
Real-Time Syst (2018) 54:800–829
https://doi.org/10.1007/s11241-018-9301-3

A design flow for supporting component-based software
development in multiprocessor real-time systems

Alessandro Biondi1 · Giorgio Buttazzo1 · Marko Bertogna2

Published online: 1 March 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Component-based software development established as an effective tech-
nique to cope with the increasing complexity of modern computing systems. In the
context of real-time systems, the M-BROE framework has been recently proposed to
efficiently support component-based development of real-time applications on mul-
tiprocessor platforms in the presence of shared resources. The framework relies on
a two-stage approach where software components are first partitioned upon a virtual
multiprocessor platform and are later integrated upon the physical platform by means
of component interfaces that abstract from the internal details of the applications. This
work presents a complete design flow for the M-BROE framework. Starting from a
model of software components, a first method is proposed to partition applications to
virtual processors and perform a synthesis of multiple component interfaces. Then, a
second method is proposed to support the integration of the components by allocating
virtual processors to physical processors. Both methods take resource sharing into
account. Experimental results are also presented to evaluate the proposed methodol-
ogy.

Keywords Real-time · Component-based software · Hierarchical scheduling ·
Resource sharing · Partitioning · Multiprocessor

B Alessandro Biondi
alessandro.biondi@santannapisa.it

Giorgio Buttazzo
giorgio.buttazzo@santannapisa.it

Marko Bertogna
marko.bertogna@unimore.it

1 Scuola Superiore Sant’Anna, Pisa, Italy

2 University of Modena and Reggio Emilia, Modena, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-018-9301-3&domain=pdf
http://orcid.org/0000-0002-6625-9336


Real-Time Syst (2018) 54:800–829 801

1 Introduction

The increasing need of adding new software functions in customer products is pushing
software companies towards a hierarchical design approach, where multiple applica-
tions, initially executed on dedicated hardware units, are being integrated on the same
hardware platform. For instance, in automotive systems such a hierarchical approach
is motivated to contain the total number of electronic control units (ECUs) installed
in a car, which implies a significant reduction of used space, weight, energy, and cost
(Natale and Vincentelli 2010).

On the other hand, when multiple applications share the same hardware platform,
new problems must be solved to make the hierarchical approach effective and pre-
dictable. One of them is caused by the reciprocal interference among concurrent
software activities, which may introduce unbounded delays and cause unpredictable
performance degradation (Thiele 2014).

An effective approach for containing the interference among concurrently running
applications is the resource reservation mechanism (Mercer et al. 1994; Abeni and
Buttazzo 2004). According to this approach, each application is executed within a
dedicated processor partition, implemented by a reservation server. A reservation
server Sk is a time provisioning mechanism that allocates a budget Qk for the applica-
tion every period Pk . In this case, the bandwidth reserved to an application results to be
αk = Qk/Pk . The reservation mechanism must guarantee that the served application
receives a given fraction of the processor bandwidth, but at the same time it cannot
consume more than the allocated amount, thus protecting the other applications from
possible overruns (temporal isolation).

In the case in which application tasks make use of mutually exclusive resources
shared between reservations (such as I/O devices or global memory buffers) the isola-
tion property could be broken when the server budget expires within a critical section.
In this case, in fact, an extra delay would be added to the tasks blocked on the same
resource to wait not only for the release of the lock, but also for the next budget
replenishment.

To solve this problem, various approaches have been proposed in the literature
(Davis and Burns 2006; Behnam et al. 2007, 2010; Bertogna et al. 2009b). Among
them, thanks to an improved schedulability analysis (Biondi et al. 2015b), the BROE
protocol (Bertogna et al. 2009b) proposed by Bertogna, Fisher and Baruah has been
found to perform best.

The BROE protocol, originally developed for uniprocessor systems, has been
recently extended by Biondi et al. (2015a) into M-BROE to support the develop-
ment of component-based hierarchial systems on multiprocessor platforms in the
presence of shared resources. In the M-BROE framework (reviewed in Sect. 2), the
tasks of a software component are statically allocated to virtual processors (imple-
mented via reservation servers), which are in turn allocated to the physical processors
at component-integration time. The resulting infrastructure relies on partitioned hier-
archical scheduling and non-preemptive FIFO spin locks to regulate the access to
shared resources.

Although the authors fully characterized the M-BROE protocol and provided the
schedulability analysis of components on given reservation servers, the problems of

123



802 Real-Time Syst (2018) 54:800–829

partitioning applications on virtual processors and defining reservation parameters
were not addressed in Biondi et al. (2015a).

Other authors solved task partitioning in multicore systems using Integer Linear
Program (ILP) formulations (Baruah 2004;Baruah andBini 2008), butwithout consid-
ering reservations, nor resource sharing. Buttazzo et al. (2011) addressed the problem
of partitioning parallel applications upon reservation servers for platform virtualiza-
tion and Khalilzad et al. (2015) studied the problem allocating component interfaces
in multiprocessor systems under partitioned EDF scheduling, but in both the works
no resource sharing has been considered. Wieder and Brandenburg (2013) presented
an optimal ILP-based partitioning strategy for fixed priority scheduling with shared
resources and Al-bayati et al. (2015) addressed the same problem using heuristic
approaches.

However, none of these works addressed partitioning methodologies under reser-
vation servers while taking resource sharing into account. Resource sharing further
complicates task partitioning problems (an example will be shown in Sect. 5), deter-
mining the need for ad-hoc approaches that explicitly take into account blocking
times.

Contributions This paper fills this gap by proposing the following contributions.

– A methodology based on aMixed-Integer Linear Program (MILP) formulation is
proposed for partitioning applications onvirtual processors taking shared resources
into account. Once an allocation is found, the synthesis of component interfaces
is performed to find the optimal reservation parameters that guarantee the schedu-
lability of the task set.

– AnotherMILP formulation is presented for allocatingvirtual processors to physical
processors depending on the component interfaces. This formulation is able to find
the optimal allocation with respect to the adopted schedulability analysis.

The combination of these two contributions provides a complete design flow for
supporting component-based software development within the M-BROE frame-
work.

Paper structure The rest of the paper is organized as follows. Section 2 presents the
system model and the M-BROE framework. Section 3 summarizes the schedulability
results derived for the M-BROE framework. Section 4 defines the problem of parti-
tioning the tasks and designing the virtual processors for the considered framework,
while Sect. 5 presents a solution for such a problem based on MILP. Section 6 reports
an MILP formulation for integrating the virtual processors of all components upon
the physical platform. Section 7 presents some experimental results for evaluating the
proposed methodology. Finally, Sect. 8 concludes the paper.

This paper extends a preliminary version of this work (Biondi et al. 2016) published
inRTNS2016by (i) considering an extended component interface that includes bounds
on holding times of shared resources, (ii) presenting a new approach for performing
component integration, which copes with the extended interface and allows handling
two interfaces for each component (Sect. 6), (iii) reporting new experimental results
based on a strengthen experimentation (Sect. 7), and (iv) presenting a simplifiedMILP
formulation for task partitioning (Sect. 5).

123



Real-Time Syst (2018) 54:800–829 803

2 Framework and modeling

2.1 System model

We consider a system composed of N software components Γ1, Γ2, . . . , ΓN , also
referred to as applications. Each software component Γk consists of a set Tk of nk real-
time periodic or sporadic tasks. Each task τi ∈ Tk is characterized by a worst-case
execution time (WCET) Ci , a period (or minimum interarrival time) Ti , and a relative
deadline Di .

The system runs on amultiprocessor platform consisting of M identical processors,
each denoted as Pm , withm = 1, . . . , M . Each component Γk is statically partitioned
over M virtual processors Skj , j = 1, . . . ,M, each implemented by a reservation

server characterized by a budget Qk
j and a period Pk

j . The ratio αk
j = Qk

j/P
k
j is

referred to as the reservation bandwidth. The virtual processor at which a task τi ∈ Tk
is assigned is denoted as S(τi ). The set of tasks allocated to Skj is denoted as Γ (Skj ).

Each component exports a component interface (defined below). Basing on com-
ponent interfaces, a component integrator is responsible for admitting or rejecting
applications and statically assigning each reservation server to a specific physical pro-
cessor. Whenever we need to discuss a specific component allocation, the processor
on which server Skj is assigned is denoted as P(Skj ). For the sake of simplicity, this
paper assumes that M = M . The framework described above is illustrated in Fig. 1
for a platform of 4 processors.

Tasks can share resources through mutually exclusive critical sections. At a com-
ponent level, we distinguish between component resources, accessed only by tasks
belonging to the same component and system resources, accessed by tasks belong-
ing to different components. When needed, we denote with RC and RS the sets of
component and system resources, respectively.

For each resource R�, δi,� denotes the length of the longest critical section of task
τi related to R�, while ηi,� denotes the number of critical sections used by τi on R�.
We assume to have ηi,� = 0 if a task τi does not access resource R�.

