
Supporting Temporal and Spatial Isolation in a
Hypervisor for ARM Multicore Platforms

Paolo Modica∗, Alessandro Biondi∗, Giorgio Buttazzo∗ and Anup Patel†
∗Scuola Superiore Sant’Anna, Pisa, Italy
†Individual Researcher, Bangalore, India

Email: {paolo.modica, alessandro.biondi, giorgio.buttazzo}@santannapisa.it, anup@brainfault.org

Abstract—This paper addresses the problem of providing
spatial and temporal isolation between execution domains in a
hypervisor running on an ARM multicore platform. Isolation is
achieved by carefully managing the two primary shared hardware
resources of today’s multicore platforms: the last-level cache
(LLC) and the DRAM memory controller. The XVISOR open-
source hypervisor and the ARM Cortex A7 platform have been
used as reference systems for the purpose of this work.

Spatial partitioning on the LLC has been implemented by
means of cache coloring, which has been tightly integrated
with the ARM virtualization extensions (ARM-VE) to deal with
the memory virtualization capabilities offered by a two-stage
memory management unit (MMU). Temporal isolation on the
DRAM controller has been implemented by realizing a memory
bandwidth reservation mechanism, which has been combined with
the scheduling logic of the hypervisor. An extensive experimental
evaluation has been performed on the popular Raspberry Pi 2
board, showing the effectiveness of the implemented solutions
on a case-study composed of multiple Linux domains running
state-of-the-art benchmarks.

I. INTRODUCTION

The increasing computational power offered by modern
computer architectures is pushing software developers to in-
tegrate a higher number of functions in the same platform.
For instance, in the automotive domain, the number of au-
tomated functions increased exponentially in the last years
and this trend is expected to continue in the near future,
since implementing each function in a dedicated electronic
control unit (ECU) is no longer possible for problems related
to space, weight, power, and cost (SWaP-C). Although merg-
ing applications on the same platform allows mitigating the
SWaP-C problem, it creates new difficulties deriving from the
reciprocal interference generated by the contention of shared
computational resources (e.g., processors, memories, bus and
I/O devices).

Without proper resource management strategies, such an
interference introduces variable delays that may degrade the
application performance in a way that is difficult to predict.
This issue is particularly relevant when the platform is shared
among applications with different level of criticality. For exam-
ple, in automotive systems the same platform could run critical
control tasks, in charge of managing sensitive operations (e.g.,
related to vehicle dynamics, or even the combustion process of
the engine), together with other less critical activities related
to infotainment (e.g., navigation, wireless connectivity, and
control of multimedia streams). In these cases, to guarantee
a desired level of performance, critical applications should not

be affected by the execution of non-critical ones, or at least the
introduced delay should be contained within precise bounds.
This feature is also particularly relevant to shield critical appli-
cations by misbehaviors or denial-of-service attacks occurring
in non-critical applications.

Hardware virtualization achieved by hypervisors estab-
lished as a de-facto solution to partition the computational
resources of a computing platform among different applica-
tion domains. However, while most hypervisors have been
conceived to virtualize primary hardware resources, such as
CPUs, memories, and I/O devices, they still lack of a proper
management of other architectural resources that are implicitly
shared by application domains running upon commercial off-
the-shelf (COTS) multicore platforms. Most relevantly, even if
domains are assigned separate and dedicated cores, access to
memory can generate inter-domain interference. Specifically,
one of the main source of interference is due to the contention
of cache lines in the last-level cache (LLC) (shared by all
the cores) [1]: data placed in the LLC by a domain can
unpredictably be evicted to accommodate the data of another
domain, and viceversa, with a resulting mutual increase of
memory access times. Analogously, contention can arise when
accessing the main DRAM memory, whose controllers are
also known for re-ordering contending access requests to
maximize throughput [2], thus further harming the system
predictability. Providing hypervisors with isolation capabilities
for such shared resources is therefore a prominent challenge
in the design of virtualized mixed-criticality systems.

Contribution. This paper presents a hypervisor support for
achieving isolation when accessing the LLC and the DRAM
in ARM multicore platforms. Spatial partitioning of the LLC
is achieved by means of cache coloring, while temporal
isolation in accessing the DRAM is achieved through a mem-
ory bandwidth reservation mechanism. The support has been
implemented within the XVISOR open-source hypervisor [3].
Experimental results to assess the effectiveness of the proposed
support are reported for the popular Raspberry Pi 2 platform
(equipped with an ARM Cortex A7 processor).

