
Accepted as abstract at Waters 2016

A Simulation Framework to Analyze the Scheduling
of AVR tasks with respect to Engine Performance

Paolo Pazzaglia, Alessandro Biondi, Marco Di Natale and Giorgio Buttazzo
Scuola Superiore Sant’Anna, Pisa, Italy

Email: {name.surname}@sssup.it

Abstract—We present a simulation framework, based on
Simulink and an extension of the T-Res scheduling simulator
tool to help provide a better characterization of the very popular
problem of scheduling and analysis of Adaptive Variable Rate
Tasks (AVR) in engine control. The purpose of the tool is to go
beyond the simplistic model that assumes hard deadlines for all
tasks and to study the impact of scheduling decisions with respect
to the functional implementations of the control algorithms and
the true performance of the engine.

I. INTRODUCTION

The study of the schedulability conditions for engine control
tasks (or adaptive variable rate - AVR) is gaining popularity in
the real-time research community because of the novel nature
of the problem and the special activation conditions that apply
to some of the system tasks. These tasks are not periodic
or sporadic, but are activated by the rotation of the engine
crankshaft (a parameter of the physical controlled system). In
addition, to compensate for the increased CPU load at high
rotation speeds (and more frequent activation times), the code
implementation of these tasks is defined in such a way that
at given speed boundaries, the implementation is simplified
and the execution time is reduced. A typical engine control
application consists of time-driven periodic tasks with fixed
periods, typically between a few milliseconds and 100 ms
(see [1], page 152), and angular tasks triggered at specific
crankshaft angles. The activation rate of such angular tasks
hence varies with the engine speed (variable-rate tasks). For
example, for engines where the speed varies from 500 to 6500
revolutions per minute (RPM), the interarrival times of the
angular tasks range from about 10 to 120 ms (assuming a
single activation per cycle).

With respect to the set of activation instants, the dependency
from a physical phenomenon characterizes this problem as
truly belonging to the class of problems in cyber-physical
systems (CPS). However, in many papers the dependency of
the timing and scheduling problem from the physics of the
controlled system is restricted to the set of activation events
and every other concern is hidden under the typical assumption
of hard deadlines.

In reality, this problem (as many others) is representative of
a class of control systems in which deadlines can be missed
without catastrophic consequences, and the problem should ac-
tually be defined as a design optimization, where the objective
is to select the controls implementations and the scheduling
policy in such a way that a set of engine performance functions

are optimized (including power, emissions, noise, pollution).
These performance functions depend in complex ways from
timing parameters, such as jitter and latency. Informally, the
objective of the scheduler is not to miss too many deadlines
or produce actuation signals that are too much delayed.

Formally, the problem is quite complex and extremely
unlikely to be solved in a simple, closed analytical form or
even with a general procedure for expressing the dependency
of th performance from scheduling. This is the reason for
the investigation of alternative approaches that are based on
the simulation of the three system components in a joint
environment:

• A model of the engine and the combustion process in it
(the physical system or plant)

• A model of the engine controls
• A model of the task configuration and the scheduling

II. OUR SIMULATION FRAMEWORK FOR THE ANALYSIS OF
THE PERFORMANCE IMPACT OF SCHEDULING

Our cosimulation framework follows the principles of CPS
system analysis. It is based on the popular Simulink toolset
and leverages the T-Res cosimulation environment for the
simulation of the task scheduling [2].

For the development of the engine model we leveraged
information from several sources, including engine models for
the steady state and event-based models as described in [1] and
other empirical models found online.

The engine controls are currently extremely simple and only
contain a simple analytical formula that computes the angle of
injection and the injection time that is defined by a calibration
table.

Finally, the T-Res simulation framework described in [2] is
used for modeling the scheduling delays.

III. EXTENDING T-RES FOR MODELING AVR TASKS

T-Res consists of a set of custom Simulink blocks repre-
senting tasks and kernels and allows to interface the Simulink
simulation engine, acting as master, with a scheduling sim-
ulator in a co-simulation environment (see Figure 1). The
scheduling simulator (we use RTSim [3], but the backend
simulation engine can be changed) computes the scheduling
delays and latches the outputs of the corresponding tasks until
their simulated completion time. This allows to simulate delays
in the production of output values and the corresponding
impact on the control function.