For a resource R� accessed by a task τi , the resource holding time Hi,� is defined
as the maximum budget consumed from the lock of R� until its unlock in the τi ’s
code. Note that if a resource is accessed non preemptively, its resource holding time
is equal to the critical section length (i.e., Hi,� = δi,�), otherwise it must include
all possible preemption delays occurring within the critical section (Bertogna et al.
2009a). A component Γk can only be admitted in the system if all its tasks have a
resource holding time bounded by H, that is, if

∀τi ∈ Tk,∀R�, Hi,� ≤ H, (1)

For component resources Rq accessed by tasks allocated to different virtual pro-
cessors, the sum of the maximum resource holding times of Rq from each virtual
processor must be bounded by MH. Formally, we require that

∀Γk,∀Rq ∈ Rk,

M∑

j=1

max{Hi,q | S(τi ) = Skj } ≤ MH, (2)

123



804 Real-Time Syst (2018) 54:800–829

Task Component resource System resource

Interface

Physical platform

Virtual platforms

System

Interface

Component integrator

Allocator Allocator

tnenopmoC1tnenopmoC N

Fig. 1 Overview of the proposed hierarchical framework. Tasks can access component resources (shared
within the same component) and system resources (accessible by all the components). The tasks of the
components are allocated to virtual platforms, which are in turn allocated to the physical platform at
component integration time depending on their corresponding interfaces

where Rk denotes the set of component resources accessed by tasks executing on
different virtual processors, formally defined as

Rk =
{
Rq ∈ RC | ∃τ1, τ2 using Rq ∧ S(τ1) �= S(τ2)

}
. (3)

2.2 Component interface

Each component Γk is abstracted through a component interface that consists of M
triples (Qk

j , P
k
j ,H

k
j ), with j = 1, . . . ,M, where

– Qk
j is the budget of the j th reservation server of component Γk ;

– Pk
j is the period of the j th reservation server of component Γk ;

123



Real-Time Syst (2018) 54:800–829 805

– Hk
j = {Hk

j,�1
, . . . , Hk

j,�NR
, Hk

j,Vk
} is a vector of resource holding times, where

R�, . . . , R�NR
are system resources and RVk is a virtual component resource used

to abstract all the component resources used in Γk .

The values in the vector of resource holding times are defined as follows: Hk
j,� is the

maximum resource holding times for system resource R� across all the tasks allocated
to the j th reservation server of component Γk , that is

Hk
j,� = max

τi
{δi,� | S(τi ) = Skj };

while Hk
j,Vk

is themaximum resource holding times across all the component resources
that are (i) accessed by more than one reservation server and (ii) accessed by tasks
allocated to the j th reservation server of component Γk , that is

Hk
j,Vk = max

Rq ,τi
{δi,q | S(τi ) = Skj ∧ Rq ∈ Rk}.

The abstraction of virtual component resources is provided to not export details related
to each component resource at the component integration stage, thus hiding the internal
usage of shared resources performed by each component. Note that this abstraction
does not consider component resources that are only accessed by a single reservation
server, as the contention for such resources is confined within a server and hence is
meaningless for component integration purposes.

2.3 Scheduling infrastructure

Tasks allocated to a virtual processor are handled by a local scheduler, which can be
any fixed-priority (FP) algorithm or earliest-deadline first (EDF) (Liu and Layland
1973). Tasks may include non-preemptive regions in which preemption is disabled
for the local scheduler. Each virtual processor is implemented by an M-BROE server
(Biondi et al. 2015a) and the variousM-BROE servers are scheduled under partitioned
EDF (P-EDF) scheduling on the M processors.

Once reservation servers are mapped to physical processors, three types of shared
resources can be distinguished: Local resources, shared only by tasks handled by the
same server; Processor-local resources, shared only by tasks executing on the same
processor, but on different servers; Global resources, shared by tasks executing on
different processors.

Local resources are accessed through the SRP (Baker 1991) protocol, while
processor-local resources are accessed by the H-SRP (Davis and Burns 2006) proto-
col in conjunction with M-BROE, in a local non-preemptive manner. Finally, global
resources are accessed by the MSRP (Gai et al. 2001) protocol in conjunction with
M-BROE.

123



806 Real-Time Syst (2018) 54:800–829

3 Summary of schedulability results

To make this work self consistent, this section summarizes the schedulability results
derived for theM-BROE framework. In particular, after recalling how to derive block-
ing factors, we summarize the schedulability tests used for local (tasks guarantee
upon virtual processors) and global (virtual processors guarantee upon the physical
platform) analysis. Please refer to Biondi et al. (2015a) for further details.

3.1 Resource sharing

Under the M-BROE framework, global resources are protected by non-preemptive
FIFO spinlocks. If a task τi wants to use a global resource locked from a task on another
processor, τi starts spinning non-preemptively until the resource is granted. Critical
sections on global resources are also executed non-preemptively and simultaneous
requests from different processors are served in FIFO order.

To analyze blocking times related to spinlockswe rely on theMSRP (Gai et al. 2001)
analysis: please note that although an improved analysis for spinlocks has been pro-
posed in Wieder and Brandenburg (2013), it cannot be directly used for the M-BROE
framework for several reasons as explained in Biondi et al. (2015a, p. 4). According
to the MSRP analysis, a bound on the maximum spinning time, denoted as remote
blocking, is computed for each global resource R� accessed from a given processor and
used to inflate the WCET of the tasks using R�. Also, non-preemptive spinning and
non-preemptive access to global resources introduce a non-preemptive blocking factor
that must be accounted for each task. The access to local and processor local resources
is regulated by the SRP (Baker 1991) and the H-SRP (Biondi et al. 2014a) protocols,
generating local blocking and additional non-preemptive blocking, respectively.

In the following, we first provide an upper-bound for the spinning time and then
report the expressions for computing remote blocking, non-preemptive blocking and
local blocking.
Upper-bound for the spinning time According to Lemma 1 in Biondi et al. (2015a),
a safe upper bound on the spinning time ξ�, j related to system resources R� is given
by ξ�, j ≤ (M − 1)H.

When analyzing a given component, critical section lengths of component resources
are known, since they belong to tasks of the same component. However, when tasks are
assigned to different virtual processors, it is not possible to infer the physical processor
on which they will be executed (since it depends on the allocation performed at the
stage of component integration). For this reason, a safe bound on the spinning time can
be computed by assuming that all virtual processors of a component will be assigned
to different physical processors. In this case, an upper bound on the spinning time ξ�, j

for a component resource R� in Γk can be computed as

ξ�, j ≤
∑

Skj �=Skm

max{δi,� | S(τi ) = Skm}. (4)

123



Real-Time Syst (2018) 54:800–829 807

This fact imposes also that processor-local resources have to be always accounted as
global resources to capture the worst-case in the local analysis.

Remote blocking An upper-bound ξi on the remote blocking for task τi is computed
by accounting for the maximum spinning time on each critical section of τi , with
P(S(τi )) = P j , that is:

ξi =
∑

R�

{ηi,� · ξ�, j | R� used by τi }. (5)

Non-preemptive blocking Such a blocking is bounded by the longest non-preemptive
section that cause arrival blocking. A non-preemptive section occurs when a task
accesses a global resource and comprises (i) a potential non-preemptive spinning
phase, which is originated by remote blocking, and (ii) the non-preemptive execution
of critical sections for global resources. Note that, during the non-preemptive spinning
phase, remote blocking is transitively transformed into arrival blocking: therefore, such
phenomenon is also referred to as transitive arrival blocking.

Under local EDF scheduling, assuming that tasks τk and τi execute on processor
P j , it can be computed as

BNP
i = max

k,R�

{ξ�, j + δk,� | R� used by τk ∧ Dk > Di }. (6)

Local blocking The SRP blocking factor for task τi due to local resources is denoted
by BL

i and is given by critical sections of resources that are locked by tasks τL with
deadlines greater than Di and shared with tasks τH with deadlines less than or equal
to Di . Formally,

BL
i = max

{
δL ,� | DH ≤ Di < DL ∧ τL and τH use R�

}
. (7)

Since non-preemptive blocking and local blocking occur at the task’s release, the
resulting blocking is called arrival blocking and can be computed as

Bi = max{BNP
i , BL

i }. (8)

3.2 Local analysis

Using the processor demand criterion extended to include resource sharing (Baruah
2006), a task set Tk is schedulable by EDF under the M-BROE server if:

∀t > 0 B(t) + dbf(t) ≤ sbf(t) (9)

where

dbf(t) =
∑

τi∈Tk

(⌊
t − Di

Ti

⌋
+ 1

)

0
(Ci + ξi ), (10)

B(t) = max{Bi | Di ≤ t}, (11)

123



808 Real-Time Syst (2018) 54:800–829

and sbf(t) is the supply bound function for the M-BROE server reported in Biondi
et al. (2015a) and (x)0 denotes max(0, x). Note that the dbf(t) in Eq. (10) takes into
account the computation time inflation ξi due to remote blocking.

TheM-BROE framework also supports local fixed-priority scheduling; however, to
date an analysis under local fixed-priority is not yet available in the published literature,
hence this paper focuses on local EDF scheduling only. Besides this limitation, the
authors are confident that the approach proposed in the following sections can also be
applied under fixed-priority scheduling.

3.3 Component integration analysis

The component integrator has to ensure the schedulability of the reservation servers
assigned to each processor. Each component provides a set of reservation servers
to the component integrator according to the specified interface; such reservation
servers will be scheduled under partitioned EDF scheduling on the M physical
processors.

