
Modeling and Analysis of Bus Contention for
Hardware Accelerators in FPGA SoCs
Francesco Restuccia
TeCIP Institute and Dept. of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pisa, Italy
francesco.restuccia@santannapisa.it

Marco Pagani
TeCIP Institute, Scuola Superiore Sant’Anna, Pisa, Italy
Université de Lille, CNRS, Centrale Lille, UMR 9189, CRIStAL, Lille, France
marco.pagani@santannapisa.it

Alessandro Biondi
TeCIP Institute and Dept. of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pisa, Italy
alessandro.biondi@santannapisa.it

Mauro Marinoni
TeCIP Institute and Dept. of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pisa, Italy
mauro.marinoni@santannapisa.it

Giorgio Buttazzo
TeCIP Institute and Dept. of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pisa, Italy
giorgio.buttazzo@santannapisa.it

Abstract
FPGA System-on-Chips (SoCs) are heterogeneous platforms that combine general-purpose pro-
cessors with a field-programmable gate array (FPGA) fabric. The FPGA fabric is composed of a
programmable logic in which hardware accelerators can be deployed to accelerate the execution of
specific functionality. The main source of unpredictability when bounding the execution times of
hardware accelerators pertains the access to the shared memories via the on-chip bus. This work is
focused on bounding the worst-case bus contention experienced by the hardware accelerators deployed
in the FPGA fabric. To this end, this work considers the AMBA AXI bus, which is the de-facto
standard communication interface used in most the commercial off-the-shelf (COTS) FPGA SoCs,
and presents an analysis technique to bound the response times of hardware accelerators implemented
on such platforms. A fine-grained modeling of the AXI bus and AXI interconnects is first provided.
Then, contention delays are studied under hierarchical bus infrastructures with arbitrary depths.
Experimental results are finally presented to validate the proposed model with execution traces on
two modern FPGA-based SoC produced by Xilinx (Zynq-7000 and Zynq-Ultrascale+ families) and
to assess the performance of the proposed analysis.

2012 ACM Subject Classification Hardware → Interconnect; Hardware → Hardware accelerators

Keywords and phrases Heterogeneous computing, Predictable hardware acceleration, FPGA SoCs,
Multi-Master architectures

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2020.12

Supplementary Material ECRTS 2020 Artifact Evaluation approved artifact available at
https://doi.org/10.4230/DARTS.6.1.4.

1 Introduction

Next-generation cyber-physical systems (CPS) require the execution of complex computing
workload such as machine learning algorithms and image/video processing. Representative
examples include autonomous driving, advanced robotics, and smart manufacturing. In order
to perform high-performance computations while matching the timing constraints imposed by

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Francesco Restuccia, Marco Pagani, Alessandro Biondi, Mauro Marinoni, and
Giorgio Buttazzo;
licensed under Creative Commons License CC-BY

32nd Euromicro Conference on Real-Time Systems (ECRTS 2020).
Editor: Marcus Völp; Article No. 12; pp. 12:1–12:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:francesco.restuccia@santannapisa.it
mailto:marco.pagani@santannapisa.it
mailto:alessandro.biondi@santannapisa.it
mailto:mauro.marinoni@santannapisa.it
mailto:giorgio.buttazzo@santannapisa.it
https://doi.org/10.4230/LIPIcs.ECRTS.2020.12
https://doi.org/10.4230/DARTS.6.1.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
giorgio
Casella di testo
Proceedings of the 32nd Euromicro Conference on Real-Time Systems, Modena, Italy, July 7-10, 2020.

12:2 Modeling and Analysis of Bus Contention for Hardware Accelerators in FPGA SoCs

�� ������

�2

�1

�1

�2

�3

Figure 1 Example bus architecture with three HAs connected using two interconnects.

the physical world, these systems require coupling standard processing units with on-board
hardware accelerators (HAs), which allow speeding up complex computations, especially
those that are prone to large-scale parallelization. Heterogeneous computing platforms, such
as system-on-chips (SoC) that integrate a multiprocessor with acceleration-oriented devices
like field-programmable gate arrays (FPGAs) or general-purpose graphical processing units
(GPGPUs) are de-facto establishing as the reference solutions to develop next-generation
CPS. Examples of such platforms are the Zynq Ultrascale+ produced by Xilinx, which
includes a large FPGA fabric, and the Xavier produced by Nvidia, which includes a GPGPU
and other accelerators for machine learning algorithms.

