitoring framework aimed at supporting telerehabilita-
tion sessions for lower-limbs functional recovery. The pre-
sented framework supports patients during the execution of
rehabilitation exercises by monitoring the limb movements
through a set of low-cost wearable sensors and providing
them with multi-modal bio-feedback to enhance the quality
of the performed actions. The system also assists the ther-
apist in the definition of exercises tailored to the patient
and enables the collection of historical data in cloud-based
services for monitoring the effects of therapies and further
analysis.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Inertial Measurement Units, Telerehabilitation, bio-feedback,
limb tracking, wearable sensors, real-time processing.

1. INTRODUCTION
Hospitalization represents a significant monetary cost and

source of stress related to post-injury and post-surgery re-
habilitation. In fact, the progressive ageing of population is
increasing the number of lower limb surgeries, and the de-
mand for rehabilitation will increase over the next decades.
The development of mobile and pervasive technologies can
give a crucial support for reducing the hospitalization time
for patients and the corresponding societal costs, providing
new procedures for rehabilitation and telerehabilitation.

The development of telerehabilitation techniques and tech-
nologies has at least three positive effects: (i) reducing the
workload of the hospitals, thus allowing them to concentrate
on the most critical cases; (ii) enabling patients to continue
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Figure 1: The proposed rehabilitation framework.

their rehabilitation process at home, under specialist super-
vision; (iii) reducing the overall cost for the society.

Rehabilitation is typically carried out under the supervi-
sion of a therapist or physician, who observes the patient
and correct the execution of the exercise, if needed. There
is a broad range of motor rehabilitation devices [30] that
move a limb automatically to follow predetermined trajec-
tories, up to more advanced robotic exoskeletons [25], which
leave more freedom to the patient and prevent wrong mo-
tions through force and impedance control. These machines
are usually required when patients experienced an injury or
surgery and need to perform exercises even before they com-
pletely recover self-motion. For other cases, or in a second
phase of the rehabilitation process, we envision light and af-
fordable systems (based on wearable devices) that support
the telerehabilitation sessions under the remote supervision
of physicians.

To advance the state of the art in this application field,
we present a complete telerehabilitation framework that sup-
ports both the patient and the therapist along the rehabil-
itation path. More precisely, the system supports the ther-
apist in the definition of the exercises specified in terms of
postures and trajectories for the specific patient. During re-
habilitation, the patient is guided by the system to correctly
execute the exercises and, at the same time, is provided with
a multi-modal feedback (e.g., visual, haptic, and auditive)
to enhance the performance of the exercise. All the data
produced during the session are collected and uploaded to
a cloud-based infrastructure for storage and further analy-
sis. The result of the analysis is provided to the therapist
in order to follow the evolution of the patient and tune the
therapy, if needed. An overview of the proposed scenario is
illustrated in Figure 1.
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As a reference application for the proposed framework, we
address the problem of the knee joint rehabilitation, using a
set of wireless motion sensors to track patients actions.

Our framework is based on a distributed systems, com-
posed of: motion sensors, signal processing, data fusion
algorithms, feedback generation, communication protocols,
cloud-based services, data visualization, and therapy adjust-
ment. Limb motion is reconstructed by integrating the sen-
sory data produced by multiple Inertial Measurement Units
(IMUs). Joint angles are then sent via wireless communica-
tion to a mobile device, which provides the required feedback
to the patient. At the end of the rehabilitation session, the
mobile device automatically transfers all data to the cloud
service. The therapist or the physician can then retrieve the
patients data from the Cloud using a PC or mobile device,
analyse the exercises, and modify the exercises and/or the
therapy remotely.

The focus of this paper is the presentation of a complete
patient-centric system (from sensors to service). Several re-
search works proposed systems to monitor limbs motion for
rehabilitation through IMU sensors [18,19], while others fo-
cused on possibilities of using multi-modal motion based
Bio-Feedback to improve skill learning in sports [23]. In
the field of Interaction Design, some researchers developed
a graphical application aimed at easily defining sequences of
actions based on sensor signal’s interactive processing [15].
Other studies found that the possibility for the users them-
selves to define when to receive the feedback enhances the
quality of motions [8,9]. Inspired by those works and based
on our previous experience, we present an application spe-
cific framework, that can however be easily extended and
reused in different use scenarios.