The presented results received considerable attention by the
XVISOR community, which is integrating the developed tech-
niques into the official release of the hypervisor.1 The realized
implementation is publicly available as open-source [4]. To the
best of our knowledge, this is the first open-source hypervisor
solution that supports both the proposed isolation capabilities.

1To date, the developed support for cache coloring is already publicly
available in the XVISOR repository at https://github.com/avpatel/xvisor-next.

Proc. of the IEEE International Conference on Industrial Technology (ICIT 2018), Lyon, France, February 20-22, 2018.



Paper structure. The remainder of this paper is organized
as follows. Section II reviews the essential background. Sec-
tion III and Section IV present the proposed approach for
supporting the isolation of the LLC and of the DRAM
bandwidth, respectively, discussing their implementation in
XVISOR. Section V reports on an experimental study that
has been conducted to assess the effectiveness of the re-
alized mechanisms. Section VI discusses the related work.
Section VII concludes the paper and illustrates some possible
future work.

II. ESSENTIAL BACKGROUND

To make the paper self-contained and more accessible, it is
fundamental to briefly recall some essential background about
the hardware-based technology provided by ARM to imple-
ment virtualization (Sec. II-A) and the hypervisor adopted in
this work (Sec. II-B).

A. ARM Virtualization Extensions

The ARM virtualization extensions (ARM-VE) allows ex-
ecuting multiple operating systems (OSes) upon the same
platform, while providing to each of them the illusion of sole
ownership of the system. This is accomplished by the intro-
duction of new architectural features (i.e., with an hardware-
based support) with respect to standard ARM architectures,
which are (i) a new privilege mode for the processors, denoted
as hypervisor mode; (ii) an additional layer for memory
virtualization, which is managed by a two-stage memory
management unit (MMU); (iii) an enhanced interrupt router;
and (iv) the hypervisor call (HVC) instruction to implement
hypercalls. Most relevant to this paper is feature (ii). While
still disposing of traditional MMU capabilities, which enable
memory virtualization for OSes, ARM-VE platforms include a
second translation level for memory addresses. Specifically, the
first stage translates virtual addresses to intermediate physical
addresses (IPA), which will be then translated to the actual
physical addresses (PA) by the second MMU stage. This
feature is particularly relevant for virtualization purposes: the
first stage can be configured by an OS without being aware
of virtualization, while the second stage can be managed by
a hypervisor to allow the coexistence of multiple OSes within
the same memory space.

B. The XVISOR Hypervisor

XVISOR is an open-source type-1 hypervisor (i.e., native),
which aims at providing a monolithic, light-weight, portable
and flexible virtualization solution. It provides high perfor-
mance and low memory footprint virtualization capabilities
for various ARM architecture (with and without virtualization
extensions) and for other CPU architectures including x86. The
hypervisor allows executing multiple domains (also referred
to as virtual machines or guests), where each of them can
run a different instance of an OS (e.g., Linux, which is the
primary OS supported by XVISOR). Each domain disposes of
a set of virtual CPUs (VCPU), which are assigned to physical
CPUs by the hypervisor scheduler. XVISOR comes with a
generic VCPU scheduler that is pluggable with respect to a set
scheduling strategies: to date, XVISOR supports fixed-priority
scheduling with round-robin tie breaking and rate-monotonic.
Virtualization of peripheral devices is achieved via emulation.
Pass-trough access is also available for some devices.

III. SUPPORTING LLC ISOLATION

Several approaches have been employed to achieve pre-
dictability in the presence of inter-core interference generated
by shared levels of cache; the interested reader can refer to the
excellent survey of Gracioli et al. [1] for a detailed literature
review. At a high level, three major techniques have been
proposed: (i) index-based cache partitioning, (ii) way-based
cache partitioning, and (iii) cache locking (or lockdown). The
first two methods provide a segmentation of the available cache
memory by reserving specific cache sets or ways, respectively,
to given cores. The latter aims at forbidding the eviction of
cache lines by marking them as locked.