A key issue when developing safety-critical CPS is to guarantee certain timing constraints
for the control software. When hardware acceleration is used by critical software, the problem
also extends to the consideration of the worst-case timing properties of HAs. Unfortunately,
timing analysis for HAs can be particularly challenging, especially if very limited information
on their internal architecture and resource management logic is publicly available, as it is the
case for Nvidia platforms. To further complicate this issue, note that HAs are typically very
memory-intensive. Indeed, they tend to work on a large amount of data (think of real-time
video processing) and hence generate a consistent memory traffic that can have a paramount
impact on their timing performance, especially when running together with other accelerators
that cause contention at some stage on their path towards shared memories (such as buses
and memory controllers).

FPGA-based heterogeneous platforms represent very promising solutions to cope with
these issues. As a matter of fact, they allow deploying energy-efficient, yet powerful HAs
on the FPGA fabric that have a very regular clock-level behavior [3, 21]. FPGA-based HAs
are typically implemented as state machines and issue a fairly predictable pattern of bus
transactions. As such, the execution times of HAs when running in isolation are characterized
by extremely limited fluctuations, and are hence very predictable. The major phenomenon
that harms the timing predictability of FPGA-based HAs that are statically programmed on
the FPGA and access a shared memory, is the corresponding memory contention they can
experience on the bus or at the memory controller.

Nevertheless, differently from other platforms, FPGAs expose a fine-grained control of
the bus infrastructure to designers, which are free to organize the bus hierarchy at their own
choice in order to match timing constraints, as well as to deploy custom arbitration modules
to dispatch memory transactions towards the memory controller [1]. At last, designers are
even free to deploy custom on-chip memories on the FPGA fabric for which they can have
full control on how contention is regulated [18]. Such strategies can be used to achieve a
higher degree of predictability for the memory traffic.

Focusing on most common approaches, FPGA designs for hardware acceleration in COTS
SoCs typically consist of a set of accelerators that act as masters on the bus to access the
main DRAM memory (off-chip) shared with the multiprocessor(s), e.g., see [27] [10] [33].
Being the number of ports to access the shared memory limited, the typical solution consists

F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo 12:3

in multiplexing multiple masters on the same port by means of interconnects, which are
usually available in the standard library of devices offered by FPGA vendors. Interconnects
can also be hierarchically connected to form a hierarchical bus network: an example of
such networks comprising three HAs (τ1, τ2, and τ3) and two interconnects (I1 and I2) is
depicted in Figure 1. Clearly, the topology of the bus hierarchy has a primary impact on how
the access to memory is regulated, and hence on the corresponding delays due to memory
contention. For instance, assuming that both I1 and I2 in Figure 1 implement round-robin
arbitration with the granularity of one memory transaction per HA per round-robin cycle,
it is possible to note that τ1 is privileged in accessing the memory. Indeed, once every two
round-robin cycles I1 could grant one memory transaction issued by τ1, while in the other
cycle transactions from τ2 and τ3 are alternated. At a very high level, τ1 have a privileged
access to the memory controller.

It is crucial to note that, in FPGA SoC, the operating frequency of the FPGA fabric
is much lower than the on-chip memory controller (which is realized in hard silicon, i.e.,
placed outside the FPGA) and the memory itself. For instance, in a Zynq-7000 by Xilinx,
the default operating frequency of the FPGA is 100MHz, while the Processing System, which
includes the memory controller, runs at 650MHz. As such, the delays introduced by a bus
infrastructure realized on the FPGA by means of interconnects are typically of the same
order of magnitude of the ones required to access the memory, and hence do not consist of a
negligible contribution to the response times of HAs.

