
A Framework based on Real-Time OS and Multi-Agents for
intelligent autonomous robot competitions

Davide Calvaresi∗, Paolo Sernani†, Mauro Marinoni∗, Andrea Claudi‡, Alessio Balsini∗,
Aldo Franco Dragoni† and Giorgio Buttazzo∗

∗Scuola Superiore Sant’Anna, Pisa, Italy. {name.surname}@sssup.it
†Università Politecnica delle Marche, Ancona, Italy. {p.sernani, a.f.dragoni}@univpm.it

‡ADB Broadband SPA, Milano, Italy. a.claudi@ext.adbglobal.com

Abstract—Robots interacting with human beings are
widespread in modern environments, and those performing
intelligent tasks without human supervision need to take into
account potential criticalities. Making robots compete enable
their evaluation with respect to navigation, mapping, object
recognition, tracking and manipulation capabilities. Robot
competitions date back to the early ’80s proving to be useful
for educational and research purposes. Several competitions
are focused on human-robot interaction, even though they
rarely produce as outcome robots capable to seamlessly interact
with human beings. The main reason for this is the lack of
understanding of human intentions and the failure to rapidly
react to human actions. In other words, an ideal robot must
be able to communicate and coordinate with humans or with
other robots, to act autonomously, and to react under real-time
constraints. This paper proposes a new framework to simplify
the development of intelligent robots, testing them in a real
robot competition. The framework combines (i) a multi-agent
system to interact with humans, other robots and perform
object identification and pathfinding, and (ii) a real-time motion
control deployed on the Erika RTOS, to move the robot and
react in a timely fashion to changes in the environment. In the
considered competition scenario, the robot is required to identify
and collect common objects in a bounded arena with dynamic
obstacles in a limited amount of time, receiving commands
from humans and competing with other robots. This approach
confirms the powerful combination of multi-agent systems,
computer vision, and real-time systems.

Keywords: Multi-Agent Systems, Path-planning, Robot Com-
petition, Real-time control.

I. INTRODUCTION

The first mobile robot competitions were proposed in the

early 80s and inspired generations of students and researchers

in the development of AI and intelligent robotics. Compe-

titions provide a goal, objective performance measures and

media coverage to present research prototypes to a wide

audience [1]; moreover, they are a well-known practice to

test collaborative and competitive behaviours [2]. Faster and

smarter robots started to be employed in competitions over

the years, and thus, as a result, competitions changed and

pushed the limits to explore new research challenges. For

example, with the introduction of better sensors, the compe-

titions started to take place in open environments rather than

strictly defined ones. The same pattern can be observed in

autonomous and industrial robotics. Currently, robots perform

preprogrammed sequences of operations in highly controlled

and constrained environments. However, some robots are able

to perform basic intelligent actions, in terms of motion or

reasoning, with no need for human supervision. The need

for autonomous robots that can interoperate with other robots

and human beings comes from different application fields,

ranging from manufacturing to ambient assisted living [3].

Making robots able to operate in unknown environments and

facing unexpected situations, involving variables not known a

priori, is a challenge that will last for years. Commonly known

as drones, self-driving cars and smart terminals, autonomous

robots are starting to pervade our increasingly “smart” soci-

ety. In the future, they will be able to produce, share and

consume services autonomously as part of a fully connected

network [4]. To achieve such a goal, concepts and techniques

from both Artificial Intelligence (AI) [5] and embedded and

distributed systems [6] have to be integrated.

This paper describes a framework for autonomous mobile

robots which makes use of AI techniques, (mainly obstacle

avoidance and path planning), under real-time constraints.

To show the advantages of the proposed solution, robot

capabilities are tested in a real environment presented as an

open arena competition with other autonomous robots, with

the goal of finding, collecting and returning objects back to

their home base in a given amount of time, while avoiding

obstacles and opponents. Typically, AI algorithms tend to

optimize paths without taking time into account . However, in

robotic systems, time is a correctness metric. Indeed, it may

be counterproductive to perform an optimal action if it takes

too much time to do it. In robotic scenarios, having a delayed

optimal result is useless and even dangerous. For example, it

is worthless to determine the optimal path after the robot has

crashed into an obstacle and could put human security at risk.

The solution described in this paper employes two dis-

tinct computational models: (i) event-driven model and (ii)
imprecise computation. The event-driven model is typical for

agent-oriented programming in which agents must be reactive

to external stimuli, and are proactive based on their internal

status. The event-driven computational model is also useful for

communication and reasoning. The imprecise computational

model is instead useful to produce an approximate sub-optimal

result in time even when the system is in an overload con-

dition. Time-critical tasks such as path planning and obstacle

avoidance are particularly suited for this computational model.

The main contribution of the proposed approach is the

integration of the two computational models into a single

giorgio
Text Box
Proceedings of the 11th International Symposium on Industrial Embedded Systems (SIES 2016), Krakow, Poland, May 23-25, 2016.

software system and a single autonomous robot. Software

agents are compliant with the IEEE standard for agent com-

munication and interactions established by the Foundation for

Intelligent Physical Agents (FIPA) [7]. The developed software

agents take communications and high-level reasoning into

account, reacting to external commands coming from humans

or other software entities, while - at a lower abstraction level

- real-time tasks take care of sensing and motion control.