Cache coloring. In this work, isolation of the LLC has
been achieved with cache coloring [5], a well-established
software-based technique for index-based cache partitioning.
This technique exploits the behavior of set-associative caches,
which use part of the PA, denoted as set index, to identify
the cache line to be used. The key rationale is that, if a
domain accesses only PAs whose set indexes match a given
pattern, then it will also access a restricted set of cache lines.
In fact, cache coloring aims at reserving a subset of the bits
composing the set index to identify a cache partition (i.e., a
color). Such bits constitute the color index. Two colors are said
to be contiguous if their color indexes differ by one. Also, an
address a is said to match a color c if the bits of a reserved
for implementing the coloring are equal to the color index of
c. The color size (in bits) is defined as 2k, where k is the
position of the first bit (counting from the less significant one)
that is used for the color index.

Cache coloring has been selected for three main reasons,
which are advocated as particularly relevant in the context of
hypervisors. First, because it is practical, i.e., cache coloring
can be efficiently implemented, does not require specific or
custom hardware support, and is transparent to the application
programmer. Second, because hypervisors typically already
manage the allocation of memory areas for the domains to
virtualize their address spaces, and hence come with a software
design that is prone to integrate coloring techniques at that
stage. Third, because it allows exposing a relatively simple
configuration interface to the system designer, which is also
transparent with respect to the software executing within a
domain. In fact, isolation can be controlled by assigning set of
colors to domains, thus also seamlessly regulating the amount
of cache memory that is reserved to them.

Proposed approach. The approach proposed in this paper has
been conceived for ARM-VE platforms and consists in:

(i) Assigning static colors to domains. In the off-line config-
uration phase of the hypervisor, each domain is assigned a
set of colors. Such colors are part of the interface exported by
each domain (useful to compose the system without relying on
details of the software running within domains). The overall set
of available colors is platform-dependent: an example related
to the reference platform used in this work is reported in
Section III-B.

(ii) Redefining the memory allocation strategy of the hypervi-
sor. When the hypervisor configures the second stage of the
MMU (in charge of translating IPAs to PAs), the mapping of
second-stage memory pages is performed by placing them into



memory areas whose addresses match the colors associated to
the domain. An example is illustrated in Figure 1.

In this way, strict partitioning of the LLC among domains
running upon different cores can be achieved by just assigning
them non-overlapping sets of colors. The resulting effect is
that each domain will see a dedicated LLC partition, with the
illusion of disposing of a smaller amount of cache memory
in which it cannot suffer evictions caused by the software
executing in the other domains. Although the reduction of
the available cache memory may penalize the system perfor-
mance (especially when average-case metrics are concerned), it
makes each domain more predictable and more robust against
misbehaviors or denial-of-service attacks originated in the
other domains. Note that this approach also allows controlling
isolation when multiple domains run on the same core. For
instance, coloring can allow the segmentation of L1 caches,
thus permitting the avoidance of evictions during preemptions
among domains, or making the interference bounded as a
function of the number of preemptions (and hence, under
control of the hypervisor), which can be achieved by assigning
the same colors to all the domains running upon the same core.
Nevertheless, such designs are argued as less attractive for
safety-critical domains, for which the provision of dedicated
cores is de-facto a more robust solution.

{ { { {

Domain 0 Domain 1

} {

} {

Guest OS 

Virtual pages

Guest OS 

Physical pages 

ARM IPA

Host 
Physical pages{ {

Domain 0

Fist translation

level

Second translation

level 

(Stage 2 MMU)

Domain 0 Domain 0Domain 1 Domain 1 Domain 1

Figure 1. Example of memory mapping with cache coloring for two
domains, each assigned four different colors. Their IPA space is allocated to
physical memory in a discontinuous manner by the hypervisor to match the
corresponding color indexes. For simplicity, the segmentation of the physical
memory into colors has a granularity of one page.