Contribution. This paper studies bus contention and proposes a worst-case response time
analysis for HAs deployed on FPGA-based SoCs. The AXI open bus standard [2] is considered
because of the following reasons: (i) AXI is the de-facto standard communication interface
for COTS FPGA SoC platforms [31] [13], (ii) AXI is widely supported by well-established
FPGA design tools such as Xilinx Vivado [30] and Intel Quartus Prime [14], (iii) many
commercial (closed-source) HAs use AXI interfaces. To begin, a fine-grained model for the
AXI bus and AXI interconnects is presented (Sec. 3). The model accounts for several kinds
of delays experienced by bus transactions and the behavior of commercial interconnects.
Then, the paper presents a response-time analysis to bound the worst-case response time
of recurrent HAs that access a shared memory via an arbitrary hierarchical network of
interconnects (Sec. 4). Finally, three experimental evaluations (Sec. 5) are reported. First,
a set of experimental results obtained from a state-of-the-art FPGA SoC by Xilinx are
presented to validate the model proposed in this paper. Second, a case study executed on
the same platform is discussed by matching measurements extracted from its execution with
the bounds provided by the proposed analysis. Third, experimental results obtained with
synthetic workload are presented.

2 Essential Background

A typical FPGA SoC architecture combines a Processing System (PS), which includes one or
more processors, with a FPGA subsystem in a single device. Both subsystems access a shared
DRAM controller through which they can access a DRAM memory. Figure 2 illustrates a
typical SoC FPGA architecture in which two interfaces allow the communication between
the FPGA subsystem and the processing system (PS). The de-facto standard interface
for interconnections is the ARM Advanced Microcontroller Bus Architecture Advanced
eXtensible Interface (AMBA AXI) [2].

ECRTS 2020

12:4 Modeling and Analysis of Bus Contention for Hardware Accelerators in FPGA SoCs

DRAM
Controller

FPGA-PS
Interface

PS Interconnect

APU

ARM CoresARM Cores

I/O peripherals

Custom logic

FPGA PS

PS-FPGA
Interface

Figure 2 Simplified architecture of a SoC FPGA platform.

The AXI bus. The AMBA AXI standard defines a master-slave interface allowing simultane-
ous, bi-directional data exchange. An AXI interface (also referred to as port) is composed of
five independent channels: Address Read (AR channel), Address Write (AW channel), Data
Read (R channel), Data Write (W channel), and Write Response (B channel). This paper
considers that data are transmitted back to the master on the R channel (for read data) or
provided to the W channel (for write data) in the same order with which the corresponding
requests have been routed to the address channel. In other words, address requests are served
in-order, that is, the access to the output data channels R and W depends on the order in
which requests are routed to the address channels. Even though this assumption does not
directly derive from the standard, it is a popular design choice reported in the documentation
of many commercial devices such as those produced by Xilinx [28,31].

The AXI standard allows masters to issue multiple pending requests. This means that,
in principle, each master is allowed to issue an unlimited number of outstanding transactions
(typically limited by the designers of devices connected to the bus). AXI offers two methods
for transmitting data between masters and slaves: single transactions or transaction bursts.
When operating in burst mode, the requesting device can issue a single address request to
fetch/write up to 256 data words per request.

AXI ports. As it is illustrated in Figure 2, The communication between the FPGA and the
PS is allowed by two different types of interfaces: the PS-FPGA interface and the FPGA-PS
interface. The first one offers a set of slave interfaces to the FPGA and is used by the
processors to control the hardware devices or access data in the FPGA. In a dual manner,
the second one offers a set of slave interfaces to the PS and is used by devices deployed on
the FPGA (e.g., hardware accelerators) to access the central DRAM memory or the on-chip
memory in the PS. Being the number of available ports in the FPGA-PS interface limited,
scenarios in which a port is contended by multiple master devices deployed on the FPGA are
common in realistic designs. To cope with the case in which bus contention is maximized,
this paper is focused on the arbitration required to solve conflicts of requests that target
the same output port. Nevertheless, the results of this work can also be easily extended to
scenarios in which multiple ports are used.