The proposed solution combines different agents into a sin-

gle robotics platform: each agent is specialized in executing

precise tasks. Modeling the required computing processes as

a multi-agent system allows implementation of the demand,

and delegation [8] of the tasks needed by the robot. Thanks

to the communication mechanism between agents, based on

asynchronous standard messages, agents can be substituted and

task updated without affecting normal system operation. In ad-

dition, using a multi-agent platform, agents (and their services)

can migrate from an embedded system to another, migrating

the code towards the system that needs the elaboration, rather

than moving the data.

The paper is structured as follows: Section II proposes a

brief analysis of the state of the art of autonomous robots

in terms of software analysis and applications. Section III

briefly presents the scenario and experimental setup. Sec-

tion IV presents the AI and real-time techniques used on the

robot. Section V discusses the experimental results. Finally,

Section VI concludes the paper with a critical analysis.

II. RELATED WORK

The term “autonomous” describes a class of robots that is

supposed to perform high-level tasks without external inter-

vention. Autonomous robots are used in various fields and

require a timely reaction when operating with both humans or

other robots. The set of techniques and technologies involved

in robotics is quite heterogeneous [9]. A wide range of

components must be integrated to satisfy several kinds of

requirements relative to temporal constraints, physical and

control level, commands elaboration, and decision-making.

Complex architectures can even provide interoperability tools

and libraries.

For example, the CARMEN [10] project provides a three

layers architecture based on software agents for mobile robots.

Similarly to the proposed approach, motion and strategic tasks

are conceptually separated. In CARMEN, the lower layer is a

hardware interface that provides low-level control and sensor

integration, while in the presented framework, the motion

relies on a Real-Time Operating System (RTOS). The CAR-

MEN’s middle layer implements strategies per tasks such as

intermediate navigation and localization, followed by the upper

layer, which realizes user-defined applications connected to the

middle layer. On the other hand, in the presented approach,

strategies and human interactions are ruled by interactions in

the agents ecosystem.

ORCA2 [11] is another interesting robotics software inte-

gration framework. It makes use of concepts of the component-

oriented software engineering paradigm and is based on

ZeroC’s internet communication engine (ICE) middleware

system. ORCA2 composes a robotic software application as

a network of communicating independent modules, which

are architecture and transport mechanism independent, as in

the proposed solution. The differences between ORCA2 and

the proposed framework rely on the structure design and

communication method, which exploits the standard FIPA in

the case of the presented solution.

Robotic frameworks can also be supported by the well-

known Robot Operating System (ROS) [12] which is a

collection of open-source software applications including a

communication middleware. Unlike the Jade [13], the Multi-

Agent System used in the proposed framework, ROS provides

hardware abstraction, device drivers, libraries, visualizers,

message-passing and package management. The ROS system

is composed of independent processes called nodes, that are

organized in a graph. In such a platform, nodes talk to

each other (exchanging messages) through a publish-subribe
mechanism.

In the context of robot competitions, the main deliberation

functions typically taken into consideration for robots are six:

planning, acting, observing, monitoring, goal reasoning, and

learning. Normally, a mobile robot or a service domestic

robot, such as IDEA [14] or T-REX [15], performs just

a small subset of the aforementioned deliberation functions

(i.e., planning and acting). More complex systems need more

deliberation functions; for example, the proposed framework

and DS1/RAX [16] (an autonomous spacecraft) need planning,

acting, monitoring, goal reasoning and observing functions.

A common approach to evaluate strengths and weaknesses

of different designs is to organize robot competitions. Such

competitions provide a standardized testbed for different

robotic systems [17]. Competitions can be classified in two

main categories [18]: software-based and software/hardware-

based. The first set of competitions is mainly about planning

problems, vision, and speech processing. The performance

metrics are the computational time, the number of problems

solved, and the quality of the solutions. The second set

of competitions involves robotic competitors running in real

environments. The performance metrics takes into account ca-

pabilities of navigation, mapping, object recognition tracking

and manipulation, etc. Different techniques and algorithms

are proposed for each of these parameters with motion and

obstacle avoidance as key activities. The competitions can take

place in both known and unknown environments. Either way,

a common approach is to implement a navigation system in

two steps [19]: the first is to compute a collision free path

from the start to the target position, whilst the second is to

define and perform the motion commands. A common sensor

for navigation systems is a Laser Range Finder (LRF) [20]

that helps to define the surrounding environment. In the

literature, several works assume the robot as a point [21],

[22]. However, modeling it as a finite area offers several

advantages [23]. In the case of unknown fields, an approach

can be to develop a full coverage path [24]. It can be based

on a field decomposition, performing a complete exploration

with the robot, detecting and memorizing all the environmental

features. This method provides full knowledge of the field but

it is extremely resource and time-consuming and not suitable

for changing environments. Another approach is to perform a

fuzzy navigation [25] with onboard proximity sensors [26] or

cameras. In the case of fields known a priori, the main chal-

lenge is to shift to object recognition [27] (i.e., color, shape,

etc.). Identifying an object according to its color involves

solving light variations problems [28] and applying a Fuzzy

Color Contrast Fusion (FCCF) algorithm [29] to perform color

segmentation enhancing the contrast or degrading it resolves

them. A useful color segmentation method was used to identify

the orange ball in the Robocup soccer humanoid league

in 2010 [30]. An object can be also identified performing

a shape detection [31]. Such a technique involves solving

misalignment problems [32] and shape matching [33].