Under the M-BROE framework, also the reservations exported by the components
can incur in arrival blocking, e.g., a server Skj may be blocked whenever there is a

task executing on another server Slr that is non-preemptively spinning for accessing a
global resource. Such blocking times must hence be taken into account in the schedu-
lability analysis performed at the component integration stage, and can be bounded
in an analogous manner as reported in Sect. 3.1 by considering the servers in place of
the tasks (i.e., replacing the terms δi,� with Hk

j,�). The blocking incurred by M-BROE
servers is analogous to the one incurred by tasks under P-EDF scheduling in conjunc-
tion to the MSRP (Gai et al. 2001): please refer to Biondi et al. (2015a) and Gai et al.
(2001) for the detailed blocking analysis.

The schedulability test for guaranteeing the execution of virtual processors
upon physical processors is reported in the following equation (Biondi et al.
2015a):

∀Skj : P(Skj ) = Pm,
∑

r,l:Pl
r ≤Pk

j∧
P(Slr )=Pm

Ql
r

Pl
r

+ Bk
j

Pk
j

≤ 1, (12)

where Bk
j is a bound on the arrival blocking incurred by server Skj .

3.4 Table of symbols

In order to improve the paper readability, the main notation introduced in the system
model is summarized in Table 1.

123



Real-Time Syst (2018) 54:800–829 809

Table 1 Main notation
introduced in the system model

Symbol Description

Γk kth software component

Tk Task set of the kth software component

τi i th task

Ci Worst-case execution time of task τi

Ti Period (or minimum inter-arrival time) of task τi

Di Relative deadline of task τi

Pm mth physical processor

M Number of physical processors

Skj j th virtual processor of component Γk

Qk
j Budget of Skj

Pk
j Reservation period of Skj

S(τi ) Virtual processor to which τi is assigned

Γ (Skj ) Set of tasks allocated to Skj

R� �th resource

RC Set of component resources

RS Set of system resources

δi,l Length of the longest critical section of τi for resource
R�

ηi,� Number of critical sections of τi for resource R�

Hk
j Vector of resource holding times for Skj

H Upper bound for the resource holding times of all the
resources

4 Partitioning and server design: problem definition

This section addresses the problem of partitioning application tasks on a set of vir-
tual processors implemented by M-BROE reservation servers, and determining their
configuration parameters in terms of budgets and periods.

A partitioning methodology for the M-BROE framework must take into account
three aspects simultaneously: (i) the computational demand of the application; (ii) the
parameters (budget and period) of the reservation servers; and (iii) the blocking times
related to resource sharing (also including the effect of spinlocks). In particular, the
dependency of partitioning on resource sharing is better illustrated by the following
example.

Example Consider a component composed of 3 tasks with periods T1 = 10, T2 = 20
and T3 = 50 ms and implicit deadlines, to be executed on a platform composed of
two processors. Tasks τ1 and τ3 share a component resource R. If tasks τ1 and τ3 are
assigned to different processors, then the access to R will be regulated by a spinlock.
This solution penalizes the schedulability by generating non-preemptive blocking and
increasing the execution times of τ1 and τ3 due to spinning time. Conversely, if the two

123



810 Real-Time Syst (2018) 54:800–829

tasks are allocated on the same processor, the blocking factor related to R is smaller
(due to only uniprocessor SRP blocking). While it seems convenient allocating tasks
on the same processor, it is easy to see that allocating τ2 together with the other
tasks may not be appropriate, due to the local blocking experienced by τ2 (because
D1 < D2 < D3, from Eq. (7)). If τ2 is allocated to the other processor, it will
experience no blocking. Note however, that τ2 can experience a different blocking if
it has a different period (e.g., T2 = 5 ms).

The simple example presented above shows that resource sharing further compli-
cates partitioning (which is intrinsically hard, being similar to a bin-packing problem),
and must be taken into account to identify a “good” task allocation.

In this paper, task partitioning is formulated as an optimization problem. Unfor-
tunately, however, given any performance objective (e.g., minimizing the overall
bandwidth for the reservation servers), searching for an optimal solution is practi-
cally intractable for the following reasons:

– The exact EDF schedulability test requires the specification of a pseudo-
polynomial number of check points (Baruah et al. 1990) that depends on the
parameters of the server upon which tasks execute (as explained in Biondi et al.
2014b; Bertogna et al. 2009b). Being the server parameters part of the output of
the optimization problem (hence, unknown), upper bounds on them must be used,
thus obtaining a potentially large set of constraints and variables.

– As shown in Biondi et al. (2014b), it is possible to formulate an optimization prob-
lem to compute optimalBROEserver parameters,minimizing the server bandwidth
still ensuring the task schedulability. However, the exact problem formulation
involves non-linear constraints, because the supply bound function of the server
is non-linear.

– In the M-BROE framework, the access to global resources is protected by FIFO
non-preemptive spinlocks, but an exact analysis for spinlocks is still missing, thus
preventing the search for an optimal partitioning.

Given such limitations, this paper proposes a sub-optimal methodology for task parti-
tioning and virtual processors design by splitting the problem in two phases: First, an
MILP optimization is performed for partitioning tasks to virtual processors; then the
optimal server parameters are computed through the approach presented in Biondi et
al. (2014b).

To overcome the problems highlighted above, the following approximations are
proposed to express partitioning as an MILP optimization problem:

– The EDF schedulability is carried out by the Fully Polynomial Time Approx-
imation Scheme (FPTAS), proposed by Fisher et al. (2006). According to this
approach, the workload of a task is described by the exact demand bound function
for the first λ steps, and by a linear upper-bound for the remaining steps. Formal
details about this approximation will be reported in Sect. 5.3.

– The reservation servers are approximated as ideal (fluid) virtual processors, run-
ning at a given speed α, which represents the server bandwidth. Note that using a
classical bounded-delay (α–Δ) approximation, the optimization problem results
non-linear.

123



Real-Time Syst (2018) 54:800–829 811

– As done by Wieder and Brandenburg (2013), blocking times in the presence of
FIFO non-preemptive spinlocks are computed by the original MSRP (sufficient)
analysis proposed by Gai et al. (2001).

Please, note that approaching the problem through an MILP formulation guarantees
that the achieved partitioning is optimal with regard to the assumed approximations.
Once a task partitioning is obtained, the reservation servers of each component are
designed with another optimization stage that makes use of the approach presented
in Biondi et al. (2015a) for computing the optimal server parameters that guarantee
the schedulability of a given task set running upon the server. Such design steps are
addressed in the following section.

It is worth clarifying that the approximation to fluid virtual processors is used only
to guide the task partitioning and not at the stage of the server design when the task
schedulability is enforced.

5 Partitioning and server design: optimization problem formulation

This section presents an MILP formulation to solve the problem of task partitioning
uponvirtual processors. The formulation presented in the followinghas been simplified
with respect to the one reported in the conference version of this paper (Biondi et
al. 2016), where additional variables and constraints were adopted. It is also worth
mentioning that the formulation is partially inspired by the one proposed byWieder and
Brandenburg (2013) in the context of classical partitioned fixed-priority scheduling
without reservation mechanisms.

As stated in Sect. 3, the worst-case blocking related to component resources is
computed assuming that all the virtual processors of a component are assigned to
different physical processors: without loss of generality, the index k = 1, . . . , M will
be used for both physical processors and virtual processors. In the following we refer
to a single component, hence (i) the component index is removed from all the terms
used below, and (ii) all the tasks referred in the following are implicitly assumed to be
part of a specific set Tk , where Γk is the component of interest. All the real variables
used in the optimization problem are implicitly constrained as greater than or equal to
zero. For such variables, lower-bounds expressing the minimum (safe) value will be
used to ensure schedulability. Note that any constraint that enforces such variables to
be greater than a negative number has no effect. More specifically, let x be one of the
optimization variables and let y be a negative term: any constraint of the form x ≥ y
degenerates to x ≥ 0, thus imposing no bound on x . This simple observation will
result crucial in understanding the following constraints.

5.1 Decision variables for task allocation

The following decision (binary) variables are defined to decide on the task’s allocation.

– Ai,k ∈ {0, 1}: binary variable that is set to 1 if and only if task τi is assigned to
server Sk .

Since each task is assigned to exactly one server, the following constraint holds:

123



812 Real-Time Syst (2018) 54:800–829

Constraint 1 ∀τi ,
∑M

k=1 Ai,k = 1.

5.2 Resource sharing: variables and constraints

Blocking times related to resource sharing are crucial to express the task schedulability
as a constraint of the optimization problem. In the following two sections, constraints
are derived to handle arrival blocking and spinning times.

5.2.1 Arrival blocking

To precisely encode blocking bounds in the MILP formulation, we decompose the
arrival blocking incurred by a task into the contributions provided by each shared
resource and each processor: this is accomplished with the definition of the following
variables:

– Bi,�,k ∈ R≥0: real variable expressing a lower-bound on the arrival blocking
imposed on τi by critical sections on resource R�, executed by tasks running on
virtual processor Sk .

The key objective of this section consists in providing constraints for variables Bi,�,k .
To this end, we have to distinguish between component and system resources. For both
the types of resources, in the following we provide constraints that express blocking
bounds for all the types of blocking identified in Sect. 3.1.