A. Implementation

Before proceeding in detailing our implementation, it is
necessary to briefly review how XVISOR handles memory
virtualization. First of all, it is worth mentioning that XVISOR
manages the system configuration by means of device tree
script (DTS) files for each domain, which is a format borrowed
from the Linux community. A DTS file must specify the
memory layout that is seen by each domain, which is, in turn,
organized into memory regions. According to the capabilities
of ARM-VE platforms, such regions will be accessed by using
IPAs, which can be configured with a specific field in the DTS
file. At the system startup, XVISOR scans all the DTS files
and reserves an area in physical memory for each region that
is configured to represent a portion of RAM memory. A first-
fit policy is used at this stage. When a domain attempts to
access an IPA for which the Stage 2 page table of the MMU
is not yet configured, an exception (also denoted as abort) is
raised. Such an exception is handled by XVISOR, which takes

care of allocating the memory page that includes the addressed
IPA (different page sizes are available, with a default of 2MB).
Allocation will take place in the area of physical memory that
was reserved for the corresponding region during the startup.

Clearly, this strategy is not compatible with cache coloring,
as the allocation of memory pages into physical memory must
follow a specific pattern in order to match physical addresses
that correspond to a given set of colors.

The first step that has been performed to support coloring
consists in introducing a segmentation scheme where each
region can be split into maps. Furthermore, regions have also
been assigned a bitmap tag to represent the colors to which
they are associated, which can be configured with a new
field provided into the DTS file. Then, at the system startup,
each region is split into multiple maps by following their
corresponding colors, where each map has size equal to the
color size. To reduce fragmentation, if a region is assigned
contiguous colors, then they are merged into the same map.
That is, a region Ri of size si, assigned to x contiguous colors,
is split into mi = dsi/(x · C)e maps, where C is the color
size. Once the segmentation into maps is performed, an area
of physical memory is reserved for each map. The selection of
these areas follows a first-fit strategy and is performed in such
a way that their addresses match the corresponding colors.
This phase is largely simplified by the fact that each map
is aligned to the color size. Finally, when a Stage 2 MMU
exception occurs for a given IPA, its corresponding map M
and memory page P are identified: then, P is assigned to
physical memory within the area reserved for M at the startup.
The relative position of pages within maps is preserved in
physical memory. This process is illustrated in Figure 2. Since
cache coloring introduces a significant segmentation of the
memory allocation, the memory page handled at this stage
has been configured with a different size with respect to the
one previously adopted by XVISOR (with a default of 4KB in
place of 2MB). Note that such an allocation takes place only
the first time a memory page is accessed, and its impact in
terms of run-time overhead can be mitigated with a warm-up
procedure at the system startup.

region physical memory

…

map

page

Figure 2. Illustration of the memory allocation of XVISOR for cache
coloring. A memory region is split into maps, for which areas in physical
memory (marked with dots) are reserved at addresses that are compatible
with the assigned colors (note that the placement is fragmented). The dashed
arrow represents the mapping of a page to physical memory.

B. Coloring on Raspberry Pi 2

In this work, the popular Raspberry Pi 2 has been used
as a reference platform for testing and evaluating our imple-
mentation. The Raspberry Pi 2 disposes of a quad-core ARM



Cortex-A7 processor with 512KB of L2 cache and 32KB L1
caches. Figure 3 illustrates the address layout of the reference
platform with the set indexes for both the level of caches.
Memory is accessed with a paging scheme with minimum page
size of 4KB, which has been adopted in our implementation
to cope with the fragmentation introduced by coloring. As it
can be observed from the figure, the physical page identifier
within the IPA overlaps with the L1 set index for just one bit,
which implies that the L1 can be partitioned into only two
colors. Conversely, the overlap with the L2 set index consists
into 4 bits: however, if it is intended to only partition the L2
cache, only the bits that do not overlap with the L1 set index
can be used, which are three (bits [15 13] in the figure). As
a consequence, the available colors for LLC partitioning are
eight.

Cache line 
offset

Set IndexTag

Cache line 
offset

Set IndexTag

Physical page # Page Offset
39

31

31

31 0

0

0

6

6

11

12

15
Row select

Row select

[15 13]

L1 Cache

L2 Cache

color index

PA

Figure 3. Address layout of ARM Cortex-A7 with 512KB of L2 cache and
memory pages with size 4KB. Three bits ([15 13]) are available to implement
coloring of the L2.

IV. SUPPORTING MEMORY BANDWIDTH RESERVATION

Although the hypervisor realizes isolation of the LLC
by means of coloring, mutual interference among domains
running upon different cores is still possible due to concurrent
access to the DRAM main memory, e.g., in correspondence to
L2 cache misses. A simple and practical technique to overcome
this issue consists in realizing a memory bandwidth reservation
mechanism that limits the number of memory accesses in a
given time window, which was probably first proposed as a
software-based solution by Yun et al. [6] in the context of
non-virtualized multiprocessor systems.