Summarizing, in line with the most effective existing frame-

works, motion control and intelligence functions are sepa-

rated. Furthermore, recruiting a standardized communication

protocol simplifies interaction, extensibility, and modularity.

The intelligence realized through an agent ecosystem exploits

the efficiency and robustness typical of Multi-Agent Systems

(MAS). Finally, thanks to the RTOS, the motion control system

timely interacts with the strategic layer respecting the specified

timing constraints.

III. SCENARIO AND EXPERIMENTAL SETUP

The robot described in this paper took part in a robot

competition held at the “Università Politecnica delle Marche”,

Ancona, Italy. Each team was required to program identical

robot platform consisting of an STM Discovery board, a Pand-

aBoard ES, and a Logitech high-definition (1080p) webcam.

The STM Discovery board was equipped with an STM32F4

Cortex M4 micro-controller running the Erika RTOS [34] to

control two DC motors, while the PandaBoard ES used a dual-

core ARM Cortex-A9, 1 GByte DDR2 RAM for high-level

computation. A laptop equipped with an Intel Core 2 Duo

P8700 2.53 GHz and 4 GB DDR3 RAM was used to run

software that provides competition-management services and

another Logitech HD webcam was shared among robots to

acquire aerial pictures of the race field. The onboard webcam

and the shared webcam were identical. The robot 3D model is

shown in Figure 1(a), and the real robot (internal components,

cover prototype, and final version in the competition field)

is shown in Figure 1(b). According to the competition rules,

the teams had to develop a software agent container based

on the JADE agent framework [13]. This container had to

run on the PandaBoard and join a common JADE-based agent

platform so that all the agents could communicate. In this

scenario, an agent is an autonomous software entity operating

in a network of peer agents. According to Wooldridge and

Jennings [35] a software agent is autonomous, meaning that it

owns the control over its internal state; it has social abilities,

in the sense that it is able to communicate with other agents

with asynchronous messages; it is reactive, meaning that it

is able to react to external stimulus such as messages from

other agents. Finally, an agent can be proactive, in the sense

that it can exhibit goal-oriented behavior. The teams were

required to adhere to such an agent definition. Indeed, each

agent had to have its own tasks, communicating with other

agents by means of FIPA-ACL messages. Each agent had to

pursue its own goal, such as object recognition, path planning,

etc. The entire decision-making process took place at the agent

level. During the match, the team could communicate with

the robot using Android Application Programming Interfaces

(APIs) for automatic speech recognition. Finally, the STM

Discovery board was in charge of robot motion, subject to

real-time constraints.

Fig. 1. (a) Robot 3D model; (b) Robot real model.

A. Goals

Focusing on research challenges, the competition aimed at

integrating artificial intelligence and real-time systems tech-

niques: the robot combined computer vision and obstacle

avoidance, with the need (i) to perform movements on time to

avoid hitting other competitors, field borders, and obstacles,

and (ii) to gather objects before the opponent in a minimum

amount of time.

B. Rules

The minimal set of rules follows:

• Robots must start at the given home base;

• Robots must collect as many targets as they can;

• Robots cannot hit the obstacles or with each other;

• Robots cannot steal targets from opponents home base;

• Robots must operate autonomously;

• Robots must obey penalties and commands from the

referee agent.

The competition started when a Referee agent registered

one agent for each team. The Referee agent sent them a FIPA-

ACL message with content “Start”. During the competition,

an agent from each teams JADE container could demand the

“AirCamera” agent, at most every 200 ms, to take a picture

from a camera placed above the race field. Illegal requests

were refused. The robot not following the rules received

a penalty from the Referee agent, in the form of a FIPA-

ACL message with content “penalty”. After receiving such

a message, the agent in the robots agent container had to stop

for a specified amount of time. The Referee ended the round

sending an FIPA-ACL message with content “Stop”.

C. Race field

The competition took place in a real race field. A 3D and

2D view of the race field model is shown in Figure 2. The

field’s ground was black with the borders of the field and the

obstacles in red. The yellow and purple squares at opposite

corners were the robots’ home bases where they had to bring

the blue and green cardboard parallelepipeds, the objects,

collected in the field. The competition organizers set different

objects and obstacle maps for each round.

Fig. 2. Competition scenario: (a) Field 3D model; (b) Real Fild side view;
(c) Real Field airCamera view.

IV. THE PROPOSED SOLUTION

This section presents the proposed solution and its com-

ponents, motivating the strategic choices. The strategy is

to delegate and distribute duties among agents in order to

maximize parallelism and agents’ specialization on specific

functions. Each agent has specific functionalities that can be

triggered by time, specific agents’ goals, reception of specific

requests, or specific events. Such functionalities are coded as

combinations of JADE’s behaviors (waker, cyclic ticker, and

oneShot) [13]. The first step is to require the field image

Figure 2(c) to the AirCamera agent, which provides an aerial

image of the field. There is a time limit of 200 ms on

consecutive requests placed on AirCamera and those that come

in a shorter time period are rejected. Once processed, the

image provides the robot’s position and orientation and the

obstacles positions. The second step is to find the target and

determine the path needed to reach it. Recalling that software

agents interact by exchanging messages, Figure 3 shows the

proposed agent system and interactions between them. Agents

are distributed among an Android smartphone, a robot, and a

laptop is in charge of the competition control.