AXI interconnects. Whenever multiple AXI masters want to access the same output port,
an AXI interconnect is in charge of arbitrating conflicting requests to the same port. The
access to each channel of the output AXI port is managed by a multiplexer. Each multiplexer
is controlled by an arbiter that decides, at each time, which slave channel is granted to the
master channel. The arbiters are completely independent from each other. Each port (slave
or master) of the AXI interconnect is buffered with a FIFO queue (which is typically quite
large). For instance, in FPGA SoCs by Xilinx, two implementations of the interconnect are

F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo 12:5

available: AXI Interconnect (deprecated in the latest platforms) and AXI SmartConnect.
Both the implementations are multiplexer-based and therefore comply with the specification
described above.

Arbitration policy. In this work, each arbiter is assumed to implement a round-robin
policy. To the best of our records, round-robin is the most common solution in commercial
off-the-shelf platforms. For instance, the AXI arbiters for FPGA SoCs by Xilinx implement
round-robin (both the AXI interconnect and the AXI SmartConnect, see [35], p.6 and [32],
p.7). Note that fixed-priority arbitration has been discontinued in the AXI SmartConnect.
Furthermore, even though the AXI standard defines QoS signals to regulate the quality-of-
service of transactions, these signals are ignored by state-of-the-art interconnects (see [35], p.
8 and [32], p. 9).

Hierarchical interconnection. State-of-the-art interconnects dispose of a limited amount of
slave ports. However, AXI interconnects can even be connected between each other, creating
a network tree of interconnects with multiple hierarchical levels. In such a structure, each
inner node of the tree represents an interconnect, each leaf represents a master device, and
the root node represents the sole interconnect connected to the slave port of the FPGA-PS
interface (i.e., the sink of all the traffic towards the FPGA-PS interface). Thanks to such
hierarchical structures, it is possible to connect as many devices as desired to a single AXI
port of the FPGA-PS interface (provided that there is enough area on the FPGA to deploy
all the modules). Clearly, the address requests (both read and write) and the data issued by
a device connected at some interconnect I in a hierarchical network must traverse all the
interconnects encountered on the path from I to the FPGA-PS. In a dual manner, write
responses and the data read by the same device must traverse the same path in reverse order,
i.e., from the FPGA-PS interface to I. Note that, due to the intrinsic parallelism of the AXI
bus, and the fact that each interconnect is an independent engine that executes in parallel
with the others, a network of interconnects exhibits a pipelined behavior.

Read transactions. A general read transaction issued by a master device τ starts with the
issue of the address request Raddr on the AR channel of its master port Mτ , which is sampled
by the corresponding slave port of the AXI interconnect to which τ is directly connected.
Raddr is then routed through a network of one or multiple AXI interconnects until reaching
the FPGA-PS interface (and then the memory controller). After a service delay related to
the logic in the Processing System, the memory controller, and the DRAM memory, the
requested data Rdata become available on the R channel of the FPGA-PS interface. Hence,
data are routed back to τ through the same interconnect network traversed by Raddr, but
in reverse order. Once available at Mτ , data Rdata are sampled by τ , hence completing the
read transaction.

Write transactions. A general write transaction issued by a master device τ starts with
the issue of the address request Waddr on the AW channel of its master port Mτ , which is
sampled by the corresponding slave port of the AXI interconnect I to which τ is directly
connected. Waddr is then routed through a network of one or multiple AXI interconnects until
reaching the FPGA-PS interface (and eventually the memory controller). In parallel, once
Waddr is granted by I, the corresponding data Wdata are provided by τ to the W channel of
its master port and flow through the path reaching the FPGA-PS interface following Waddr
(i.e., reaching the Processing System and then the memory controller). After a service delay

ECRTS 2020

12:6 Modeling and Analysis of Bus Contention for Hardware Accelerators in FPGA SoCs

(introduced by the PS, the memory controller, and the DRAM memory), the Processing
System provides a write response Wresp on the B channel of the FPGA-PS interface to
acknowledge τ . Wresp is routed from the FPGA-PS interface through the same network of
interconnects traversed by Waddr and Wdata, but in reverse order. Once available at Mτ ,
Wresp is sampled by τ and the write transaction is completed.

3 System model

This section focuses on modeling the components of a system comprising a set of AXI-based
hardware accelerators, deployed on the FPGA fabric of a FPGA-SoC platform and connected
to a shared DRAM memory on the Processing System through the FPGA-PS interface.