Considering component resources R�, the following constraint expresses a blocking
bound in the case R� is implemented as a local resource:

Constraint 2 ∀τi ,∀R� ∈ RC ,∀k = 1, . . . , M, ∀τL | DL > Di , ∀τH | DH ≤
Di ∧ ηH,� > 0,

Bi,�,k ≥ δL ,� − δL ,� · (3 − Ai,k − AL ,k − AH,k).

Proof Following Sect. 3.1, a task τi incurs in local blocking due to a local resource R�

accessed by a task τL with DL > Di when there exists another task τH with DH ≤ Di

that also accesses R�. Both τL and τH must be allocated to the same virtual processor
of τi and the amount of blocking is bounded by the largest critical section length δL ,�.
If there not exists a virtual processor Sk to which τi , τL and τH are allocated, then the
term (3 − Ai,k − AL ,k − AH,k) is always positive and the constraint degenerates to
zero, thus enforcing no bound. Otherwise, the constraint Bi,�,k ≥ δL ,� is enforced for
each task τL that can generate local blocking, thus coping with the maximum local
blocking as expressed by Eq. (7). 	


Conversely, when a component resource R� is implemented as a global resource,
tasks allocated to the same virtual processor of τi that access R� may generate non-
preemptive blocking to τi . This case is managed with the following constraint:

Constraint 3 ∀τi ,∀R� ∈ RC ,∀k = 1, . . . , M, ∀τL | DL > Di , ∀τR | ηR,� > 0

Bi,�,k ≥ δL ,� − δL ,� · (2 − Ai,k − AL ,k) − δL ,� · AR,k .

123



Real-Time Syst (2018) 54:800–829 813

Proof Following Sect. 3.1, a task τi incurs in non-preemptive blocking due to a
resource R� accessed by a task τL with DL > Di when there exists another task
τR allocated to remote virtual processor that also accesses R� (i.e., ηR,� > 0). Both
τL and τi must be allocated to the same virtual processor and the amount of block-
ing is bounded by the largest critical section length δL ,�. If there not exists a virtual
processor Sk to which both τi and τL are allocated, then the term (2 − Ai,k − AL ,k)

is always positive and the constraint degenerates to zero, thus enforcing no bound.
If such a virtual processor Sk exists, then τR must be allocated to a virtual processor
�= Sk . Whenever this is not the case, AR,k = 1 and the constraint degenerates to zero,
thus enforcing no bound. Otherwise, the constraint Bi,�,k ≥ δL ,� is enforced for each
task τL that can generate non-preemptive blocking, thus correctly enforcing a blocking
bound as in the previous constraint. 	


Similarly, still considering the case in which a component resource R� results in a
global resource, it is possible that tasks allocated to the same virtual processor of τi
experience remote blocking (i.e., originated by other virtual processors). As introduced
in Sect. 3.1, we recall that remote blocking leads to non-preemptive spinning that in
turn may prevent τi from executing. A lower-bound on such a transitive blocking is
encoded by the following constraint:

Constraint 4 ∀τi ,∀R� ∈ RC ,∀k = 1, . . . , M, ∀Sz �= Sk,∀τL | DL > Di ∧ ηL ,� >

0, ∀τR

Bi,�,k ≥ δR,� − δR,� · (2 − Ai,z − AL ,z) − δR,� · (1 − AR,k).

Proof A task τi allocated to virtual processor Sz incurs in transitive remote blocking
due to a component resource R� originated by a virtual processor Sk �= Sz when (i)
there exists a task τR allocated to Sk that accesses R� and (ii) there exists another task
τL allocated to Sz with DL > Di that also accesses R�. The amount of blocking is
bounded by the largest critical section length δR,�. Whenever such tasks do not exist,
at least one of the terms (2− Ai,z − AL ,z) and (1− AR,k) is positive and the constraint
degenerates to zero, thus enforcing no bound. Otherwise, the constraint Bi,�,k ≥ δR,�

is enforced for each task τR , thus correctly encoding a bound on transitive blocking.
	


Now, it remains to consider system resources. Following the M-BROE analy-
sis (Biondi et al. 2015a), since system resources can be accessed by all the components,
they must always be treated as global resources to cope with the worst-case. As a con-
sequence, the accesses to such resources are accounted as non-preemptive blocking,
so obtaining the following constraint:

Constraint 5 ∀τi ,∀R� ∈ RS,∀k = 1, . . . , M, ∀τL | DL > Di

Bi,�,k ≥ δL ,� − δL ,� · (2 − Ai,k − AL ,k).

Proof The proof is analogous to the one of Constraint 3 assuming that task τR always
exists (AR,k = 1). 	


123



814 Real-Time Syst (2018) 54:800–829

Similarly, when remote blocking for a system resource R� is considered, it is not
possible to infer on the critical section lengths on R� that are present in the other
components. Hence, to be safe, we have to assume that a critical section of maximum
lengthH is present on each virtual processor (please refer to Sect. 3), so obtaining the
following constraint:

Constraint 6 ∀τi ,∀R� ∈ RS,∀k = 1, . . . , M,∀Sz �= Sk, ∀τL | DL > Di∧ηL ,� > 0

Bi,�,k ≥ H − H · (2 − Ai,z − AL ,z).

Proof The proof is analogous to the one of Constraint 4 assuming that task τR always
exists (AR,k = 1) and that δR,� = H. 	


Finally, the following variables are introduced to model the blocking times corre-
sponding to each resource:

– Bi,� ∈ R≥0: real variable expressing a lower-boundon the arrival blocking imposed
on τi by critical sections on resource R�.

Such variables act as aliases to aggregate the blocking times generated by each pro-
cessor: the following constraint is enforced to encode their definition:

Constraint 7 ∀τi ,∀R�, Bi,� = ∑M
k=1 Bi,�,k .

5.2.2 Spinning time

As stated in Sect. 3, the use of non-preemptive FIFO spinlocks is accounted by inflating
tasks’ WCETs by means of the spinning time ξi generated by remote blocking. We
decompose the spinning time ξi of a task τi by using the following variables:

– ξi,k ∈ R≥0: real variable expressing a lower-bound on the spinning time for task
τi originated from virtual processor Sk .

– ξi,k,� ∈ R≥0: real variable expressing the contribution of the spinning time ξi in
accessing the resource R�, originated from virtual processor Sk .

The per-processor spinning time ξi,k can be expressed as

Constraint 8 ∀τi ,∀k = 1, . . . , M, ξi,k = ∑
R�

ξi,k,�.

Similarly, the overall spinning time ξi of a task τi is formulated as

Constraint 9 ∀τi , ξi = ∑M
k=1 ξi,k .

Then, the key objective consists in identifying constraints that provide safe bounds
on the spinning time ξi,k,�. Again, it is necessary to distinguish between component and
system resources. For a component resource R�, the following constraint is provided:

Constraint 10 ∀τi ,∀k = 1, . . . , M,∀R�, ∀τx | τi �= τx ,

ξi,k,� ≥ δx,� · ηi,� · Ax,k − B · Ai,k .

123



Real-Time Syst (2018) 54:800–829 815

Proof This constraint derives directly from the computation of the spinning time
for component resources, as defined in Eqs. (4) and (5). The constraint collects the
maximum critical section on R� of tasks τx allocated on virtual processor Sk . To
account for the overall spinning time, the critical section length is multiplied for the
number of critical sections on R� for τi (see Eq. (5)). Thanks to the decision variable
Ax,k , the first term becomes zero if task τx is not allocated on server Sk . The remaining
term −B · Ai,k is provided to have zero spinning time contribution from the same
processor at which τi is allocated (critical sections executed on the same processor of
τi do not cause spinning). In this case, B represents a numerically large constant that
dominates all possible values for the term δx,� · ηi,�, and can be formally defined as
B = maxx,�{δx,�} · maxi,�{ηi,�}. 	


When a system resource R� is considered, the spinning time can be expressed as
follows:

Constraint 11 ∀τi ,∀k = 1, . . . , M,∀R�, ∀τx | τi �= τx ,

ξi,k,� ≥ H · ηi,� · Ax,k − B · Ai,k .

Proof The proof follows from the one of Constraint 10, assuming critical sections of
length H. 	


5.3 Schedulability: variables and constraints

This section presents the constraints for the optimization problem expressing the
schedulability of a task set upon a reservation server. As stated in Sect. 3, the local
schedulability upon an M-BROE server can be checked by Eq. (9); however, as
expressed at the beginning of Sect. 5, the exact test is not easily tractable in an opti-
mization problem. To solve this problem, the workload of a task set is approximated
using the FPTAS (Fisher et al. 2006) approach. According to the FPTAS, the demand
bound function dbfi (t) of a task τi is exact for the first λ steps and then approximated
with a linear upper-bound. Depending on the chosen value of λ, function dbfi (t) can
be approximated with any desired degree of accuracy. Formally, the FPTAS for the
demand bound function is expressed as

dbf(λ)
i (t) =

{
dbfi (t), if t ≤ (λ − 1)Ti + Di

Ci + ξi + (t − Di )Ui , otherwise,
(13)

where Ui = (Ci + ξi )/Ti , to account for the WCET inflation related to the use of
spinlocks.