Paper organization. The rest of the paper is organized
as follows: Section 2 describes the framework and its mod-
ules, in particular: Section 2.1 presents existing technologies
and methodologies used to track movements, analyse them,
and provide a feedback and the solution used in the proposed
application scenario; Section 2.2 describes the cloud-based
infrastructure needed to provide services to both patients
and physicians in the proposed telerehabilitation framework;
in Section 2.3 are described the services provided to the
physician to help him in the definition of the rehabilitation
exercises and their supervision. Section 3 presents the open
problems in the development of the framework and finally
Section 4 concludes the work, providing ideas about future
steps and envisioned evolution of the research.

2. FRAMEWORK DESCRIPTION
This Section introduces the principal components of the

framework. In particular, it is composed of: (i) patient sup-
port module; (ii) cloud based services; and (iii) physician
support module. Figure 2 shows a high level representation
of these components and how they interact.

2.1 Patient support module
In this Section we will explore the patient support mod-

ule, composed of: a motion-sensing system; data processing
capabilities; and a task-specific Bio-Feedback system.

2.1.1 Sensing part
When monitoring patient movements it is crucial to cor-

rectly define the constraints under which to perform the

tracking platform selection. These could include issues re-
garding precision in the measurements, portability, costs,
etc.

Technologies and methods that can be used for limb track-
ing are briefly summarized in Figure 3. In the following, for
each technology we briefly describe working principle and
respective pros and cons.
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Figure 3: Motion capture system classification,
adapted from [10]

Optical systems utilize data captured from image sensors
to triangulate the 3D position of a subject between one or
more cameras calibrated to provide overlapping projections.
Data acquisition is traditionally implemented using special
markers attached to a person; however, more recent systems
are able to generate accurate data by tracking surface fea-
tures. These systems produce data with 3 degrees of free-
dom for each marker, and rotational information must be
inferred from the relative orientation of three or more mark-
ers. Pros: the markers worn by people are lightweight and
robust. Cons: occlusion of markers can occur; the system is
bound to the camera infrastructure, not mobile.

Exo-skeleton motion capture systems track body joint an-
gles and are often referred to as exo-skeleton motion cap-
ture systems, due to the way the sensors are attached to
the body. Mechanical motion capture systems are real-time,
relatively low-cost, free-of-occlusion, and wireless (unteth-
ered) systems that have unlimited capture volume. Typi-
cally, they are rigid structures of jointed, straight rods linked
together with potentiometers that articulate at the joints
of the body. Pros: accurate, not fixed infrastructure, can
provide limited force feedback or Haptic input. Cons: can
hinder execution of movements.

Electro-Magnetic systems calculate position and orienta-
tion by the relative magnetic flux of three orthogonal coils
on both the transmitter and each receiver (placed on users
body). The relative intensity of the voltage or current of the
three coils allows these systems to calculate both range and
orientation by meticulously mapping the tracking volume.
The sensor output is 6DOF (Degree-of-Freedom), which pro-
vides useful results obtained with two-thirds the number
of markers required in optical systems. The markers are
not occluded by non-metallic objects but are susceptible to
magnetic and electrical interference from metal objects in
the environment and electrical sources. Pros: less markers
than optical marker-based systems. Cons: metal objects
and electrical sources interfere with sensors, the wiring from
the sensors can preclude some movements.

Inertial systems: Inertial Motion Capture [24] technol-
ogy is based on miniature inertial sensors, biomechanical
models and sensor fusion algorithms. The motion data of

2



Patient's
context

Physician's
context

Wireless 
wearable 
devices

Personal
mobile 
device

Patient-related
elaboration

Physician-related
elaboration

Storage

Online communication

Study-research
oriented

Data processing

Cloud-based 
services

Figure 2: The complete system usage

the inertial sensors can be transmitted (via wireless) to a
computer, where the motion is recorded or viewed. Iner-
tial systems use gyroscopes to measure rotational rates, ac-
celerometers to measure accelerations, and magnetometers
to measure magnetic natural field. Those signals are merged
to obtain more accuracy in estimation of 9DOF, using sen-
sor fusion. Pros: no solving, portability, and large capture
areas. Cons: ’floating’ where the user looks like a mari-
onette on strings, lower positional accuracy and positional
drift which can compound over time.