1

giorgio
Text Box
Proc. of the 7th Int. Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems (WATERS 2016), Toulouse, France, July 5, 2016.

giorgio
Text Box

Accepted as abstract at Waters 2016

T-Res provides a custom block for representing the kernel
and its scheduler. The block is configured with the selection
of the scheduling policy and the behavior in case of deadline
(period) overrun. The kernel block provides a set of activation
signals as output. These activation signals go to instances of
the the second type of custom blocks, representing tasks. Each
task receives an activation signal from the kernel (indicating
when the task begins or resumes execution), and is character-
ized by an execution time estimate (a configuration parameter),
and a signal going back to the kenel and providing the amount
of time that is still required by the task at each point in time.
The task block produces as output a set of activation and latch
signals for all the functional subsystems that are executed by
the task.

With respect to the activation, sporadic tasks are charac-
terized by an activation event going as input to the kernel
block, or a periodic activation specification, provided as a
configuration parameter to the kernel (for details, refer to [2]).
The execution time description is provided to the kernel for
each task using a simple language.

Simulink Simulation engine

OMNeT++NS−3

RTSim

MetaSim

abstract network sim API

...

abstract scheduling sim API

adaption layer

ot
he

r

adaption
layer

adaption
layer

extensionextension

kernel

network

Simulink S−function API

Custom blocks
TRes libraryStandard blocks

Co−simulation framework

task

message

P
la

nt

C
on

tr
ol

le
r

Figure 1. The TRes cosimulation architecture.

For the purpose of this project we entended the task model
block and the timing information associated with it to allow
for the modeling of the AVR behavior, as shown in Figure
2. The task block in T-Res includes a signal for the explicit
activation in case of event-triggered tasks. This signal is used
to define the activation of the task in correspondence to given
angular positions of the engine crankshaft. In addition, the
block has been extended to include another imput that refers
to a mode index. This input can be used for multiple purposes
and defines a different execution time behavior for a finite and
enumerated set of conditions.

Figure 2. A custom block for modeling an AVR task.

In the case of AVR tasks, the mode index is provided from
a simple block that looks at the engine rotation speeds and,
based on the speed range, defines the execution time that the
task requires.

The task will have different execution times for different
speed modes according to a specification of execution times as
a function of the mode (speed) index provided as a workspace
variable.

IV. SIMULINK MODELS OF THE ENGINE AND THE
CONTROL TASKS

Figure 3 shows the model of the engine and the control
functionality in Simulink. The blocks in the upper part of
the figure represent the engine subsystems that are currently
considered and includes the turbocharger, the compressor
manifold, the intercooler, the intake and exhaust manifolds
and the model of the engine cylinders. The subsystem on
the bottom part of the figure wraps our model of the engine
controller, with its outputs: the injection angle and duration
and the VGT.

Figure 4 shows the subsystems realizing the controller
functions and the task model of the controller. The model
consists of a kernel (top left side), and four tasks on the
bottom left side. One of the four tasks is an AVR, two are
periodic and one represents background computations. The
chains of subsystems on the right side represent the control
functions implemented by the tasks. The second from the top
contains the six subsystems that are executed by the AVR task
(matching the six output signals from the AVR task block).

V. OBJECTIVE AND STATUS

A detailed modeling of the control function is necessary
to better understand the impact of deadline misses or long
latencies. Depending on the implementation of the control
function, a deadline miss may result in a late actuation, or
a missed actuation or even an actuation with old data. In our
controls implementation, the AVR task computes the phase
and duration of the injection and passes them to the task that
simulates the injection actuators. Hence, a missed deadline
results in actuating the injectors with the values computed in
the previous cycle with a likely error in phase and duration
with respect to the ideal values.

The objective of our framework is multifold:

• To understand the effect of the scheduling on the engine
performance and to use the environment for analyzing
the impact of scheduling policies and parameters, such
as evaluating fixed priority vs EDF or different possible
priority assignments and task configurations.

• To analyze the timing parameters that truly of interest for
evaluating the performance of the engine and possibly
attept a characterization that isolates the attributes of
interest. This includes, among others, the evaluation of
schemes like m-k deadline misses, or overload manage-
ment (maximum lateness).

2

Accepted as abstract at Waters 2016

• To better characterize the design problem consisting in
the optimal selection of the transition speeds for AVR
tasks.