Using this approximation, the EDF schedulability has to be considered in λ + 1
time points for each task. The resulting sufficient EDF schedulability test for a set of
tasks T is expressed as follows:

∀p = 0, 1, . . . , λ, ∀t ∈ tSet(p),

123



816 Real-Time Syst (2018) 54:800–829

B(t, p) +
∑

τi∈T
dbf(λ)

i (t) ≤ sbf(t), (14)

where tSet(p) is the set of schedulability check-points (Fisher et al. 2006) defined as

tSet(p) =
⋃

τi∈T
{pTi + Di }, (15)

and B(t, p) is defined to approximate the blocking term of Eq. (11) as

B(t, p) =
{
B(t), if 0 ≤ p < λ

maxi {Bi }, p = λ.
(16)

As stated by Baruah (2006), the blocking term B(t) is zero for values of t larger
than the maximum relative deadline of the tasks under analysis. As a consequence, the
exact blocking function B(t) can be used (i.e., B(t, p) = B(t), ∀p ≥ 0) in the MILP
formulation if a sufficiently large number λ of check-points is used for the FPTAS.

We now define a set of variables and constraints to express the EDF schedulability
according to the FPTAS approach. All the variables contain the processor index k,
since the schedulability has to be checked for each processor addressing a partitioned
scheduling scheme. First of all, we introduce the following variables to account for
the WCET inflation related to spinlocks:

– Ji,k ∈ R≥0: real variable expressing the inflated WCET of a task τi executing on
virtual processor Sk .

Such a variable can be defined by using the following constraint:

Constraint 12 ∀τi ,∀k = 1, . . . , M, Ji,k = Ci + ξi − B · (1 − Ai,k).

Proof This constraint simply adds Ci to the overall spinning time ξi . Term −B · (1−
Ai,k) is provided to have a null inflated WCET if τi is not allocated to server Sk (i.e.,
when Ai,k = 0). B represents a numerically large constant that dominates all possible
values of the termCi+ξi , and can be defined asB = maxi {Ci }·(M−1)H·maxi,�{ηi,�}.

	

Now note that Eq. (14) involves the blocking time B(t), defined in Eq. (16). Having

to express the schedulability in a limited number of time points, we introduce variables
to quantify the blocking time at the pth time point of a task:

– PBk,p, j ∈ R≥0: real variable expressing the blocking time on virtual processor
Sk at schedulability check-point pTj + Dj of task τ j , with p = 0, 1, . . . , λ.

Such a blocking time is expressed by the following constraint, making use of the
blocking time Bi,� expressed in Constraint 7:

Constraint 13 ∀k = 1, . . . , M,∀p = 0, 1, . . . , λ, ∀τ j ,∀R�

∀τi | Di ≤ pTj + Dj ∧ p < λ

PBk,p, j ≥ Bi,� − B · (1 − Ai,k).

123



Real-Time Syst (2018) 54:800–829 817

Proof According Eqs. (11) and (16), the blocking at the schedulability check-point
t involves blocking times of tasks having deadlines less than or equal to t for p =
0, 1, . . . , λ. The pth check-point originated from τ j is pTj + Dj (see Eq. (15)): this
constraint accordingly considers all tasks τi having Di ≤ pTj +Dj (thus contributing
to blocking) excluding the ones that are not allocated on Sk . Such tasks are excluded
through the term−B·(1−Ai,k), whereB is a numerically large constant that dominates
all possible values for the term Bi,� and can be formally defined asB = MH. Similarly,
all tasks τi allocated to Sk are considered for p = λ, accounting for the maximum
blocking on Sk . 	


The computational supply provided by each virtual processor Sk is approximated by
assuming ideal (fluid) virtual processors with bandwidth αk . The following variables
are introduced to support this choice:

– αk ∈ R≥0: real variable representing the bandwidth of virtual processor Sk , with
0 ≤ αk ≤ 1.

At this point we have all the variables and the constraints to express the EDF
schedulability on each virtual processor Sk :

Constraint 14 ∀k = 1, . . . , M, ∀p = 0, . . . , λ, ∀τ j

P Bk,p, j +
∑

τi∈Γ

dbf(λ)
i,k (pTj + Dj ) ≤ αk · (pTj + Dj ),

where

dbf(λ)
i,k (t) =

⎧
⎨

⎩

(⌊
t−Di
Ti

⌋
+ 1

)

0
Ji,k, if t ≤ (λ − 1)Ti + Di

Ji,k + (t − Di )
(
Ji,k
Ti

)
, otherwise.

Proof This constraint derives directly from the FPTAS schedulability test in Eq. (14),
for each virtual processor Sk . Thanks to the definition of variables Ji,k , the contribution
in terms of demand bound function of tasks τi is allowed to be null if τi is not assigned
to virtual processor Sk . 	


5.4 Objectives

We now propose two alternative allocation strategies for the optimization problem,
aiming at different objectives. The first one, denoted as A, aims at allocating the tasks
of a component on a small set of virtual processors having high bandwidth; the second
one, denoted as B, aims at distributing tasks among a larger set of virtual processors
with lower bandwidth. Clearly, each allocation strategy leads to a different instance
of the component interface. We now formalize the objectives for both strategies.

– Strategy A: minimize the overall bandwidth required by a software component,
that is the sum of the bandwidths required by its virtual processors:

minimize
M∑

k=1

αk . (17)

123



818 Real-Time Syst (2018) 54:800–829

– Strategy B: minimize the maximum bandwidth required by the virtual processor
of a component:

minimize max{αk} = minimize Λ, (18)

where Λ is an additional real variable of the optimization problem defined by the
following constraint:

Constraint 15 ∀k = 1, . . . , M Λ ≥ αk .

5.5 Interface synthesis

Given the allocation of the component tasks to the virtual platform, produced by the
MILP solution, the design of the reservation server parameters is performed using the
approach presented in Biondi et al. (2014b). Such an approach computes the optimal
budget and period (under the assumed scheduling infrastructure) that guarantee the
application schedulability while minimizing the bandwidth for each virtual. Then, for
each reservation server and for each resource, the maximum resource holding times
are computed according to the interface discussed in Sect. 2.1.

The resulting server parameters and vectors of resource holding times (for each
virtual processor) constitute the component interface exported to the component inte-
grator. Note that, different interfaces can be obtained depending on the allocation
strategy (A or B) that is selected as objective of the proposed MILP formulation. Nev-
ertheless, each component is guaranteed to be schedulable under both the interfaces
by construction.

6 Virtual processor allocation

The goal of this section is to propose a methodology to partition the virtual processors
of all the components to the M physical processors, that is the task performed by the
component integrator. This is done by another MILP formulation that, with respect to
the adopted analysis (see Sect. 3.3) and the interfaces exported by the components, is
able to find an exact solution for the allocation problem. In this section, we assume
that each component exports two interfaces denoted as type A and type B, which are
obtained with strategies A and B presented in Sect. 5.4, respectively. The interfaces
exported by the components are the input parameters for the formulation. The proposed
MILP formulation is able to decide whether a component is integrated by using the
interface of type A or B. This characteristic represents a key improvement with respect
to the formulation presented in the conference version of this paper (Biondi et al. 2016),
where a single interface per component was considered.

To reduce clutter and improve readability, simplified notation is introduced to
present the following results. The reservation servers exported by the components
are denoted by Si with i = 1, . . . , N · M , i.e., they are enumerated with a progres-
sive index, thus getting rid of the double indexes that have been used in the previous
sections. Γ (Si ) is used to denote the corresponding component of Si . The parameters
of the interface of type A are denoted by QA

i , P
A
i and HA

i . Similarly, the ones of the
interface of type B are denoted using a B superscript. Whenever an interface is not

123



Real-Time Syst (2018) 54:800–829 819

provided by a component (e.g., when a component provides only the one of type A),
we assume that all its parameters are set to zero.

6.1 Decision variables for component allocation

As done for the task allocation problem addressed in Sect. 5, a set of binary variables
are introduced to decide on the allocation of the virtual processors:

– Ai,k ∈ {0, 1}: binary variable that is set to 1 if and only if the reservation Si is
allocated to physical processor Pk .

The following variables are defined to decide which interface is selected:

– I j ∈ {0, 1}: binary variable that is set to 1 if and only if component Γ j is allocated
with interface A, and 0 if and only if component Γ j is allocated with interface B.

Since a reservation must be assigned to only one processor, the following constraint
holds:

Integration Constraint 1 ∀Si , ∑M
k=1 Ai,k = 1.

Finally, a constraint is enforced to exclude the interfaces that are not provided by
the components. That is, if the interface of type A is not provided, then it forces the
use of the one of type B. The dual constraint is enforced if the one of type B is not
provided.

Integration Constraint 2

∀Γ j | �Si | QA
i > 0 ∧ Γ (Si ) = Γk I j = 0.

∀Γ j | �Si | QB
i > 0 ∧ Γ (Si ) = Γk I j = 1.

6.2 Resource sharing: variables and constraints

As done in Sect. 5, the blocking originated by resource sharing is split for each resource
R� and for each processor Pk , and is managed with the following real variables:

– Bi,�,k ∈ R≥0: real variable expressing a lower-bound on the arrival blocking
incurred by Si due to critical sections on resource R� that are executed by tasks
running on processor Pk .