There are several commercial inertial tracking products
available today. Typical full body tracking systems, such
as the Moven motion capture suite by Xsens1, or similar
product by Intersense2, and many others. They are very
expensive, and are not flexible because they cannot be cus-
tomized and expanded (e.g., adding other kind of sensors),
and use proprietary wireless communication protocols that
requires special hardware. There are also several academic
works involving motion tracking using wireless nodes with
on-board IMU. Nevertheless, most of them are highly appli-
cation specific focusing on data processing rather than on
the sensor node hardware and firmware, because they use
already available nodes and the output of their sensors.

For these reasons, we decided to design from scratch a
low-cost tracking system based on a set of wearable inertial
measurement units (IMUs) coordinated as a wireless body
area network [4]. Each node monitors a single rigid limb
segment and can be extended connecting several additional
sensors (e.g., EMG, pressure, temperature).

Nodes send acquired signals to a mobile device (i.e., smart-
phone, tablet) via a Bluetooth Low Energy (BLE) channel,
selected for a number of reasons, among which its widespread
adoption, lower power consumption, better immunity to in-
terferences, and net payload data-rate [20].

Body movements are tracked by integrating the angular
information acquired from the nodes. A crucial aspect in

1Xsense MTi - www.xsens.com/products/mti/
2Intersense InertiaCube2 - www.intersense.com/pages/18/
55/

monitoring limb positions and movements is to guarantee
a good level of precision in the measurements. Concerning
knee telerehabilitation, the flexion/extension angle estima-
tion is required to have an error lower than 1 degree.

Data are used to present a feedback to the user, so it is
crucial to guarantee a bounded delay (i.e., few hundred of
milliseconds) between the action performed and the feed-
back visualization. This is a common requirement shared
among a wide range of applications, from gaming to remote
teleoperated systems.

Furthermore, the nodes are low-power and characterized
by a long lifetime, tiny dimensions and light weight. A long
lifetime implies a that the user need only seldom to recharge
the nodes. Size and weight are required to be small in order
to be comfortable and in order to allow accurate measure-
ments, through a low inertia of the sensor device.

To further increase the system usability, a self-calibration
procedure has been devised to help the patient wear the
nodes in a more comfortable way without reducing the ac-
curacy of measurements.

2.1.2 Exercise analysis and evaluation
This section presents methods that are used to process

exercise related signals obtained from the sensing system.
In particular we concentrate on the analysis of joint angle
signals. In fact, joint tracking, based on signals coming from
sensors, is logically separated from performance analysis and
data visualization. Our sensing system, presented also in [4],
is able to provide us αL(t) and αR(t), respectively the angles
of the left and right knee joint at time t. Figure 4 presents
the basic logic blocks composing the data processing flow.

The joint angles are tracked over time as the patient exe-
cutes exercises, representing the effects of her actions. Data
and signal processing techniques allow to study how the ac-
tions are performed, and how much the actual actions de-
viate from a reference pattern of αRef (t). Different tech-
niques, appropriate for motion data signal processing and
analysis do exist. We coarsely categorize these techniques
into frequency domain, time domain oriented, and hybrid.
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Frequency domain. The calculation of the spectrum of a
signal allows to get insights into the single frequency com-
ponents of signals. There are several techniques oriented
at calculating the frequency spectrum of signals, based in
principle on Fourier transform paradigm (e.g., Fast Furier
Transform (FFT), Discrete Fourier Transform, ...), charac-
terized by varying accuracies and computational complex-
ities [31]. Frequency analysis can be successfully used to
study ”hidden” frequency structures of motion (e.g., stroke
affected or Parkinsonian patients [28]). However a direct
usage of the output of such techniques can be more cumber-
some for physicians, for which time-domain analysis offers a
more intuitive interpretation.