3.1 Hardware task model

Each hardware accelerator implements a specific functionality; therefore, from now on, they
are referred to as hardware tasks (HW-tasks for short). Each HW-task includes an AXI
memory-mapped master interface through which it can autonomously load and store data
from the DRAM memory. Each HW-task τi is periodically executed every Ti clock cycles,
hence generating an infinite sequence of periodic instances referred to as jobs. Each job of τi
(i) issues at most NR

i read transactions and NW
i write transactions, both with a fixed burst

size B; (ii) issues at most φi outstanding transactions per type, i.e., it can have at most φi
pending read transactions and φi pending write transactions at any time; (iii) computes for
at most Ci clock cycles; and (iv) has a relative deadline equal to Ti (each job must complete
before the release of the next one). Read transactions and write transactions are supposed
to be independent. Furthermore, note that read and write transactions are routed through
independent AXI channels, that is, they do not influence each other when the corresponding
data is transmitted.

It is important to observe that no specific memory access pattern for the HW-tasks is
assumed, i.e., the requests for memory transactions can be arbitrarily distributed over time
across the jobs. This assumption makes the results presented in this paper more general
and robust with respect to the HW-tasks’ behavior. However, at the same time, it limits
the number of timing properties related to bus pipelining that can be used at the stage of
analysis as, in the worst-case, transactions can be sufficiently spread far apart such that
HW-tasks do not fully exploit pipelining.

3.2 AXI interconnect model

The system can comprise several interconnects connected in a hierarchical fashion. Each
interconnect Ij has Sj slave ports and one master port. As each interconnect has a single
master port, the incoming traffic (at the master port and) directed to the slave ports does not
experience any conflict. On the other hand, address requests of the same type (read or write)
issued by different HW-tasks can experience conflicts, which are managed by independent,
per-channel, arbiters (see Section 2). The granularity of the round-robin arbiters is φI , i.e.,
at each round-robin cycle the master port grants at most φI read requests (resp., write
requests) to each HW-task. To ease the notation in the analysis presented in Section 4, it is
assumed that all the interconnects in the system share the same parameter φI (the analysis
can be easily extended to the case of different per-interconnect round-robin granularities).
Finally, it is assumed that the FIFO queues associated with the ports of the interconnects

F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo 12:7

are large enough to never saturate during the execution1. Each interconnect introduces a
propagation delay in address and data propagation. Specifically, we denote by daddrInt the
latency introduced in the propagation of address requests, by ddataInt the latency introduced
in the propagation of a word of data (read or write), and by dbrespInt the latency introduced
in the propagation of a write response. These propagation delays can be derived from the
specifications in the official documentation of the considered interconnect (when available) or
by employing experimental profiling. The AXI standard defines hold times as the numbers of
clock cycles that the address or data must be kept on the corresponding AXI channel while
both valid and ready signals are asserted. Address and data hold times are modeled with the
following terms: taddr denotes the hold time of an address request, tdata denotes the hold
time of a word of data, and tbresp denotes the hold time of a write response.

3.3 Processing System and Memory Controller model
The DRAM memory controller is a global system resource shared among all HW-tasks. Being
part of the Processing System, it is accessed from the FPGA fabric through the FPGA-PS
interface. Each port of the FPGA-PS interface can be configured to map a contiguous range
of addresses, which is referred to as a memory region. As typical for hardware acceleration,
it is assumed that each HW-task loads and stores data from a private memory buffer. To
address the case in which the maximum contention is experienced, we focus on the case in
which all the memory buffers are allocated in the same memory region and accessed through
a single AXI port at the FPGA-PS interference. Note that the results of this work can also
be extended to the case in which the HW-tasks access the DRAM memory via multiple ports
at the FPGA-PS interface: this case is left as future work due to lack of space.

The DRAM memory controller included in the Processing System can be conceptually
divided into two main blocks: (i) the AXI interface block and (ii) the DDR physical core
block. The AXI interface block is in charge of receiving and arbitrating the incoming AXI
transactions from the AXI slave ports, while the DDR physical core schedules and issues the
corresponding read and write requests to the controller’s physical layer, which eventually
drives the DRAM memory by generating control and data signals.