We recall that the vectorsHA
i andHB

i , which are exported by the component interfaces,
provide bounds on the resource holding times of the shared resources. In the following,
such bounds are used to derive a set of constraints that aim at bounding the arrival
blocking incurred by the reservation servers.

To ease the presentation of the following three constraints, we define

ei (νi ) =
{

(1 − I j ) if νi = A

I j if νi = B

123



820 Real-Time Syst (2018) 54:800–829

where Γ (Si ) = Γ j . This term has the following meaning: e(A) = 0 if and only if
Si is allocated with interface A, while e(B) = 0 if and only if Si is allocated with
interface B.

We can now begin by bounding the blocking due to processor-local resources.

Integration Constraint 3 ∀νi ∈ {A, B},∀Si ,∀R�,∀k = 1, . . . , M, ∀ν j ∈ {A, B},
∀S j | Pj > Pi , ∀νh ∈ {A, B},∀Sh | Ph ≤ Pi

Bi,�,k ≥ H
ν j
j,� − B(ei (νi ) + e j (ν j ) + eh(νh)) − B(3 − Ai,k − A j,k − Ah,k).

Proof Following the H-SRP blocking analysis, a server Si allocated to processor Pk

can be blocked by a processor-local resource R� only if there exist two servers Sh and
S j , both allocated to Pk , that access R� and with Ph ≤ Pi > Pj . If such servers exist,
the time Si can be blocked due to R� is bounded by the maximum resource holding
time H A

j,�, if S j is allocated with interface A, or HB
j,�, if S j is allocated with interface

B. Whenever the three servers are not allocated to the same processor Pk , the term
(3 − Ai,k − A j,k − Ah,k) is positive and hence no bound is enforced. Furthermore,
whenever the constraint considers at least one of such servers that is part of an interface
that is not admitted, the term (ei (νi )+e j (ν j )+er (νr )) is positive and hence no bound
is enforced. 	


In a similar manner, the following constraint is provided to bound the non-
preemptive blocking generated by the access to global resources.

Integration Constraint 4 ∀νi ∈ {A, B},∀Si ,∀R�,∀k = 1, . . . , M, ∀ν j ∈ {A, B},
∀S j | Pj > Pi , ∀νr ∈ {A, B},∀Sr | Hr,� > 0

Bi,�,k ≥ H
ν j
j,� − B(ei (νi ) + e j (ν j ) + er (νr )) − B(2 − Ai,k − A j,k) − B · Ar,k .

Proof A server Si allocated to processor Pk incurs in non-preemptive blocking when
there exists a server S j allocated to Pk that accesses a global resource R�. A resource
R� is global if there exists at least one server Sr allocated to a processor �= Pk that
accesses R� (i.e., H A

r,� > 0 or HB
r,� > 0, depending on which interface is selected

for Sr ). If such servers exist, the time Si can incur in non-preemptive blocking due
to R� is bounded by the maximum resource holding time H A

j,�, if S j is allocated with

interface A, or HB
j,�, if S j is allocated with interface B. Whenever the Si and S j are

not allocated to the same processor Pk , or Sr is not allocated to a processor �= Pk , at
least one of the terms (2 − Ai,k − A j,k) and Ar,k is positive and hence no bound is
enforced. Furthermore, whenever the constraint considers at least one of such servers
that is part of an interface that is not admitted, the term (ei (νi ) + e j (ν j ) + er (νr )) is
positive and hence no bound is enforced. 	


The following constraint enforces a bound on transitive remote blocking.

Integration Constraint 5 ∀νi ∈ {A, B},∀Si ,∀R�,∀k = 1, . . . , M, ∀Px �=
Pk,∀ν j ∈ {A, B},∀S j | Pj > Pi ∧ Hj,� > 0, ∀νr ∈ {A, B},∀Sr
Bi,�,k ≥ H νr

r,� − B(ei (νi ) + e j (ν j ) + er (νr )) − B(2 − Ai,x + A j,x ) − B(1 − Ar,k).

123



Real-Time Syst (2018) 54:800–829 821

Proof According to the MSRP blocking analysis, a server Si that is allocated to a
processor Px �= Pk incurs in transitive remote blocking originated by processor Pk if
there exists a server S j allocated to Px that accesses a global resource R� that is used
by a server Sr allocated to Pk . If such servers exist, the time Si can incur in transitive
remote blocking due to R� is bounded by the maximum resource holding time H A

r,�, if

Sr is allocated with interface A, or HB
r,�, if Sr is allocated with interface B. Whenever

both Si and S j are not allocated to the same processor Px , or Sr is not allocated to a
processor Pk , at least one of the terms (2 − Ai,x − A j,x ) and (1 − Ar,k) is positive
and hence no bound is enforced. Furthermore, whenever the constraint considers at
least one of such servers that is part of an interface that is not admitted, the term
(ei (νi ) + e j (ν j ) + er (νr )) is positive and hence no bound is enforced. 	


Finally, we enforce that the maximum arrival blocking incurred by each server is
the maximum of the arrival blocking times generated by each resource.

Integration Constraint 6 ∀Si ,∀R�, Bi ≥ ∑M
k=1 Bi,�,k .

Proof The term
∑M

k=1 Bi,�,k provides a bound on the arrival blocking incurred by Si
due to resource R�. Since under MSRP a server can incur in arrival blocking due to at
most one resource, the maximum of all the terms

∑M
k=1 Bi,�,k (for each resource R�)

yields a safe bound. 	


6.3 Server schedulability: variables and constraints

To express the schedulability at the integration level in the optimization problem
formulation, we have to derive constraints from the test reported in Eq. (12). The idea
is to provide variables and constraints representing the contribution of bandwidth on
each physical processor. To this end, two real variables are defined for each reservation
server Si :

– Φ A
i,k ∈ R≥0: a real variable expressing a lower-bound on the budget demanded by

server Si if allocated with interface A and to processor Pk ;
– ΦB

i,k ∈ R≥0: a real variable expressing a lower-bound on the budget demanded by
server Si if allocated with interface B and to processor Pk ;

The following constraint is provided to enforce correct values for such variables. The
constraint makes use of a numerical constant B that is used to represent infinity, which
can be formally defined as B = maxi {Qi }.
Integration Constraint 7 ∀Γ j ,∀Si | Γ (Si ) = Γ j ,

Φ A
i,k ≥ QA

i · I j − B(1 − Ai,k),

ΦB
i,k ≥ QB

i (1 − I j ) − B(1 − Ai,k).

Proof If component Γ j is allocated with interface of type A, then I j = 1 and no
bound is enforced on QB

i ; otherwise, if Γ j is allocated with interface of type B, then
no bound is enforced on QA

i . For both the interface types, if a server Si is not allocated

123



822 Real-Time Syst (2018) 54:800–829

to processor Pk , then no bound is enforced on both Φ A
i,k and ΦB

i,k . As a consequence,

Φ A
i,k ≥ QA

i is enforced if and only if (i) interface A is selected and (ii) Si is allocated

to Pk . The same holds for ΦB
i,k ≥ QB

i when interface B is selected. 	


VariablesΦ A
i,k ,Φ

B
i,k and Bi are finally used in the following constraint that enforces

the schedulability of the servers under P-EDF andMSRP (see Eq. (12)). The constraint
exploits the fact that, whenever no bound is enforced on the abovementioned variables,
then they are allowed to degenerate to zero and hence provide no contribution to the
schedulability test.

Integration Constraint 8 ∀k = 1, . . . , M,∀νi ∈ {A, B},∀Si | Pνi
i > 0

Bi
Pi

+
∑

ν j∈{A,B}

∑

S j

P
ν j
j ≤P

νi
i

P
ν j
j >0

Φ
ν j
j,k

P
ν j
j,k

≤ 1 + B(1 − Ai,k) + B · e(νi ).

Proof Consider a processor Pk and a server Si according to an interface νi . First note
that if (i) Si is not allocated toPk (Ai,k = 0) or (ii) the component of Si is not allocated
with interface νi (ei (νi ) = 1), then the RHS of the inequality becomes infinite and
hence no constraint is enforced. Now, suppose that this is not the case, thus the LHS
is equal to 1. Given that variables Φ A

i,k , Φ
B
i,k and Bi yield valid lower-bounds on the

server budget and arrival blocking, respectively, the inequality reduces to Eq. (12).
Hence the constraint enforces the schedulability test for the servers. 	


7 Experimental results

This section presents some experimental results aimed at evaluating the proposed
methodology. Experiments have been conducted to evaluate the performance in terms
of schedulability ratio for the whole methodology, and to measure the run time of
the procedure for partitioning an application upon a virtual processor. The proposed
MILP formulations have been implemented with the IBMCPLEX solver running on a
machine equipped with 40 cores Intel Xeon E5-2640@2.4 GHz and 128GB of RAM.
Note that the presented results are related to a different experimentation with respect
to the one presented in the conference version of this paper (Biondi et al. 2016), as it
considers (i) a different approach for performing component integration, (ii) a different
workload generation strategy, which in particular considers more shared resources,
and (iii) a different MILP formulation for performing the task partitioning. Also, the
experiments have been executed on a different machine and with a re-engineered
implementation of the proposed algorithms.