Fig. 3. Agents Framework: organization and interactions.

Referring to Figure 3, the Vocalist is the agent working

on the mobile phone. It makes the communication between

the team and the autonomous robot possible, translating the

human (vocal) indications into actual messages, thus activating

the interaction V1:

• V1: target values and the “ready state” (from the team)

have to be communicated to the Reader agent in order to

start the robot.

When the Reader receives messages from the Vocalist, it

reacts performing interactions RED1, RED2 and RED3:

• RED1: information about target values, which impacts

on target selection, is sent to the PathSetter agent, along

with both the “ready state” and the actual “start race”.

This means that the race is started.

• RED2: if the Reader receives motion commands from

a human, it sends them to the DriveMeCrazy agent in

charge of communicating with the motion system.

• RED3: all the information received is sent to the Logger
agent in charge of publishing them in the web page

depicted in Figure 4.

As described in Section III, the match actually starts when

the Referee agent communicates to the robots (in the ready

status) the actual “start race”. The Scout agent is in charge

of exchanging information with Referee and AirCamera. The

start of the match generates the message REF1.

• REF1: is a single message that communicates to the robot

that the match has started.

This event triggers the following interactions:

• S1: Scout is allowed to ask an image from AirCamera at

most every 200 ms. If the request is accepted, AirCamera
sends Scout a message with an image. Otherwise, it will

notify an error.

• S2: saves the image and notifies PathSetter.

• S3: sends match status, info and behaviours to Logger.

PathSetter is in charge of visual processing and path-finding.

This agent is characterized by a ticker behavior which activates

a set of tasks every 200 ms. The image processing algorithm

is composed of multi-step activities: cell decomposition, robot

detection, target identification, target selection and obstacle

detection. This algorithm is presented in Section IV-B. When

path calculation is finished, PathSetter sends the messages PS1

and PS2:

• PS1: communicates to DriveMeCrazy the set of move-

ments needed to reach the target.

• PS2: communicates to Logger the robot’s position, target

position and path.

When DriveMeCrazy receives PS1, it performs the interac-

tions DMC1 and DMC2:

• DMC1: transfers motion commands to the STM Discov-

ery board which is in charge of the DC motors.

• DMC2: receives information from the STM Discovery

board about the motors’ status, and then sends them to

Logger.

If an error is detected with respect to the path to follow, the

interaction DMC3 is activated.

• DMC3: DriveMeCrazy communicates variations with re-

spect to the expected path (e.g. the robot has been hit

by the opponent, an error happened during the motion

control, etc.), requiring a new input from PathSetter.

If Referee sends “penalty” or “end game” commands, inter-

actions S4 and S5 are activated.

• S4: PathSetter does not need to compute until a new order

is received or time penalty is expired.

• S5: Motor “stop” is immediately required.

A. Vocal Interaction

The system makes use of the Google APIs to perform

speech recognition. The Vocalist agent, Figure 3, runs on an

Android smartphone by means of the JADE-LEAP add-on

for JADE [13]. JADE-LEAP allows to create a lightweight

container (the “front-end”) on smartphones and embedded de-

vices, providing a basic JADE run-time environment; advanced

JADE functions are delegated to a “back-end” container run-

ning on a remote server. When all the needed functionalities

are activated, the Vocalist agent is created. As a regular

agent, Vocalist is registered into the JADE Agent Management

System, which is automatically provided by the JADE main

Fig. 4. Robot Log Web Interface.

container running on the robot. Vocalist acts as a listener in an

app to control the robot, and sends instructions to the Reader
agent. Thus, the vocalist agent is an interface between the

human operators (the members of the team) and the robot con-

trol. Figure 5 shows the app interfaces. Commands are divided

into two categories. The mandatory commands, Figure 5(a)

are: “stop”, “Command List”, “Send a command”. In each

competition round, before the actual “start race”, each team

was requested to vocally communicate the color of the targets

to be gathered by the robot. Hence, during the competition,

the mobile app did not interfere with the autonomous systems,

even if optional commands (“start”, “stop”, “go home”, “left”,

“right”, “step forward”, “step back”), usable only in case of

emergency, were implemented.

B. Computer Vision

As said before, during the match, the Scout agent sends

every aerial image of the field received from the airCamera
to the PathSetter, which is in charge of managing the computer

graphic. The image processing makes use of the OpenCV

library (a set of tools used for the computer vision [36]).

cvBlob is a subset of libraries that allows a real-time image

processing of moving objects [37]. In the computer vision

domain, a blob is a group of connected pixels with the same

logical state.

The first step of the analysis requires to identify robot

position and orientation, through a special marker on the top

of the robot. To find the marker, parameters such as minimum

and maximum dimensions of the blob area, and the HSV

color code need to be set. Since the field illumination is not

homogeneous, to identify the marker in all the fields, a range

of HSV values, rather than a single color code, need to be

set. The HSV range tuning is shown in Figure 6(a). In order

to facilitate the understanding of the tuning effectiveness, a

Fig. 5. Smartphone App for Human-Robot Interaction.

merge made out the of several real pictures has been realized

and processed. Figure 6(b) shows the results of such a process.