Time domain. A broad range of time series analysis [13]
techniques can be considered as time domain oriented. In
order to calculate the degree of similarity of two time series,
the most simple calculation is to calculate the euclidean dis-
tance between points at corresponding times t. Dynamic
Time Warping [18, 19] can be considered as an extension
to euclidean distance, allowing to compare signals that are
shifted and compressed in time with respect to each other.
Another appropriate time-domain oriented analysis is statis-
tic; in fact Pearson’s cross-correlation has successfully ap-
plied to rowing motions, to detect synchronism of different
rowers [5].

Hybrid. Wavelet is a signal processing technique that com-
bines benefits of time and frequency domain [3]. In fact
wavelet calculates a series of coefficients that are related
to both frequency and time [2]. Comparison of these co-
efficients among the reference signal and the actual signal
can provide valuable information. Another class of methods
falls within the family of Artificial Intelligence: Forward
Neural Networks have been applied to perform diagnoses
on Electro-Cardio-Gram (ECG) signals [17]. A mixed ap-
proach, where wavelet transform, phase-space reconstruc-
tion, and Euclidean distance are used to classify normal
and epileptic ElectroEncephaloGraphy (EEG) signals is pro-
posed in [21].

What exact motion analysis techniques and methodolo-
gies to use in the end system depends upon the exact exer-
cise that needs to be carried out. In fact, if for example an
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Figure 5: The feedback loop

exercise would be defined as the repetition of 100 times a
motion of the joint between 90◦ and 120◦ a simple thresh-
old based system would be enough. However if we need to
perform more complex motion exercises, the usage of DTW
or similar techniques would enable a robust comparison of
a reference recorded signal (i.e., αRef (t)) with the actual
signal αR.

2.1.3 Bio-Feedback
This Section explains how to provide a Bio-Feedback to

the user, based on the outcome of the performed analysis,
explained in the preceding section.

Bio-Feedback is thought to provide information back to
the user of a system, Figure 5. The development of bio-
feedback systems demands for at least two concurrent activ-
ities: knowledge of existing techniques; and understanding
the needs of the specific user groups [5].

Three loops of feedback can be described [11]: Extero-
ceptive feedback, the outcome of the movement through the
person’s senses, and from external people or devices; Propri-
oceptive feedback, from proprioceptors in the body and the
balance sensors that provide information on the feel of the
movement; Kinaesthetic feedback, that is information going
to the spinal cord from the limbs and joints, to give infor-
mation treated at an unconscious level.

An augmented feedback, provided by a human expert or
a technical display, effectively enhances motor learning [27],
through an enhancement of natural person’s feedback loops.
A successful feedback, is a feedback that is able to con-
vey information, it is a way of communicating (verbally or
non-verbally). In fact, each sense (vision, tact, audition)
is able to decode specific environmental stimuli, in a dif-
ferent way. Exploiting the advantages of each sense in the
most appropriate way means to become able to design multi-
modal feedback systems [27]. With respect to the goals of
the Bio-Feedback, we can coarsely classify it, in our specific
case, into: (a) direct action reporting oriented; (b) anticipa-
tory and motivational oriented; and (c) corrective and error
reporting oriented.

The effects of Visual feedback systems if deeply discussed
in [14]. The effects of visual feedback on altering runners
performance is shown in [12]. While, regarding Haptic (vi-
bration) feedback systems, a good source of information
is [22].

Regarding Auditory feedback, different communities and
research projects provided and provide valuable knowledge:
in fact, the design of Auditory displays is a central issue
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in the Sonic Interaction Design (SID) COST Action 3, while
the International Community on Auditory Display (ICAD) 4

is focused on Auditory Displays in general. Auditory Dis-
play, in the form of Sonification [16], has been successfully
used by one of the authors to present invisible interaction
effects, between swimmers hands and water masses, in real-
time to both athletes and trainers [6]. A sonification frame-
work geared towards gait problems is presented in [29]. That
work proposes different mappings [16] for representing ac-
tions, and shows how to design a simple to use mapping
mixer. It is however missing considerations about how to
measure and characterize the ”correct” executions and how
to represent them acoustically.