123



Real-Time Syst (2018) 54:800–829 823

7.1 Workload generation

Given an overall system utilization U , N software components were generated. The
utilizations Uk of the components were generated using the UUnifast (Bini and But-
tazzo 2005) algorithm, limiting their values in the range [0.15, 1.5]. The task set Tk
in each component Γk was generated by fixing a number of tasks n, each with utiliza-
tion ui ≤ 0.8 generated by UUnifast. Tasks periods Ti were randomly chosen in the
set {5, 10, 20, 30, 50, 80, 100, 120, 150, 200} ms, and tasks computation times were
computed as Ci = ui Ti . We assumed the presence of N RC component resources for
each component and N RS system resources. For each resource R�, a random number
of tasks in the range [1, rsf · nk] was selected with uniform distribution to access R�.
The rsf parameter (resource sharing factor) indicates how many tasks use a resource.
For each task τi accessing R�, we randomly generated ηi,� ∈ [1, ηMAX] critical sec-
tions of length δi,� ∈ (0,H], both with uniform distribution. To have realistic task sets,
we enforced Ci ≥ ∑

R�
(ηi,� · δi,�), ∀τi ∈ Tk , for each component Γk (k = 1, . . . , N ).

7.2 Experiment 1

This experiment was carried out to evaluate the schedulability performance of the
entire approach proposed in this paper. For each component generated according to
the strategy described in the previous section, the partitioning and interface synthesis
method presented in Sect. 5 has been applied. Both strategies A and B have been
considered, thus generating two interfaces for each component. Then, the component
integration has been performed with the approach presented in Sect. 6. We denote a
system schedulable when the integration of the components that constitute the system
succeeds, i.e., when the approach of Sect. 6 founds an allocation and a configuration of
interfaces under which all the corresponding virtual processors are schedulable. It is
worth repeating that, under the proposed design flow, the schedulability of the virtual
processors of a component Γ transitively ensures the schedulability of the tasks in Γ .

For comparison purposes, three variants of the proposed approach have been tested:

1. A, which corresponds to adopting only interfaces obtained withstrategy A
described in Sect. 5;

2. B, which corresponds to adopting only interfaces obtained with strategy B
described in Sect. 5;

3. A ∨ B, which denotes the case in which the full methodology is applied, thus
allowing the selection of the best interface for each component to favor their
integration.

Note that preliminary results related to the third variant were also presented in the
conference version of this paper (Biondi et al. 2016): however, the correspondingMILP
formulation has been fully detailed only in the present paper. The experimentation
considered systems consisting of N = 5 components to be executed on a physical
platform includingM = 4 processors. The schedulability performance of the proposed
methodology was evaluated as a function of the system utilization U , which has been
varied from 1.5 to M with step 0.25. For each value ofU , the schedulability ratio was
computed over 500 systems, hence testing a total of 27500 components and 137500

123



824 Real-Time Syst (2018) 54:800–829

Fig. 2 Schedulability ratio as a
function of the system utilization
U for n = 5 (25 tasks in total),
N RS = 2, and N RC = 2

1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

U

Sc
he
du

la
bi
lit
y
ra
ti
o

A
B

A ∨ B

Fig. 3 Schedulability ratio as a
function of the system utilization
U for n = 8 (40 tasks in total),
N RS = 2, and N RC = 2

1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

U

Sc
he

du
la
bi
lit
y
ra
ti
o

A
B

A ∨ B

tasks. The following parameters have been kept constant during the experimentation:
λ = 30, rsf = 0.3, ηMAX = 2,H = 100μs.

Figure 2 reports the results of this experiment obtained with n = 5 tasks per com-
ponent, N RC = 2 component resources per component (for a total of 10 component
resources), and N RC = 2 system resources. Note that, for this particular setting of
parameters, A is more effective than B for almost all the tested system utilizations,
with A being able to guarantee four times more system instances than B for U = 3.
As expected, the mixed strategy (A ∨ B) outperforms the others, being able to admit
almost 80% of the generated systems for utilizations up to 3.25 (corresponding to the
80% of the available utilization). Figure 3 reports the results of the same experiment
repeated with n = 8 tasks per component. As it can be observed from the graph, there
is a significant degradation for the B approach, while A and A ∨ B show a slight
degradation with the exception of the cases with high utilization (U ≥ 3.25). The
main causes of the performance degradation can be attributed to (i) the schedulabil-
ity penalties introduced by resource reservation, which generally increase with the
number of tasks managed by a server, and (ii) the higher impact of resource sharing
(note that the adopted method for generating the workload tends to generate more
critical sections as the number of tasks increases). According to this interpretation, the
degradation results much higher for the B approach because more servers tend to be
generated (recall that strategy B tends to spread the tasks across the virtual processors)
and the consequent higher likelihood of implementing component resources as global
resources, which hence result in higher blocking times.

To better evaluate the impact of resource sharing on the schedulability ratio, another
test was performed with an increased number of resources: N RC = 4 component
resource for each component (for a total of 20 component resources) and N RS = 4
system resources. The result of this test is reported in Fig. 4 for n = 5, and in Fig. 5 for
n = 8. As it can be noted from the graphs, all the three approaches show a performance
degradation. For n = 5, themixed strategy (A∨B) is able to guaranteemore than 60%

123



Real-Time Syst (2018) 54:800–829 825

Fig. 4 Schedulability ratio as a
function of the system utilization
U for n = 5 (25 tasks in total),
N RS = 4, and N RC = 4

1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

U

Sc
he

du
la
bi
lit
y
ra
ti
o

A
B

A ∨ B

Fig. 5 Schedulability ratio as a
function of the system utilization
U for n = 8 (40 tasks in total),
N RS = 4, and N RC = 4

1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

U

Sc
he

du
la
bi
lit
y
ra
ti
o

A
B

A ∨ B

Fig. 6 Average and maximum
run time for solving the MILP
formulation for task partitioning
with strategy (A)

3 4 5 6 7 8 9 10
0

20

40

60

n

R
un

ti
m
e
(s
ec
on

ds
)

MAX
AVG

of the tested systems up to U = 3. For n = 8, the results show a clear degradation,
and A ∨ B is able to guarantee about 60% of the tested systems up to U = 2.75.

7.3 Experiment 2

In this experiment, the run time needed to solve the MILP formulation for task parti-
tioning has been measured as a function of the number of tasks (n) in a component.
For each value of n, the average and the maximum run time was measured over 500
randomly generated components. Figures 6 and 7 report run time taken by strategies
(A) and (B), respectively. The results are collected under the same parameter con-
figuration used in Fig. 2. The maximum run time shows an exponential trend as the
number of tasks increases. This result is expected since the number of the variables
on the MILP formulation increases with the number of tasks. However, note that both
the strategies have a maximum running time lower than one minute for components
of n = 10 tasks. Therefore, such results show that the proposed task partitioning
approach is perfectly compatible with the timeframe of offline (design-time) activi-
ties, e.g., those in the automotive domain, where the considered number of tasks is
particularly representative.

123



826 Real-Time Syst (2018) 54:800–829

Fig. 7 Average and maximum
run time for solving the MILP
formulation for task partitioning
with strategy (B)

3 4 5 6 7 8 9 10
0

20

40

60

n

R
un

ti
m
e
(s
ec
on

ds
)

MAX
AVG

8 Conclusions and future work

This paper presented a component-based design methodology for supporting the
integration of independently developed real-time applications upon multiprocessor
platforms in the presence of shared resources. Applications consists of a set of periodic
and sporadic real-time tasks that can use both component and system-level resources.
The physical platform is abstracted through a number of virtual platforms, one for each
component, each consisting of a set of virtual processors implemented by reservation
servers.

The proposed methodology uses anMILP formulation to partition each application
upon the virtual multiprocessor platform taking shared resources into account. Two
allocation strategies have been proposed as a objective of the formulation. Once an
allocation is found for each component, the synthesis of the virtual processors is per-
formed to find the optimal reservation parameters that can guarantee the schedulability
of the applications. Then, a component integrator uses an MILP formulation for allo-
cating all virtual processors to the physical processors to preserve the schedulability
of the system.

Simulation experiments on synthetic applications have been carried out to validate
the effectiveness of the approach. The achieved results showed that, under a repre-
sentative setting, the proposed design methodology is able to admit 90 percent of
the generated systems having utilization up to 3 on a quad-processor platform, in the
presence of shared resources and reservations.

As a future work we plan to investigate non-linear optimization problem formu-
lations for the task partitioning, as well as resource sharing driven heuristics, hence
proposing a comparison study through extensive simulation experiments. Furthermore,
it would be interesting to integrate the support for real-time lock-free algorithms to
protect shared-memory objects (Biondi and Brandenburg 2016).

Acknowledgements This work has been partially supported by the RETINA Eurostars Project E10171
and received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement 688860. The authors like to thank Enrico Bini for the fruitful discussions that helped this
work.