Currently, within the assumptions of our model, the sim-
ulation is able to show how the scheduling delays result in
errors in the angle/duration of the injection actuation. Figure
5 shows preliminary results. In the figure graph, the vertical
axis shows the phase error in the actuation of the injection for
a sample manoeuvre consisting of a sudden acceleration and
a corresponding increase in the engine rotation speed from
low to high values. Two graphs are plotted in the figure. The
graph in red (lighter) color shows the angle error when the
execution time of the AVR task is kept constant, regardless of
the engine speed. At high rotations, the task misses deadlines
and the injection angle error grows to almost 50 degrees. When
the execution time of the AVR task is reduced at high rates,
the scheduling delays are much lower and, correspondingly,
the angle error of the injection is much lower, as shown by
the blue line in the graph. The angular error in the injection is
related to a variation (loss) in the power performance of the
engine.

Our objective is to relate the errors in phase and duration
of the injection to a possible loss of power, providing ways
to analyze the impact of scheduling with respect to the first
performance function of interest. However, even within the
limited scope of power performance analysis, the evaluation of
the scheduling impact (and the AVR characteristics of tasks),
requires that the model includes multiple representations of the
control functionality, one for each possible execution mode of
the AVR tasks. When these are available, the model will pro-
vide an early capability of expressing the performance impact
of control implementations at different levels of complexity
(for variable execution times or WCETs). Clearly, this is only
the initial objective, given that a realistic model should also
include the characterization of pollution, noise and efficiency.

Figure 5. Angular error in the injection caused by scheduling delays of the
AVR task: error with fixed execution times (red) and with adaptive excution
(in blue).

VI. RELATED WORK

The presentation of the task model in which engine control
tasks are implemented with a variable computational require-
ments for increasing speeds is in [4],

These tasks are also referred to adaptive variable-rate
(AVR). Analyzing the schedulability of tasks sets consisting

of both periodic and AVR tasks is a difficult problem that has
been addressed by several authors under various simplifying
assumptions, under both fixed priority scheduling [5]–[7] and
Earliest Deadline First (EDF) [8]–[10]. Other authors proposed
methods for computing the exact interference [11] and the
exact response time [7] of AVR tasks under fixed priority
scheduling. It has been shown [10] that, given the large
range of possibile interarrival times of an AVR task, fixed
priority scheduling is not the best choice for engine control
systems since, while EDF exhibits a nearly optimal scheduling
performance. Based on this fact, Apuzzo et al. [12] provided
an operating system support for AVR tasks under the Erika
Enterprise kernel [13].

All the papers considered above, however, focused on
analyzing the schedulability of task sets consisting of periodic
and AVR tasks, without any concern on engine performance.
A performance-driven design approach has been addressed
in [14] for finding the transition speeds that trigger the mode
changes of an AVR task.

A very large number of projects target the evaluation of
scheduling policies and the analysis of task implementations.
A necessarily incomplete list includes Yartiss [15], ARTISST
[16], Cheddar [17], and Stress [18].

Finally, TrueTime [19] is a freeware1 Matlab/Simulink-
based simulation tool that has been developed at Lund Univer-
sity since 1999. It provides models of multi-tasking real-time
kernels and networks that can be used in simulation models
for networked embedded control systems. TrueTime is used by
many research groups worldwide to study the (simulated) im-
pact of lateness and deadline misses on controls. In TrueTime,
the model of task code is represented by code functions that are
written in either Matlab or C++ code. Several research works
investigate the consequences of computation (scheduling) and
communication delays on controls. An overview on the subject
can be found in [20].

REFERENCES

[1] L. Guzzella and C. H. Onder, Introduction to Modeling and Control of
Internal Combustion Engine Systems. Springer-Verlag, 2010.

[2] F. Cremona, M. Morelli, and M. D. Natale, “Tres: A modular repre-
sentation of schedulers, tasks, and messages to control simulations in
simulink,” in Proc. of the 31st ACM Symposium on Applied Computing
(SAC 2016), Pisa, Italy, April 4-8, 2016.

[3] L. Palopoli, G. Lipari, L. Abeni, M. D. Natale, P. Ancilotti, and
F. Conticelli, “A tool for simulation and fast prototyping of embedded
control systems,” in LCTES/OM, S. Hong and S. Pande, Eds. ACM,
2001, pp. 73–81.

[4] D. Buttle, “Real-time in the prime-time,” in Keynote speech at the 24th
Euromicro Conference on Real-Time Systems, Pisa, Italy, July 12, 2012.

