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I. INTRODUCTION

Linux is a general purpose operating system (GPOS) that has gained many real-time (RT) features over the last decade.
For instance, nowadays Linux has a fully preemptive mode and a deadline-oriented scheduler [1]. Although some of these
features are part of the official Linux kernel, many of them are still part of an external patch set, the PREEMPT-RT [2].
The PREEMP-RT changes the locking methods of Linux to prevent unbounded priority inversion. This is achieved by using
the Priority Inheritance Protocol [3] on in-kernel mutexes, which bounds the activation delay in high priority tasks. Indeed,
the latency is the main evaluation metric for the PREEMPT-RT Linux: for example, the Red Hat Enterprise Linux for Real-
time [4] (based on PREEMPT-RT) shows a maximum latency of 150 µs on certified hardware. However, due to Linux’s GPOS
nature, RT Linux developers are challenged to provide the predictability required for an RTOS, while not causing regressions
on the general purpose benchmarks. As a consequence, the implementation of some well known algorithms, like read/write
semaphores, has been done using approaches that were not well explored in academic papers.

II. READ-WRITE SEMAPHORES ON LINUX

On Linux, the read-write semaphores provide concurrent readers and exclusive writers for a given critical section. For
example, since the memory mapping information of a process is read very often but rarely changes during its execution, it is
protected by a read-write semaphore.

The API of the read-write semaphores is composed by four main functions. Readers call DOWN_READ() before entering
in the read-side, calling UP_READ() when leaving the read-side of the critical section. Writers should call DOWN_WRITE()
before entering in the write-side of the critical section, calling UP_WRITE() when leaving. These functions take only one
argument, which is a pointer to a structure rw_semahore. The rw_semaphore structure is presented in Figure 11.

The readers variable is an atomic type that counts how many concurrent readers are inside the critical section. This
variable is also used to store READER BIAS and WRITER BIAS flags, which are used to define if there are either readers or
a writer in the critical section. Whenever a task should block in the semaphore, it will do by blocking in the real-time mutex
rt_mutex of the semaphore. The rt mutex is defined as shown in Figure 21:

1 s t r u c t rw semaphore {
2 a t o m i c t r e a d e r s ;
3 s t r u c t r t m u t e x r t m u t e x ;
4} ;

1 s t r u c t r t m u t e x {
2 r a w s p i n l o c k t w a i t l o c k ;
3 s t r u c t r b r o o t c a c h e d w a i t e r s ;
4 s t r u c t t a s k s t r u c t ∗owner ;
5 i n t s a v e s t a t e ;
6} ;

Fig. 1: Read-write Semaphore structure Fig. 2: Real-time Mutex structure

In order to protect the fields of the rt_mutex struct from concurrent accesses, the spin lock wait_lock is used whenever
the internal fields of the mutex are modified. The wait_lock of the real-time mutex is also used to avoid two writers setting
the WRITE/READ BIAS concurrently in the rw_semaphore structure.

The pseudo-code of each operation is presented in Figure 3 and 4, respectively.

III. OPEN PROBLEMS

Considering our example, when DOWN_WRITE() is called, the task that is trying to acquire the read/write semaphore for
writing has to lock two nested resources, a regular mutex (acquired at line 8, Figure 4) and a spin lock (acquired at line 14,
Figure 4), thus creating a heterogeneous nested lock (e.g., a suspension-based lock with a nested spin-based lock or vice-versa).
This case study, taken from the Linux kernel, highlights two open issues. The first one concerns the need for implementing

1Debug fields removed from structure’s definition.
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1: function UP READ(rw sem) /* using atomic operations */
2: if −−rw sem->readers == 0 then
3: if a writer is holding the rw sem->rtmutex then
4: wake-up the writer
5: end if
6: end if
7: end function
8:
9: function DOWN READ(rw sem)

10: if ++rw sem->readers > 1 then /* using atomic operations */
11: return /* enter the critical section */
12: else
13: rw sem->readers−−
14: end if
15: take rw sem->rtmutex.wait lock /* might block busy (spinlock) */
16: if WRITER BIAS is not set then
17: rw sem->readers++
18: release rw sem->rtmutex.wait lock
19: return /* enter in the critical section */
20: end if
21: release rw sem->rtmutex.wait lock
22: take rw sem->rt mutex /* might block suspended (rt mutex) */
23: rw sem->readers++
24: release the rw sem->rt mutex
25: return /* enter in the critical section */
26: end function

1: function UP WRITE(rw sem)
2: clear WRITER BIAS
3: set READER BIAS
4: release sem->rtmutex
5: end function
6:
7: function DOWN WRITE(rw sem)
8: take rw sem->rtmutex /* might block suspended (rt mutex) */
9: clear READER BIAS

10: if rw sem->readers != 0 then
11: suspend waiting for the last reader
12: end if
13: while 1 do
14: take sem->rtmutex->wait lock /* might block busy (spinlock) */
15: if sem->readers == 0 then
16: set WRITER BIAS
17: release rw sem->rtmutex->wait lock
18: return /* enter in the critical section */
19: end if
20: release rw sem->rtmutex->wait lock.
21: suspend waiting for the last reader
22: end while
23: return
24: end function

Fig. 3: Read-side operations Fig. 4: Write-side operations

in Linux state-of-the-art protocols for (possibly heterogeneous) nested locks and developing novel analysis techniques. To the
best of our knowledge, only few works on shared-memory multiprocessor synchronization targeted nested critical sections.
Two notable examples are the work by Biondi et al. [5], in which a graph abstraction is introduced to derive a fine-grained
analysis (i.e., not based on asymptotic bounds) for FIFO non-preemptive spin locks, and the one by Ward and Anderson [6], in
which the real-time nested locking protocol (RNLP) is proposed, with the related asymptotic analysis. Later, Nemitz et al. [7]
proposed an optimization for the average-case of RNLP. However, to the best of our knowledge, only the extension of RNLP
proposed in [8] is explicitly conceived to deal with heterogeneous nested critical sections. The protocol is presented with the
related asymptotic analysis, and an experimental study aimed at assessing schedulability. Future research work could target the
issues in implementing the extended RNLP [8] in Linux. Also, it is worth considering the possibility of extending the graph
abstraction proposed by Biondi et al. [5] to allow fine-grained analysis for nested heterogeneous locks.

The second open problem concerns the design of specialized analysis techniques accounting for specific implementations of
complex types of locks (e.g., the aforementioned read/write lock in Linux). Considering the problem previously presented for
the DOWN_WRITE function, an implementation-aware analysis would account for the contention on the heterogeneous nested
critical section, considering it when a blocking-bound for the reader/writer semaphore is derived. The analyses for reader/writer
semaphores that have already been proposed (e.g., the protocol proposed by Brandenburg and Anderson [9], or R/W RNLP [10],
a variant of RNLP conceived to deal with nested, spin-based, read/write locks) could be integrated with implementation-specific
aspects. The availability of blocking-bounds conceived considering the specific implementation adopted in the Linux kernel may
help it to be more suitable for real-time contexts. Finally, a third open research area consists in finding more efficient locking
protocols (with the related implementation), accounting for both general purpose benchmark performance (i.e., average-case
behavior, needed by the GPOS nature of Linux) and predictability.
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