Fig. 6. Robot marker image processing: (a) HSV range tuning, (b) processing
results.

The second step consists in finding targets and identifying

the most “convenient” one using a proper cost function.

First of all, the image is cropped to the field dimension

to exclude objects out of the field, thus avoiding incorrect

target identification. As stated in Section III, targets are a

combination of blue and green objects. In the processed

image, their area and color can vary due to their position

in the field. Thus, the same blob technique described above

for marker identification is used. Proper settings for area and

HSV color range are used. To comply with the rule “robots

cannot steal targets from the opponent home base”, hence,

an additional filter is introduced to exclude targets already

collected from the opponent. This is done reducing the area

to be processed, introducing constraints to exclude the robots’

home bases.

Figure 7 shows that the algorithm is able to discriminate

from the same picture the blue targets, Figure 7(a), the robot,

Figure 7(b), and the green targets, Figure 7(c).

The above mentioned algorithm is also used to perform

fixed obstacle identification. Figure 8 shows a picture taken

by the AirCamera agent (a) and the result of fixed obstacle

identification process (b).
To detect mobile obstacles (e.g., opponents) an imprecise

computation approach is used. The goal is to identify the mo-

bile robot competitors as soon as possible to avoid collisions.

To this end, the robot exploits the frontal webcam, reducing

the processed area to a narrow horizontal stripe near the center

of the image. The cropped image is divided horizontally into

several sectors. The analysis starts performing the elaboration

of the central and the most external sectors at the same

time. If the algorithm identifies a possible obstacle in one

of the sections, it immediately stops communicating to the

DriveMeCrazy agent the instructions to avoid the impact. If the

strip can be processed while meeting the real-time constraints,

further iterations analyze the sectors converging to the center.

C. Path Planning

At this stage, the PathSetter agent is aware of the robot posi-

tion and orientation, the most convenient target, and obstacles

position. The path required to reach the target and to bring

the target to the home base is determined using a revised and

discretized version of the potential field algorithm that will

be fully presented in a future work. According to the impre-

cise computing approach, such an algorithm produces a sub-

optimal path as a first solution, which is optimized by further

iterations, if allowed by the specified timing constraints. The

use of this algorithm shows good results in terms of CPU load,

converging time and number of iterations. Figure 9 shows the

3D representation of the values mapping the field. The matrix

of such values represents the field discretization explored by

the path planning algorithm.

D. Moving the robot

PathSetter sends the path to DriveMeCrazy which converts

it into a series of low-level commands. It is then sent through

a UART connection to the STM Discovery board, which is in

charge of actuating the motors.

Control: The robot position is represented by its coordinates

in space x̄ = (x,y) and its angle θ .

When the robot needs to change its position, the two

motors are activated. The resulting trajectory is a function that

depends on the movement of both wheels. For this reason, the

rotational speed of each wheel must be continuously monitored

by the motor encoders and controlled by the wheel speed

controller, represented in Figure 10.

The G element represents the open-loop transfer function

of the DC Motor:

G(s) =
K

(Js+b)(Ls+R)+K2
(1)

where all the parameters depend on the wheel and motor

characteristics, obtained by experimental measurements:

(a) (b) (c)

Fig. 7. Output of the graphical elaboration: (a) Blue target identification, (b) Marker identification and (3) Green target identification.

Fig. 8. Obstacles identification: (a) aereal field image, (b) HSV range tuning.

Fig. 9. Battle field discretization: a 3D model.

• J = 0.188(kg ·m2): moment of inertia of the rotor.

• b = 0.05(N ·m · s): motor viscous friction constant.

• K = 0.7639(V/rad/sec)or(N · m/Amp): electromotive

force constant, equal to the motor torque constant.

• R = 4.5(Ohm): electric resistance.

• L = 0.587(H): electric inductance.

The speed controller Q is implemented by a proportional-

Q G+
Θref
.

Θ
.+

-

e

W

Fig. 10. Wheel Speed Controller.

integral-derivative (PID) regulator. A preliminary controller

tuning has been performed by using the Ziegler-Nichols rules,

and then the obtained parameters were finely tuned by exper-

imental tests.

An error on the actual position can arise despite the wheel

speed controllers. This happens because the robot position

depends on the speed of both wheels, but the two speed

controllers are independent of each other. Another control loop

is added to solve this problem, as shown in Figure 11. This

loop uses the module S to calculate the robot position based

on the two wheels speeds and sends it back to the controller

module C, which adapts the speeds of the wheels according

to the desired trajectory.

Depending on the scenario, the agent DriveMeCrazy ex-

ploits different behaviors to interact with C:

• Re fcmd : handles the requests performed by the referee.

• Ucmd : manages the users’ requests interacting with C and

Pcmd .

• Pcmd : sends the path to be followed to the autopilot.

DriveMeCrazy

Pcmd

Ucmd

A

Mcmd

R

cmd

cmd

D

{ W1

W2

S

Wheel ControlCommander (C)

2

2

2

2

2cmdRef

Fig. 11. Motion Controller.

E. Tasks

The software has been organized in the following tasks:

• W1, W2: perform proportional controls on the speed of

the associated wheel.

• S: detects the wheels movements and calculates the robot

position.