References

AbeniL,ButtazzoG (2004)Resource reservations in dynamic real-time systems.Real-TimeSyst 27(2):123–
165

123



Real-Time Syst (2018) 54:800–829 827

Al-bayati Z, Sun Y, Zeng H, Natale M D, Zhu Q, Meyer B (2015) Task placement and selection of data
consistency mechanisms for real-time multicore applications. In: Proc. of the 21st IEEE real-time and
embedded technology and application symposium (RTAS 2015), Seattle, WA, USA

Baker TP (1991) Stack-based scheduling for realtime processes. Real-Time Syst 3(1):67–99
Baruah S (2006) Resource sharing in EDF-scheduled systems: a closer look. In: Proceedings of the 27th

IEEE real-time systems symposium (RTSS’06), Rio de Janeiro, Brazil, 5–8 Dec
Baruah S K (2004) Partitioning real-time tasks among heterogeneous multiprocessors. In: Proceedings of

the International Conference on Parallel Processing (ICPP 2004), Montreal, Quebec, Canada, Aug
15-18

Baruah S, Bini E (2008) Partitioned scheduling of sporadic task systems: an ILP-based approach. In: Proc.
of the conference on design and architectures for signal and image processing, Bruxelles, Belgium,
24–26 Nov

Baruah S, Rosier L, Howell R (1990) Algorithms and complexity concerning the preemptive scheduling of
periodic, real-time tasks on one processor. J Real-Time Syst 2

BehnamM, Nolte T, Sjödin M, Shin I (2010) Overrun methods and resource holding times for hierarchical
scheduling of semi-independent real-time systems. IEEE Trans Ind Inform 6(1):93–104

Behnam M, Shin I, Nolte T, Nolin M (2007) SIRAP: a synchronization protocol for hierarchical resource
sharing in real-time open systems. In: Proc. of the 7th ACM & IEEE international conference on
embedded software (EMSOFT 2007), Salzburg, Austria, 1–3 Oct

Bertogna M, Fisher N, Baruah S (2009) Resource holding times: computation and optimization. Real-Time
Syst 41(2):87–117

Bertogna M, Fisher N, Baruah S (2009) Resource-sharing servers for open environments. IEEE Trans Ind
Inform 5(3):202–219

Bini E, Buttazzo GC (2005) Measuring the performance of schedulability tests. Real-Time Syst 30(1–
2):129–154

Biondi A, Brandenburg B (2016) Lightweight real-time synchronization under P-EDF on symmetric and
asymmetric multiprocessors. In: Proceedings of the 28th euromicro conference on real-time systems
(ECRTS 16)

Biondi A, Melani A, Bertogna M (2014a) Hard constant bandwidth server: comprehensive formulation and
critical scenarios. In: Proceedings of the 9th IEEE international symposium on industrial embedded
systems (SIES 2014), Pisa, Italy, 18–20 June

Biondi A, Melani A, Bertogna M, Buttazzo G (2014b) Optimal design for reservation servers under shared
resources. In: Proceedings of the 26th euromicro conference on real-time systems (ECRTS 2014),
Madrid, Spain, 9–11 July

Biondi A, Buttazzo G, Bertogna M (2015a) Supporting component-based development in partitioned mul-
tiprocessor real-time systems. In: Proceedings of the 27th euromicro conference on real-time systems
(ECRTS 2015), Lund, Sweden, 8–10 July

Biondi A, Buttazzo GC, Bertogna M (2015b) Schedulability analysis of hierarchical real-time systems
under shared resources. IEEE Trans Comput 65(5):1593–1605

BiondiA, ButtazzoG, BertognaM (2016) Partitioning and interface synthesis in hierarchicalmultiprocessor
real-time systems. In: Proceedings of the 24th international conference on real-time networks and
systems (RTNS 2016)

Buttazzo G, Bini E, Wu Y (2011) Partitioning real-time applications over multicore reservations. IEEE
Trans Ind Inf 7(2):302–315

Davis RI, Burns A (2006) Resource sharing in hierarchical fixed priority pre-emptive systems. In: Proc. of
the IEEE real-time systems symposium (RTSS 2006), Rio de Janeiro, Brazil, pp 257–268, 5–8 Dec

Fisher N, Baker T, Baruah S (2006) Algorithms for determining the demand-based load of a sporadic
task system. In: Proceedings of the international conference on real-time computing systems and
applications (RTCSA), Sydney, Australia, August

Gai P, Lipari G, Natale M D (2001) Minimizing memory utilization of real-time task sets in single and
multi-processor systems-on-a-chip. In: Proceedings of IEEE real-time systems symposium

Khalilzad N, Behnam M, Nolte T (2015) On component-based software development for multiprocessor
real-time systems. In: Proc. 21st IEEE international conference on embedded and real-time computing
systems and applications, August

Liu C, Layland J (1973) Scheduling algorithms for multiprogramming in a hard-real-time environment. J
Assoc Comput Mach 20(1):46–61

123



828 Real-Time Syst (2018) 54:800–829

Mercer CW, Savage S, Tokuda H (1994) Processor capacity reserves for multimedia operating systems. In:
Proceedings of IEEE international conference on multimedia computing and system, May

Natale MD, Vincentelli AS (2010) Moving from federated to integrated architectures in automotive: the
role of standards, methods and tools. Proc IEEE 98(4):603–620

Thiele L (2014) Model-based design of real-time systems. In: Keynote speeach given at the 26th euromicro
conference on real-time systems (ECRTS 2014), Madrid, Spain, 10 July

Wieder A, Brandenburg B (2013) Efficient partitioning of sporadic real-time tasks with shared resources
and spin locks. In: Proc. of the 8th IEEE international symposium on industrial embedded systems
(SIES 2013), June

Wieder A, Brandenburg B (2013) On spin locks in AUTOSAR: blocking analysis of FIFO, unordered,
and priority-ordered spin locks. In: Proceedings of the 34th IEEE real-time systems symposium
(RTSS’2013), pp 45–56, December

Alessandro Biondi is Assistant Professor at the Real-Time Systems
(ReTiS) Laboratory of the Scuola Superiore Sant’Anna. He graduated
(cum laude) in Computer Engineering at the University of Pisa, Italy,
within the excellence program, and received a Ph.D. in computer
engineering at the Scuola Superiore Sant’Anna under the supervision
of Prof. Giorgio Buttazzo and Prof. Marco Di Natale. In 2016, he
has been visiting scholar at the Max Planck Institute for Software
Systems (Germany). His research interests include design and imple-
mentation of real-time operating systems and hypervisors, schedu-
lability analysis, cyber-physical systems, synchronization protocols,
and component-based design for real-time multiprocessor systems.
He was recipient of four Best Paper Awards, and an Outstanding
Paper Award.

Giorgio Buttazzo is Full Professor of computer engineering at the
Scuola Superiore Sant’Anna of Pisa. He graduated in electronic engi-
neering at the University of Pisa in 1985, received a M.S. degree in
computer science at the University of Pennsylvania in 1987, and a
Ph.D. in computer engineering at the Scuola Superiore Sant’Anna of
Pisa in 1991. From 1987 to 1988, he worked on active perception
and real-time control at the G.R.A.S.P. Laboratory of the Univer-
sity of Pennsylvania, Philadelphia. He has been Program Chair and
General Chair of the major international conferences on real-time
systems and Chair of the IEEE Technical Committee on Real-Time
Systems. He is Editor-in-Chief of Real-Time Systems, Associate Edi-
tor of the ACM Transactions on Cyber-Physical Systems, and IEEE
Fellow since 2012. He has authored 7 books on real-time systems and
over 200 papers in the field of real-time systems, robotics, and neural
networks.

123



Real-Time Syst (2018) 54:800–829 829

Marko Bertogna is Associate Professor at the University of Modena
(Italy), where he leads the High-Performance Real-Time (HiPeRT)
Lab. His main interests are in Real-Time systems for multi- and
many-core devices, autonomous driving and industrial automation
systems, with particular relation to related timing and safety require-
ments. Previously, he was Assistant Professor at the Scuola Superiore
Sant’Anna of Pisa, where he received a Ph.D. in Computer Sciences
with a dissertation awarded with the “Giovanni Spitali” award. He
has authored more than 100 papers, receiving the 2009 Best Paper
Award for the IEEE Transactions on Industrial Informatics, and 7
other Best Paper Awards in first level international conferences. He
has been Member of the Program Committee of several major con-
ferences on real-time and embedded computing, and Member of the
Editorial Board of three international journals. He is Senior Mem-
ber of the IEEE, and Stakeholder Member of the European Network
of Excellence on High Performance and Embedded Architecture and
Compilation (HiPEAC).

123


	A design flow for supporting component-based software development in multiprocessor real-time systems
	Abstract
	1 Introduction
	2 Framework and modeling
	2.1 System model
	2.2 Component interface
	2.3 Scheduling infrastructure

	3 Summary of schedulability results
	3.1 Resource sharing
	3.2 Local analysis
	3.3 Component integration analysis
	3.4 Table of symbols

	4 Partitioning and server design: problem definition
	5 Partitioning and server design: optimization problem formulation
	5.1 Decision variables for task allocation
	5.2 Resource sharing: variables and constraints
	5.2.1 Arrival blocking
	5.2.2 Spinning time

	5.3 Schedulability: variables and constraints
	5.4 Objectives
	5.5 Interface synthesis

	6 Virtual processor allocation
	6.1 Decision variables for component allocation
	6.2 Resource sharing: variables and constraints
	6.3 Server schedulability: variables and constraints

	7 Experimental results
	7.1 Workload generation
	7.2 Experiment 1
	7.3 Experiment 2

	8 Conclusions and future work
	Acknowledgements
	References