Typically, the internal architecture of the DDR physical core includes multi-level queues
structures, managed with dedicated scheduling policies that reorder transactions to maximize
throughput and efficiency [11]. On many commercial platforms, the internals of the DDR
physical core block, including the scheduling policies and the queues structure, are not
publicly disclosed or are not well documented. For this reason, a fine-grained modeling of the
DDR physical core block goes beyond the scope of this paper and it is not addressed here.
Rather, being our focus on the conflicts at the interconnects, a coarse-grained modeling of
the DRAM-related delays is adopted here: if the internals of the DDR controller are known,
then our results can be refined (e.g., by adopting the results from [11]).

From the perspective of the FPGA-PS interface, address requests directed to the DDR
memory controller are served in order (see [28], p. 297, and [31], p. 440). This means
that the order of the data read responses on the data read channel follows the order of the
address read requests granted at the address read channel. In the same way, write address
requests are served and acknowledged in order. These properties are guaranteed by the

1 Note that ensuring this condition is an orthogonal problem to timing analysis. That is, it is an a-priori
requirement that can be verified independently of the timing performance of the system.

ECRTS 2020

12:8 Modeling and Analysis of Bus Contention for Hardware Accelerators in FPGA SoCs

DRAM Memory Controller AXI Interface block. Note that this feature is independent of
the internal scheduling policies of the DDR Physical core block, which may include internal
reordering, hence affecting the worst-case service time of a request.

Following these considerations, this work assumes that the Processing System and the
memory controller introduce the following (cumulative) delays:

dreadPS is the maximum time elapsed between the sample of a read transaction at the
FPGA-PS interface and the availability of the first word of the corresponding data at the
FPGA-PS interface; and
dwritePS is the maximum time elapsed between the sample of the last word of data of a
write transaction at the FPGA-PS interface and the availability of the corresponding
write response at the FPGA-PS interface.

Note that, by definition, these delays include the propagation times introduced by the internal
logic of the Processing System and the overall service time at the memory controller. These
parameters depend on the internals of the Processing System and can be quantified using
the documentation provided by the SoC producer (when available) or through experimental
profiling (and over-provisioning).

3.4 Overall architecture
Formally, the system is composed of a set Γ = {τ1, . . . , τn} of n HW-tasks, a set H =
{I1, . . . , Is} of s AXI interconnects, and a memory controllerM included in the Processing
System. The HW-tasks in Γ are interconnected through a network of the AXI Interconnects
in the set H that is organized as follows. Each slave port of the AXI interconnects can be
directly connected to the master port of a HW-task or, in a hierarchical manner, to the
master port of another interconnect. The set of HW-tasks directly connected to interconnect
Ij is denoted by Γ(Ij). Similarly, the set of interconnects directly connected to the slave
ports of Ij (i.e., in input) is denoted by H(Ij). Furthermore, the set of HW-tasks whose
transactions traverse Ij is denoted by Γ+(Ij), i.e., those that are directly or transitively
connected to Ij . The interconnect at the bottom of this hierarchy has its master port directly
connected to the slave port of the FPGA-PS interface (i.e., to reachM). All the transactions
issued by the HW-tasks must pass through this latter interconnect, which is referred to as
the root interconnect Iroot. Note that, as interconnects have a single master port, the master
port of each interconnect Ij 6= Iroot is connected to a slave port of exactly one interconnect,
which is denoted by β(Ij). For consistency, β(Iroot) = ∅. The topology of the whole system
resembles a tree where Iroot is the root node, the HW-tasks in Γ are the leaves, and the
interconnects in H \ {Iroot} are the intermediate nodes (see Figure 3(b)). An interconnect I
is said to be placed at the hierarchical level LI if a HW-task directly connected to I has to
traverse LI interconnects before reaching the FPGA-PS interface (Iroot is at first level, i.e.,
LIroot = 1). The main symbols used in the paper are summarized in Table 1.

4 Response-time analysis

This section proposes an analysis to bound the response times of HW-tasks connected to an
arbitrary hierarchical network of interconnects as presented in the previous section.