• The controller C decides the speed of each wheel. This

module includes the following tasks:

– Acmd : is the autopilot that depending on the current

sensed position and the path received by Pcmd actu-

ates the motors. Furthermore, such autopilot sends

messages back to the DriveMeCrazy agent to notify

eventual errors or new request.

– Mcmd : handles user manual commands.

– Rcmd : manages requests from the referee, in particu-

lar the stop command.

The C module internally chooses - with a multiport switch,

whose control input is decided by the D module - the correct

reference speeds among the speeds proposed by the tasks Acmd ,

Mcmd and Rcmd , based on their availability and relevance. The

decisions taken by Rcmd are the most important because the

referee must be able to stop the robot regardless of other

commands or the internal robot status. Mcmd is more important

than Acmd because the user commands have higher value than

the robot’s own decisions. If none of the mentioned tasks

proposes a command, then the robot stops.

Mcmd and Rcmd are sporadic tasks, while Acmd , S, W1 and

W2 are periodic tasks.

Tasks are assigned fixed priorities and scheduled according

to the Rate Monotonic (RM) algorithm [38].

The total number of tasks, identified with n, is equal to

6. By defining the computational time of the generic task i
as Ci, the activation period as Ti and the utilization factor as

Ui =Ci/Ti, the schedulability test can be performed by using

the Liu and Layland sufficient condition [38]:

n

∑
i=1

Ui ≤ n
(

21/n −1
)
. (2)

The most time-critical task is S because its correct timing

behavior is required in order to preserve a good approximation

of the robot position. Supposing that each encoder has a

precision of ne(ppr) and the maximum rotational speed of

each wheel is wmax(rpm), in order to preserve the accuracy of

the encoders, the task S must have a maximum period defined

by the following relation

TS <
1

wmax ·ne
·60(s). (3)

Even though Mcmd and Rcmd are sporadic, it is possible to

assume a minimum inter-arrival time to verify the system’s

schedulability. Those tasks manage interactions with humans,

so a period of 50 ms is enough to guarantee a responsive user-

perceived system.
The minimum periods of W1, W2 and Acmd are calculated

by finding their maximum utilization factors that preserve the

task set schedulability.

V. EXPERIMENTAL RESULTS

This section presents the results obtained from the real

experimental setup outlined above. Experiments are conceived

to test compliance with time constraints at each level of the

software architecture, from the high-level decision making to

the low-level motion control algorithms. Communications with

services that can be used by more than one robot are also

tested, taking into account their mutual-exclusive usage.
The interaction between the Scout and the AirCamera agents

is depicted in Figure 12. This interaction, is not cooperative but

competitive, in the sense that the AirCamera agent arbitrates

the access to a shared resource. This means that when more

than one agent tries to communicate with AirCamera the

response can be delayed, as highlighted in the experimental

results reported in Table I.
When a single Scout agent interacts with AirCamera, the

message exchange (consisting of a request message, the image

acquisition, and a response message) lasts on the average 673.6

ms, ranging from 634 ms in the best case and 1514 ms in

the worst case. Such values are obtained on 1000 iterations.

Execution times for each step are listed in Table I. When

more than one Scout agent tries to communicate with the

AirCamera, the time to serve the request arise due to the

waiting time needed to serve the queued previous requests.

For example, in such a scenario, the second agent being served

experiences a total waiting time which is the sum of the time

needed to serve the other request and the time needed to

serve its request. This means that the interaction timing nearly

doubles. Indeed, experimental measurements for this second

scenario outlined above confirmed this. The message exchange

in this scenario lasts on average 1330.7 ms while the best case

is 1260 ms and the worst case is 3004 ms. Since the image

from the AirCamera is used to plan a strategy (identifying

the target and planning the path), such a worst-case scenario

means that three seconds might pass before the autonomous

robots can change its strategic plans. However, it does not

affect the reacting and moving capabilities of the robot, which

are based on the last deliberated plan. Moreover, moving

obstacles can be detected by the onboard frontal webcam for

which there are no competing agents.

Scout AirCamera

requiring picture

sending picture

processing request

accessing camera

taking picture

encoding picture

saving picture

graphical elaboration

path finding

Fig. 12. Scout-AirCamera interaction.

Once the image is received, agents have to decode, save and

process it in order to deliberate the target and identify the set

of commands to reach it. This process makes use of computer

vision and pathfinding algorithms, as outlined above. Table II

reports the processing time derived on 1000 executions of such

tasks. The amount of time required to determine the path to

follow is on average 51.6 ms, which reduces to 32 ms in the

best case and peaks at 378 ms in the worst case.

Regarding the low-level motion control systems, worst-

case execution times (WCET) for motion control tasks were

experimentally measured and are reported in Table III.

In the experimental setup, each wheel is able to rotate

at a maximum speed of 150(rpm), while the encoder has

a precision of 4480(ppr). Using Equation (3), the resulting

period is TS ≤ 89.28 μs.