[5] J. Kim, K. Lakshmanan, and R. Rajkumar, “Rhythmic tasks: A new
task model with continually varying periods for cyber-physical systems,”
in Proc. of the Third IEEE/ACM Int. Conference on Cyber-Physical
Systems (ICCPS 2012), Beijing, China, April 2012, pp. 28–38.

[6] R. I. Davis, T. Feld, V. Pollex, and F. Slomka, “Schedulability tests
for tasks with variable rate-dependent behaviour under fixed priority
scheduling,” in Proc. 20th IEEE Real-Time and Embedded Technology
and Applications Symposium, Berlin, Germany, April 2014.

1http://www3.control.lth.se/truetime/LICENSE.txt

3

http://www3.control.lth.se/truetime/LICENSE.txt

Accepted as abstract at Waters 2016

[7] A. Biondi, M. D. Natale, and G. Buttazzo, “Response-time analysis
for real-time tasks in engine control applications,” in Proceedings of the
6th International Conference on Cyber-Physical Systems (ICCPS 2015),
Seattle, Washington, USA, April 14-16, 2015.

[8] G. Buttazzo, E. Bini, and D. Buttle, “Rate-adaptive tasks: Model,
analysis, and design issues,” in Proc. of the Int. Conference on Design,
Automation and Test in Europe (DATE 2014), Dresden, Germany, March
24-28, 2014.

[9] A. Biondi and G. Buttazzo, “Engine control: Task modeling and anal-
ysis,” in Proc. of the International Conference on Design, Automation
and Test in Europe (DATE 2015), Grenoble, France, March 9-13, 2015,
pp. 525–530.

[10] A. Biondi, G. Buttazzo, and S. Simoncelli, “Feasibility analysis of
engine control tasks under EDF scheduling,” in Proc. of the 27th
Euromicro Conference on Real-Time Systems (ECRTS 2015), Lund,
Sweden, July 8-10, 2015.

[11] A. Biondi, A. Melani, M. Marinoni, M. D. Natale, and G. Buttazzo,
“Exact interference of adaptive variable-rate tasks under fixed-priority
scheduling,” in Proceedings of the 26th Euromicro Conference on Real-
Time Systems (ECRTS 2014), Madrid, Spain, July 8-11, 2014.

[12] V. A. A. Biondi and G. Buttazzo, “OSEK-like kernel support for
engine control applications under EDF scheduling,” in Proceedings of
the 22nd IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS 2016), Vienna, Austria, April 11-14, 2016.

[13] “Erika enterprise: an OSEK compliant real-time kernel.” [Online].
Available: http://erika.tuxfamily.org/drupal/

[14] A. Biondi, M. D. Natale, and G. Buttazzo, “Performance-driven design
of engine control tasks,” in Proceedings of the 7th International Confer-
ence on Cyber-Physical Systems (ICCPS 2016), Vienna, Austria, April
11-14, 2016.

[15] Y. Chandarli, F. Fauberteau, D. Masson, S. Midonnet, M. Qamhieh
et al., “Yartiss: A tool to visualize, test, compare and evaluate real-
time scheduling algorithms,” in Proceedings of the 3rd International
Workshop on Analysis Tools and Methodologies for Embedded and Real-
time Systems, 2012, pp. 21–26.

[16] D. Decotigny and I. Puaut, “Artisst: an extensible and modular simu-
lation tool for real-time systems,” in Object-Oriented Real-Time Dis-
tributed Computing, 2002.(ISORC 2002). Proceedings. Fifth IEEE In-
ternational Symposium on. IEEE, 2002, pp. 365–372.

[17] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar: a flexible
real time scheduling framework,” in ACM SIGAda Ada Letters, vol. 24,
no. 4. ACM, 2004, pp. 1–8.

[18] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings,
“Stress: A simulator for hard real-time systems,” Software: Practice and
Experience, vol. 24, no. 6, pp. 543–564, 1994.

[19] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-E. Årzén,
“How does control timing affect performance?” IEEE control systems
magazine, vol. 23, no. 3, pp. 16–30, 2003.

[20] K. J. Astrom and B. Wittenmark, “Adaptive control,” in Prentice Hall,
2016.

4

http://erika.tuxfamily.org/drupal/

Accepted as abstract at Waters 2016

Figure 3. Engine control model in Simulink.

Figure 4. Task model in TRES.

5