In this work, memory bandwidth reservation is imple-
mented at the level of the hypervisor, where the latter provides
to each domain a budget of memory accesses for each VCPU
replenished in a periodic fashion. Both the budgets and the
periods are static configuration parameters of the domains, for
which specific fields have been provided into the DTS files.
This approach allows reducing the interference incurred by
domains due to memory contention, which becomes implicitly
limited by the memory budgeting, as well as independent of
the actual behavior of the software running within the other
domains. The following sections present how the proposed
approach manages the memory budgets (Sec. IV-A) and how
the reservation mechanism has been integrated with the VCPU
scheduler of the hypervisor (Sec. IV-B).

A. Managing memory budgets on ARM platforms

ARM processors include logic, denoted as performance
measurement unit (PMU), which can collect statistics on the

operations performed by the cores and the memory system dur-
ing runtime. For instance, on the ARM Cortex-A7 processor,
each core disposes of a PMU with four 32-bit counters, where
each of them can track one configurable event among those
that are present in a list available in the processor documen-
tation. One of such events, denoted as data memory access,
allows keeping track of the number of accesses to the DRAM
memory, and has been used as the fundamental mechanism to
manage memory budgets. This allows implementing a budget
accounting mechanism as a pure hardware-based solution,
hence without increasing the run-time overhead introduced by
the hypervisor. Another relevant feature of PMU counters is
their ability to generate an interrupt in correspondence to the
overflow of the counter register. This feature has been used
to implement the event of budget exhaustion, which again can
be realized without wasting processor cycles for checking the
current budget. Note that PMUs have a scope that is limited to
the corresponding core, i.e., each of them must be configured
by their core and interrupts will only be signaled to the latter.
This fact determines the need for a distributed logic to manage
memory budgets.

Overall, the following major steps have been required to
use the PMUs to implement memory bandwidth reservation:
(i) for each core, a counter of the corresponding PMU must be
configured to keep track of the data memory access event and
to generate an interrupt when a counter overflow occurs; (ii)
to setup a budget of B memory accesses, the counter register
of the selected counter must be configured to 232 − 1 − B.
PMUs can be configured with move to coprocessor from
register (MCR) instructions. The PMU setup required by our
implementation consists in just five MCR instructions. Please
refer to the on-line appendix [4] of this paper for further
details.

B. Integration with the VCPU scheduler of XVISOR

The realized implementation allows reserving an individual
memory bandwidth for each VCPU of each domain. To enable
this feature, it was necessary to integrate the reservation
mechanism with the VCPU scheduler of XVISOR. At a high
level, the hypervisor has been modified to react to the events
of memory budget exhaustion, which cause the suspension of
the interested VCPUs, and to interleave different PMU con-
figurations depending on the executing VCPUs. Also, periodic
budget recharges and initialization procedures were required to
be managed in conjunction to scheduling events. The resulting
scheduling logic for a VCPU is illustrated as a state machine in
Figure 4, whose most relevant state transitions are numerated
from 1 to 9. A new VCPU state, named RECHARGE, has been
introduced to keep track of a VCPU that is waiting for a
memory budget recharge.

When a VCPU is created (trans. 1), the domain control
block is initialized with the memory reservation parameters
stored into the corresponding DTS file. Then, when a VCPU
starts being eligible for execution (trans. 3), a timer, denoted as
recharging timer, is configured for raising a periodic interrupt
to signal the event of budget replenishment. The recharging
timer has been implemented by using the XVISOR timer in-
frastructure. In the corresponding handler, the timer is restarted
to implement the periodic behavior, and is stopped when a
VCPU is deactivated (trans. 2). As a function of the adopted



Figure 4. State machine of the XVISOR VCPU scheduler integrated with
the memory bandwidth reservation mechanism.