As depicted in Figure 5, Bio-Feedback is thought to close
the loop of sensing and signal processing, providing valuable
information online and in real-time back to the user, in our
specific case the patient. As we mainly concentrate on a
system that is not mechanically hindering or guiding spe-
cific motions, the design of the most adeguate Bio-Feedback
methodology is not an easy task [27].

In the following, we analyse the single modes of our multi-
modal Bio-Feedback ecosystem. The decision about what
exact information to map to which feedback quality is post-
poned to a future experimentation on test subjects. Consid-
ering the patients context of the proposed framework as com-
posed of embedded sensing devices (also capable of provid-
ing limited audio and vibration stimuli) and a mobile device
(capable of displaying 2D, 3D and videos, and of reproduc-
ing and synthesizing sounds in real-time) we next analyse
how this possibilities are used to compose the multi-modal
Bio-Feedback system.

The visual feedback will mainly address the problem of
providing information about what to do. More in particular,
on the display of the mobile device of the patient we provide
a visual feedback, composed of three configurable parts: a
3D avatar, a video and a 2D plot. The 3D avatar can be
configured to show either the actual motions performed by
the user (using the kinematic information coming from the
sensors), or the expected motions, or an integration of the
two, through a ”ghost” avatar. Along with the avatar we can
display a video recorded by the physician when the patient
was executing the exercises under his control. A 2D plot of
the actual motion’s signal superposed over a goal track, Fig-
ure 6, can also represent another way of providing a visual
feedback.

The haptic feedback, produced directly on the wearable
devices, is used to drive the attention of the user to a par-
ticular limb.

The auditory feedback is primarly used (a) to tell how good
or bad the patient is performing current task, in real-time
and (b) to provide an anticipatory rhythmic pattern to guide
the motion. Simplest sonification parameter mappings [16],
like a direct pitch mapping, offer the great advantage of
a tight coupling between originating phenomenon and the
output audible effect. More complex task-oriented mappings
represent a bigger hurdle for the user, but provide better
results after some training [7].

The actual composition of the user’s visual display in
terms of what elements to use (e.g., the avatar, the video)
and what information to map to the auditory display sys-

3www.cost.eu/domains_actions/ict/Actions/IC0601
4Official site of the International Community on Auditory
Display icad.org/

Figure 6: A tracking task. Adapted from [26]

tem is left completely configurable, in order to enable the
physician to adapt it to the needs of the patient. In fact, we
provide to the therapist a tool that allows to compose not
only the type of exercises, but also allows to build a person-
alized feedback scenario, that suits the needs of the user. As
an example, consider a children that has to train, it would
make sense to build an interface with some visual and audi-
tive stimuli that are attractive for him. On the other hand,
a person with some cognitive impairment would probably
benefit from a simplified yet informative feedback, to help
carrying out the exercises.

2.2 Cloud services
The cloud infrastructure is in charge of collecting data

from the different actors using the framework and elaborate
them in order to provide extra information useful to improve
the rehabilitation.

Containing medical data, the communication links be-
tween the patients and the server as well as those connecting
the physicians need to be protected state of the art security
facilities, mandatory for treatment of medical data. Same
concerns apply to the storage of acquired data as well as all
patients information.

The storage contains different set of information, among
them the most important are:

• the archive of all the possible exercises that a physician
already prescribed and that can be reused;

• the list of exercises prescribed to a patient;

• the data acquired from the device during each session
both with the physician and at home.

To better analyse the stored information, they could be
integrated with other patient vital signals and other data
from its medical record. In order to have access to those
data the system must be able to interoperate with a personal
health record (PHR). If some feedback needs to be provided
to the patient while he is performing the rehabilitation exer-
cise, also the low-level infrastructure must be able to enforce
these timing constraints like proposed in JUNIPER 5.