TABLE I
SCOUT-AIRCAMERA MESSAGE EXCHANGE TIMING

best case
time (ms)

worst case
time (ms)

average
time (ms)

send picture request 8 22 16.5

take and encode
picture

580 1228 602.4

send picture 46 263 54.7

TABLE II
DELIBERATION PROCESSES TIMING

best case
time (ms)

worst case
time (ms)

average
time (ms)

saving 27 359 39.2

compute vision
elaboration

3 11 8.3

pathfinding 2 8 4.1

TABLE III
TASK’S EXPERIMENTAL WCET

Task WCET (μs)

W1, W2 24.4
S 16.3

Acmd 40.9
Mcmd , Rcmd 19.9

Applying equation (2) to the system’s taskset, we have:

CW1

TW1
+

CW2

TW2
+

CS

TS
+

CAcmd

TAcmd

+
CMcmd

TMcmd

+
CRcmd

TRcmd

≤ n
(

21/6 −1
)

(4)

The dynamic of the outer control loop must be slower than

the dynamic of the internal control loop to allow the internal

loop to reach stability. For this reason and due to the equality

of TW1 and TW2 the period is taken as TWi = TW1 = TW2 =
20 ·TAcmd . Performing this substitution and bringing the known

terms to the right, the previous equation becomes:

TWi ≥ CAcmd/20+CW1 +CW2

n
(
21/n −1

)− CS
TS

− CMcmd
TMcmd

− CRcmd
TRcmd

. (5)

The previous equation can be solved for periods substituting

numerical values. Making some pessimistic approximations,

the resulting periods are: TW1 = TW2 = 100 μs and TAcmd =
2 ms.

From a functional point of view, the system resulted to be

effective and efficient. In all the experimental runs, the robot

was able to identify itself, the targets and all the obstacles.

Furthermore, the pathfinding heuristic obtained the 100% of

success, meaning that the path connecting the robot and its

target was always identified, if existing. Considering the exe-

cuted experiments, 70% of the identified paths were identical

to the optimal ones. With respect to the most known A* [5],

D* [39] and Dijkstra algorithms [5], the proposed algorithm

achieved a substantial gain in terms of computational load,

converging time and sub-optimal solution quality.

VI. CONCLUSIONS

This paper presented an autonomous mobile robot designed

to collect objects in a competition arena, interact with humans,

software agents and other robots, in a given amount of time. AI

and real-time methods and techniques were combined together

to obtain a robot able to autonomously perform intelligent

actions under real-time constraints. A two-level software archi-

tecture was used, in which the high-level agent-based software

was in charge for decision-making and communication while

a low-level real-time software controlled motion and reacted

to environmental changes.

The solution described in the paper highlights the strength

of a modular approach solving complex and very different

problems, like image processing, path planning, and robot

control in a competitive scenario. cvBlob seems to be a good

choice with respect to real-time constraints, performing image

recognition tasks fairly well even in the worst-case scenario

when used on the embedded board on the robot. On the other

hand, delays due to concurrent access to shared resources and

the amount of messages exchanged between software agents

in response to a change in the environment seems to affect

the performance of the system. From a functional point of

view, software agents are able to achieve their goals on a

regular basis, thus placing the real-time motion control system

in better operational condition. However, software agents lack

a mechanism to take into account real-time constraints, thus

making it difficult to coordinate them during transient overload

conditions.
Making software agents aware of real-time requirements

seems to be a good research challenge on its own that can

open the way to real-time agent-oriented programming. As

a first step, Real-Time Publish-Subscriber (RTPS) protocol

could be integrated into agent-based systems, thus providing

them with a real-time communication protocol integrated into

the distributed nature of the multi-agents paradigm.

VII. ACKNOWLEDGMENT

A special thanks is due to Stephanie Sadler, Luca

Panebianco, Silvia Fichera, and the team members: Lorenzo

Volponi, Davide Liberato and Luca Severini.

REFERENCES

[1] T. Braunl, “Research relevance of mobile robot competitions,” IEEE
Robotics & Automation Magazine, vol. 6, no. 4, pp. 32–37, 1999.

[2] M. Veloso and P. Stone, “Individual and collaborative behaviors in a
team of homogeneous robotic soccer agents,” in Multi Agent Systems,
1998. Proceedings. International Conference on, 1998.

[3] D. Calvaresi, A. Claudi, A. F. Dragoni, E. Yu, D. Accattoli, and
P. Sernani, “A goal-oriented requirements engineering approach for the
ambient assisted living domain,” in Proceedings of the 7th International
Conference on PErvasive Technologies Related to Assistive Environ-
ments. ACM, 2014, p. 20.

[4] A. Manzalini, “A think tank on softwarization (from sdn, nfv,
cloud-edge-fog computing...to 5g).” [Online]. Available: http://ieee-
sdn.blogspot.it/

[5] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Prentice Hall, 2009.

[6] G. Weiss, Multiagent systems: a modern approach to distributed artifi-
cial intelligence. MIT press, 1999.

[7] A. FIPA, “Message structure specification. foundation for intelligent
physical agents, 2000,” pp. 09–29, 2004.

[8] A. Schuldt, “Multiagent coordination enabling autonomous logistics,”
KI-Künstliche Intelligenz, vol. 26, no. 1, pp. 91–94, 2012.

[9] F. Ingrand and M. Ghallab, “Deliberation for autonomous robots: A
survey,” Artificial Intelligence, 2014.

[10] D. Montemerlo, N. Roy, and S. Thrun, “Perspectives on standardization
in mobile robot programming: the carnegie mellon navigation (carmen)
toolkit,” in Intelligent Robots and Systems, 2003. (IROS 2003). Proceed-
ings. 2003 IEEE/RSJ International Conference on, vol. 3, Oct. 2003.