scheduling policy (e.g., fixed-priority or round-robin), a VCPU
alternates between the READY and the RUNNING states due
to VCPU preemptions. Each time a VCPU is preempted
(trans. 6), its current memory budget is first saved in the
domain control block by reading the PMU counter register
(PMXEVCNTR), then the register is reconfigured with the
memory budget that is available for the preempting VCPU
(trans. 5). When the memory budget exhausts, the PMU raises
an overflow interrupt whose corresponding handler notifies
the scheduler to suspend the VCPU, which transits from the
RUNNING to the RECHARGE state (trans. 7). Consequently, the
PMU is stopped. The VCPU will not be eligible for execution
until the budget will be replenished. The budget is replenished
when the recharging timer fires, whose corresponding interrupt
notifies the scheduler to move the VCPU from the RECHARGE
to the READY state (trans. 8). Finally, when a VCPU is in the
RUNNING state, its memory accesses are counted by means
of a PMU (trans. 9), hence without invoking any software
mechanism.

V. EXPERIMENTAL RESULTS

This section reports on an experimental evaluation that has
been conducted to assess the effectiveness of the implemented
solutions. The popular Raspberry Pi 2 board, equipped with
a quad-core ARM Cortex-A7 processor, has been used as a
reference platform. The evaluation has been focused on the
comparison between a standard release of XVISOR (v. 0.2.9)
and the modified version of XVISOR (still based on v. 0.2.9)
that integrates the proposed isolation capabilities, both serving
two domains executing Linux 4.9.18. Each domain has been
assigned a dedicated core. The first domain (Domain 0) has
been used as a target for the measurements (interfered domain),
while the second domain (Domain 1) has been used to generate
interference to the first domain (interfering domain).

Domain 0 has been configured to execute a variant of the
Isol-Bench benchmark suite [7], which consists in accessing a
portion of memory of size N KB for M times. The memory
is accessed in a sequential way using a cycle, and only the
memory access time is measured. Conversely, to stress the
implemented mechanisms and mimic the case of a misbehavior
(or a denial-of-service attack), Domain 1 has been configured
to continuously access a large portion of memory (10 MB). For
both the two versions of XVISOR, the tests were performed (i)
with only Domain 0 in execution (i.e., without interference),
which is denoted as the solo case; and (ii) with the two domains

in execution, which is denoted as the corun case.

A. LLC isolation

Four contiguous colors have been assigned to each domain,
thus achieving an equal repartition of the L2 cache memory
with 256 KB for each domain (see Section III-B). The size
N of the memory accessed by Domain 0 has been varied
from 8 KB to 512 KB with steps of 8 KB. For each value
of N , the benchmark has been executed M = 1000 times
collecting the running times. A timer has been used to carry
out the measurements, and the overhead introduced by the
hypervisor (e.g., periodic interrupts) has been filtered out.
Cache warm-up has been performed by initializing the used
memory areas before starting the actual tests. The maximum
running times for N ∈ [8, 256] KB are reported in Figure 5,
while the ones for N ∈ [256, 512] KB are reported in Figure 6.
Average running times and other plots are available in an on-
line appendix of this paper [4].

50 100 150 200 250

2

4

·105

Memory size (KB)

M
ax

.r
un

ni
ng

tim
e

(n
s)

No Coloring Corun
Coloring Corun
Coloring Solo

No Coloring Solo

Figure 5. Maximum execution times of the benchmark when accessing a
memory area with size 8 to 256 KB.

Note that Figure 5 illustrates the case in which Domain
0 accesses a portion of memory that can be contained within
its reserved cache partition. As it can be observed from the
graph, when cache coloring is not enabled, the difference of
maximum running times between the cases with and without
interference (‘solo’ vs. ‘corun’) increases as N increases,
reaching a gap of 23%. Such a difference is the effect of the
additional delays incurred by Domain 0 due to cache misses
originated by the evictions caused by Domain 1. Conversely,
when cache coloring is enabled, it is possible to observe that
the maximum execution time is almost the same in both the
cases, thus confirming the effectiveness of the implemented
isolation mechanism. The small difference (lower than 3%) for
N > 180 due to the intra-core interference caused by conflicts
of cache set indexes.