The collected data can be used to improve the analysis
of the patient rehabilitation for evaluation and tuning but
can also be elaborated to compare the results from different
patients.

Patient-centric elaboration The server could use its
computation power to perform a deeper analysis of the data
acquired during a session to distil extra information for the
physician. It has access also to data from all previous reha-
bilitation session that can be analysed to compute informa-
tion to study the patient evolution during the rehabilitation.

5JUNIPER Project - http://www.juniper-project.org/
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Inter-patient elaboration Data coming from sessions
performed by different patients can be analysed together to
provide extra information for the physician. Some examples
of the results are the comparison of a patient rehabilitation
the detect deviation respect to the average trend, the noti-
fication to the physician of exercises which produced good
result on patients with similar conditions and the possibil-
ity to create a wizard-like approach that simplifies the de-
sign of the rehabilitation given the patient initial status and
the result of the exercises on similar patients. This kind of
analysis can be performed with different machine learning
techniques, like the one proposed in [1].

2.3 Physician support module
As we anticipated in the introduction, our framework is

supporting the physician on two levels: as an aid during
therapy definition; and as an analysis and management tool
during the telerehabilitation phase.

Computer Assisted Therapy Definition (CATD). The physi-
cian is supported by the CATD software coupled with the
sensing systems, worn by the patient, in defining the sets of
exercises for the telerehabilitation. In particular, the patient
executes the rehabilitation exercises under the supervision
of the physician. In the meantime, the physician, using a
graphical interface, as the one depicted in Figure 7 selects
which kinematic and static magnitudes (e.g., limbs’ posi-
tion, knee angle) are of interest, visualizes them, and selects
periods of interest. These periods of interest are tagged ac-
cordingly to physicians notes and saved as target motions
for the telerehabilitation sessions. As a particular feature
of our system, the feedback subsystem can be configured by
the physician accordingly to the particular exercises and the
specific needs of the patient, e.g., choosing the right stimuli
for user categories.

Data visualization / therapy management. During the tel-
erehabilitation period, i.e., when the patient is executing the
prescribed exercises, the physician is kept up to date with
the achieved results of her patients. The physician visual-
izes the kinematic values obtained from the sensing system,
both as a 2D plot and as a 3D avatar, exactly reproducing
the patients’ limbs motions. Moreover, the physician can re-
motely adjust the therapy in terms of composition of exercise
series (order of execution of movements, number of repeti-
tions, quality of execution goals, etc.). Furthermore, thanks
to the inter-patient elaboration module, implemented in the

Cloud, and described in Section 2.2, the physician is sup-
ported in studying how different patients evolve in response
to the prescribed rehabilitation therapies, in order to im-
prove future rehabilitation and telerehabilitation practices

3. OPEN PROBLEMS
The development of the proposed framework opened some

issues regarding the topic it addresses. In particular, the
most relevant issues regard the analysis of the collected data
and the selection of the most appropriate bio-feedback. Re-
garding the analysis we present two challenges:

• How to evaluate the correctness of the execution of
the exercises and how to score the quality of the per-
formance?

• How to aggregate data from different patients and com-
pare their evolution over the time of the therapy?

Furthermore, regarding bio-feedback, we notice that it is
hardly arguable that a single one-fits-all feedback does exist,
in fact, we also provide following open issues:

• What information to convey to the user?

• Which is the best suited form of feedback for each case?

• When do the effects of the feedback become perceivable
by the patient?

• Provided with a bio-feedback, does the patient change
the execution of the current cycle, or rather is she
changing the motor planning of the next cycle?

4. CONCLUSIONS
In this paper we presented a framework to enhance lower-

limb functional recovery through telerehabilitation sessions.
The framework comprises a sensing part, based on IMU sen-
sors and data fusion algorithms, a system to provide user-
specific Bio-Feedback and a physician related part. In fact,
the physician is supported both in the definition of exer-
cises and during the monitoring of the patients evolution.
The presented approach can be easily adapted to other fields
of application: neurological rehabilitation (e.g., Parkinson,
Stroke) and sport training.
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