[11] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Oreback,
“Towards component-based robotics,” in Intelligent Robots and Systems,
2005. (IROS 2005). 2005 IEEE/RSJ International Conference on, Aug.
2005.

[12] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA workshop on open source software, vol. 3, 2009.

[13] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing multi-agent
systems with JADE. John Wiley & Sons, 2007.

[14] N. Muscettola, G. A. Dorais, C. Fry, R. Levinson, C. Plaunt, and
P. Norvig, “A unified approach to model-based planning and execution,”
2000.

[15] C. McGann, F. Py, K. Rajan, H. Thomas, R. Henthorn, and R. McEwen,
“A deliberative architecture for auv control,” in Robotics and Automa-
tion, 2008. ICRA 2008. IEEE International Conference on, 2008.

[16] N. Muscettola, P. P. Nayak, B. Pell, and B. C. Williams, “Remote agent:
To boldly go where no ai system has gone before,” Artificial Intelligence,
vol. 103, 1998.

[17] S. Behnke, “Robot competitions-ideal benchmarks for robotics re-
search,” in Proc. of IROS-2006 Workshop on Benchmarks in Robotics
Research, 2006.

[18] T. Wisspeintner, T. Van Der Zant, L. Iocchi, and S. Schiffer, “Robocup@
home: Scientific competition and benchmarking for domestic service
robots,” Interaction Studies, vol. 10, 2009.

[19] S. Schiffer, A. Ferrein, and G. Lakemeyer, “Caesar: an intelligent
domestic service robot,” Intelligent Service Robotics, vol. 5, 2012.

[20] M. Rioux, “Laser range finder based on synchronized scanners,” Applied
optics, vol. 23, 1984.

[21] T. Kotoku, “A predictive display with force feedback and its application
to remote manipulation system with transmission time delay,” in Intel-
ligent Robots and Systems, 1992., Proceedings of the 1992 lEEE/RSJ
International Conference on, vol. 1, 1992.

[22] V. Lumelsky and T. Skewis, “A paradigm for incorporating vision
in the robot navigation function,” in Robotics and Automation, 1988.
Proceedings., 1988 IEEE International Conference on, 1988.

[23] E. Garcia and P. G. De Santos, “Mobile-robot navigation with complete
coverage of unstructured environments,” Robotics and Autonomous
Systems, vol. 46, 2004.

[24] R. N. De Carvalho, H. Vidal, P. Vieira, and M. Ribeiro, “Complete
coverage path planning and guidance for cleaning robots,” in Industrial
Electronics, 1997. ISIE’97., Proceedings of the IEEE International
Symposium on, vol. 2, 1997.

[25] K.-T. Song and J.-C. Tai, “Fuzzy navigation of a mobile robot,” in In-
telligent Robots and Systems, 1992., Proceedings of the 1992 lEEE/RSJ
International Conference on, vol. 1, 1992.

[26] K. Samsudin, F. A. Ahmad, and S. Mashohor, “A highly interpretable
fuzzy rule base using ordinal structure for obstacle avoidance of mobile
robot,” Applied Soft Computing, vol. 11, 2011.

[27] A. Torralba, K. P. Murphy, W. T. Freeman, and M. A. Rubin, “Context-
based vision system for place and object recognition,” in Computer
Vision, 2003. Proceedings. Ninth IEEE International Conference on,
2003.

[28] G. K. Kloss, H. Shin, and N. H. Reyes, “Dynamic colour adaptation for
colour object tracking,” in Image and Vision Computing New Zealand,
2009.

[29] N. Reyes and C. Messom, “Identifying colour objects with fuzzy colour
contrast fusion,” in 3rd International conference on computational
intelligence, robotics and autonomous systems, and FIRA roboworld
congress, 2005.

[30] J.-S. Chiang, C.-H. Hsia, and H.-W. Hsu, “A stereo vision-based self-
localization system,” Sensors Journal, IEEE, vol. 13, 2013.

[31] H. Murase and S. K. Nayar, “Visual learning and recognition of 3-
d objects from appearance,” International journal of computer vision,
vol. 14, 1995.

[32] D. Wolter, Spatial representation and reasoning for robot mapping: a
shape-based approach. Springer, 2008.

[33] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recog-
nition using shape contexts,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 24, 2002.

[34] P. Gai, E. Bini, G. Lipari, M. Di Natale, and L. Abeni, “Architecture
for a portable open source real-time kernel environment,” 2000.

[35] M. Wooldridge and N. R. Jennings, “Intelligent agents: theory and
practice,” The Knowledge Engineering Review, vol. 10, pp. 115–152,
1995.

[36] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with
the OpenCV library. ” O’Reilly Media, Inc.”, 2008.

[37] G. L. GPL, “cvblob — archive.” [Online]. Available:
https://code.google.com/archive/p/cvblob/

[38] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, 3rd ed. Springer Publishing
Company, Incorporated, 2011.

[39] A. Stentz, “Optimal and efficient path planning for partially-known
environments,” in Robotics and Automation, 1994. Proceedings., 1994
IEEE International Conference on. IEEE, 1994, pp. 3310–3317.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