Figure 6 illustrates the case in which Domain 0 accesses
a portion of memory that is larger than its reserved cache
partition (N > 256 KB), but it can still be contained into
the LLC (N ≤ 512 KB). When cache coloring is not enabled,
the difference of maximum running times between the cases
with and without interference (‘solo’ vs. ‘corun’) is consistent,
showing a gap up to 28%. Again, when cache coloring is
enabled, the difference is lower that 3%. When no interference
is present (‘solo’ case), it is worth observing that the difference
between the cases with and without coloring is substantial: this
is due to the fact that, independently of the behavior of the
second domain, the coloring mechanism reduces the available



300 350 400 450 500

0.6

0.8

1

1.2

·106

Memory size (KB)

M
ax

.r
un

ni
ng

tim
e

(n
s) No Coloring Corun

Coloring Corun
Coloring Solo

No Coloring Solo

Figure 6. Maximum execution times of the benchmark when accessing a
memory area with size 256 to 512 KB.

space in the LLC. However, while representing a drawback
for average-case scenarios, this phenomenon does not affect
worst-case scenarios in the light of mixed-criticality systems,
where another (possibly less critical) domain can continuously
generate interference with an intense memory traffic. In fact,
without cache coloring, in the worst-case, every cache line can
be evicted by a conflicting domain.

B. Memory bandwidth reservation

To test the implemented reservation mechanism, the size
N of the memory area accessed by Domain 0 has been varied
in the range [512, 10240] KB, with step 512 KB, thus forcing
the domain to access the main DRAM memory (note that the
size N is larger than the LLC size). The same experimental
setup discussed in the previous section has been used, with
cache coloring enabled when using our version of XVISOR.
Memory bandwidth reservation has been enforced on Domain
1, whose bandwidth has been varied between 4, 20, 40 and 80
MB/s.

0.2 0.4 0.6 0.8 1

·104

1

2

·107

Memory size (KB)

M
ax

.r
un

ni
ng

tim
e

(n
s) No Res Corun

Res Corun 80 MB/s

Res Corun 40 MB/s

Res Corun 20 MB/s

Res Corun 4 MB/s

Res Solo (Coloring)

No Res solo

Figure 7. Maximum execution times of the benchmark when accessing a
memory area with size 512 to 10240 KB. Different memory bandwidths are
assigned to the interfering domain.

Figure 7 reports the maximum running times as a function
of N for all the tested scenarios. As it can be observed from the
graph, when adopting the standard version of XVISOR (‘no
res’ case), the difference between the cases with and without
interference (‘solo’ vs. ‘corun’) increases as N increases, with
a very large gap up to 48%. Thanks to the implemented
reservation mechanism, it is possible to limit the interference
generated by Domain 1 (and make it predictable): as it emerges
from the figure, the measured running times reduce as the

bandwidth assigned to Domain 1 decreases, thus confirming
the effectiveness of the reservation mechanism.

0 200 400 600 800 1,000
0.8

0.9

1

1.1

1.2
·107

Iteration

R
un

ni
ng

tim
e

(n
s)

No Res Corun

Res Corun 80 MB/s

Res Corun 40 MB/s

Res Corun 20 MB/s

Res Corun 4 MB/s

Res Solo (Coloring)

No Res solo

Figure 8. Individual execution times of 1000 iterations for accessing 5120
KB of memory. Different memory bandwidths are assigned to the interfering
domain.

To illustrate the variability of the collected measurements,
Figure 8 reports the running times of each execution of the
benchmark (one iteration) for N = 5120 KB. The larger
variability has been observed when no bandwidth reservation
is applied, and the benefit of the bandwidth reservation mech-
anism can also be clearly observed by this graph.

VI. RELATED WORK

During the last decade, the problem of architectural re-
source contention in multiprocessor systems received a lot of
attention by multiple research communities. Considering the
vast amount of presented results, a detailed literature cannot be
reported here due to space limitations. Therefore, this section
focuses only on the works that are closer to this paper.

Kim and Rajkumar [8] proposed two techniques for parti-
tioning the LLC in virtualized systems. Their techniques are
particularly focused on the knowledge of the tasks running
within each domain, which is not the case of our work. The
authors also implemented the proposed techniques in KVM.
Xu et al. [9] proposed a technique for LLC partitioning by
leveraging the Intel’s Cache Allocation Technology (CAT),
which then does not apply to ARM platforms. Their proposal
has been implemented in the Xen hypervisor. The Quest-V
separation kernel [10] also supports cache partitioning.

While cache partitioning has been widely investigated, less
efforts have been spent on memory bandwidth reservation,
especially in virtualized systems. To the best of our knowledge,
the first software-based techniques for achieving isolation in
accessing the DRAM have been proposed by Yun et al. [2],
[6]. Such efforts, however, did not target hypervisors and
were implemented in Linux. Recently, Ye et al. [11] proposed
another memory reservation mechanism based on novel per-
formance counters that are available on Intel platforms, which
has been implemented in the Quest OS. All such works apply
the reservation at a core level, while the approach proposed in
this paper enforces individual reservations for each domain.

VII. CONCLUSION AND FUTURE WORK

This paper addressed the design and the implementation
of isolation mechanisms for the last-level cache (LLC) and



the DRAM memory controller of an ARM multicore plat-
form, focusing on their integration within XVISOR, an open-
source hypervisor. Both the mechanisms have been tightly inte-
grated with the virtualization mechanisms offered by XVISOR,
namely memory allocation by means of two-stage memory
management units and virtual CPU scheduling. Experimental
results on the popular Raspberry Pi 2 platform confirmed the
effectiveness of the implemented solutions, illustrating how the
running time of a state-of-the-art benchmark is significantly
reduced in the presence of isolation mechanisms.

The realized implementation is publicly available as open-
source [4] and is going to be integrated in the official re-
lease of XVISOR. This work lays the foundation for several
challenging future works, including DRAM bank-level par-
titioning [12], more dynamic cache partitioning techniques,
improved memory reservation mechanisms with bandwidth
reclaiming, reservation mechanisms for the DMA, and the
support for the ARM TrustZone technology.

ACKNOWLEDGMENTS

This work has been partially supported by the RETINA
Eurostars Project E10171.

REFERENCES
[1] G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröhlich, and R. Pel-

lizzoni, “A survey on cache management mechanisms for real-time
embedded systems,” ACM Comput. Surv., vol. 48, no. 2, Nov. 2015.

[2] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memguard:
Memory bandwidth reservation system for efficient performance isola-
tion in multi-core platforms,” in 19th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2013, pp. 55–64.

[3] A. Patel, M. Daftedar, M. Shalan, and M. W. El-Kharashi, “Embedded
hypervisor Xvisor: A comparative analysis,” in 2015 23rd Euromicro
International Conference on Parallel, Distributed, and Network-Based
Processing, March 2015, pp. 682–691.

[4] [Online]. Available: https://github.com/pa007/xvisor-next/tree/
cache-coloring and memory-reservation

[5] J. Liedtke, H. Hartig, and M. Hohmuth, “Os-controlled cache pre-
dictability for real-time systems,” in 3rd IEEE Real-Time Technology
and Applications Symposium, Jun 1997, pp. 213–224.

[6] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory
access control in multiprocessor for real-time systems with mixed
criticality,” in Real-Time Systems (ECRTS), 2012 24th Euromicro Con-
ference on. IEEE, 2012, pp. 299–308.

[7] P. K. Valsan, H. Yun, and F. Farshchi, “Taming non-blocking caches to
improve isolation in multicore real-time systems,” in IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), April
2016.

[8] H. Kim and R. Rajkumar, “Real-time cache management for multi-core
virtualization,” in Embedded Software (EMSOFT), 2016 International
Conference on. IEEE, 2016, pp. 1–10.

[9] M. Xu, L. Thi, X. Phan, H.-Y. Choi, and I. Lee, “vCAT: Dynamic cache
management using CAT virtualization,” in Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2017 IEEE. IEEE,
2017, pp. 211–222.

[10] R. West, Y. Li, E. Missimer, and M. Danish, “A virtualized separa-
tion kernel for mixed-criticality systems,” ACM Trans. Comput. Syst.,
vol. 34, no. 3, 2016.

[11] Y. Ye, R. West, J. Zhang, and Z. Cheng, “Maracas: A real-time multicore
VCPU scheduling framework,” in IEEE Real-Time Systems Symposium
(RTSS, 2016, pp. 179–190.

[12] H. Yun, R. Mancuso, Z. P. Wu, and R. Pellizzoni, “PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore
platforms,” in 19th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), April 2014.

https://github.com/pa007/xvisor-next/tree/cache-coloring_and_memory-reservation
https://github.com/pa007/xvisor-next/tree/cache-coloring_and_memory-reservation