The analysis is structured in incremental lemmas. First, Section 4.1 proposes a bound
on the worst-case response time for a single transaction assuming no contention at the
interconnects. Both read and write transactions are considered. Subsequently, Section 4.2
and Section 4.3 propose two different methods to bound the number of interfering transactions
that affect a job of a HW-task under analysis. These two bounds are then combined in

F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo 12:9

Table 1 Main symbols used throughout the paper.

Ni Number of transactions issued by τi (can have superscript R or W)
φi Maximum number of outstanding transactions for τi

φI Max. number of trans. granted per round-robin cycle by interconnects
B Burst size of a transaction

taddr Hold time for a single address request on the bus
tdata Hold time for a single data word on the bus
tbresp Hold time for a single write response on the bus
dread

PS Max. latency introduced by the PS on a read transaction
dwrite

PS Max. latency introduced by the PS on a write transaction
ddata

Int Propagation latency of data word through an interconnect
daddr

Int Propagation latency of address request through an interconnect
dbresp

Int Propagation latency of write response through an interconnect
Γ(Ii) Set of the HW-task directly connected to Ij

H(Ij) Set of the interconnects directly connected to slave ports of Ij

β(Ij) Interconnect connected to the master port of Ij

Γ+(Ij) Set of HW-tasks whose transactions pass through Ij

Section 4.4. Finally, Section 4.5 presents an iterative algorithm that uses the results of the
previous sections to bound the maximum response time of a HW-task of interest.

As the AXI standard defines the same methods to handle both read and write address
requests, the bounds derived in this section hold for both read and write transactions. For
this reason, in order to keep a compact notation, this section uses just the symbol Ni instead
of NR

i or NW
i to denote the number of transactions issued by τi.

4.1 No contention at the interconnects
This first lemma establishes an upper bound on the response time of a single memory
transaction issued by an arbitrary HW-task under analysis τi, connected to an interconnect
I placed at an arbitrary hierarchical level L, assuming no bus contention from the other
HW-tasks in the system2.

Remember that AXI manages read and write transactions on independent channels: as
such, they are separately considered by the following two lemmas.

I Lemma 1. Let τi ∈ {Γ} be the HW-task under analysis, connected to an interconnect
Ij ∈ H placed at the hierarchical level L. If all the HW-tasks in Γ \ {τi} are not active, i.e.,
they do not interfere with τi, the worst-case response time for a single read transaction R
issued by τi is bounded by

dNoCont,read(Ij) = L · (taddr + daddr
Int) + dread

PS + L · ddata
Int +B · tdata.

Proof. Following Section 2, a read transaction R begins with the issue of the address read
request Raddr, which is then sampled by Ij . The address time is constant and equal to taddr.
The latency cost for Raddr to traverse the interconnect Ij is bounded by daddrInt . At this point,

2 It is worth noting that this contention-free bound does not properly correspond to the case in which the
transaction under analysis is served in isolation, but rather just to the case in which no contention is
experienced at the interconnects. This is because, for the reasons discussed in Section 3.3, the delay
related to the Processing System and the memory controller already cope with conditions of maximum
contention.

ECRTS 2020

12:10 Modeling and Analysis of Bus Contention for Hardware Accelerators in FPGA SoCs

Raddr goes through the interconnect network tree, traversing the remaining L−1 interconnects.
As for Ij , each of them introduces a latency bounded by taddr + daddrInt . Therefore, Raddr is
available at the master port of the root interconnect Iroot after an overall propagation delay
of L · (taddr + daddrInt), where it is sampled from the slave port of the FPGA-PS interface. The
Processing System routes Raddr to the Memory Controller and provides to the FPGA-PS
interface the first word of data after at most dreadPS time units (see Section 3.3). At this point,
the data words Rdata corresponding to R traverse the L levels of the interconnect tree, in
reverse order with respect to Raddr, until reaching τi. Since data words are sequentially
propagated on the interconnect tree, the propagation latency in the data phase is paid
just once on all the burst of data due to pipelining. Hence, considering that tdata is the
data time (for each word) and that ddataInt is the latency introduced by each interconnect on
data words, the overall latency paid to propagate the data burst on the interconnect tree is
L · (tdata + ddataInt). The lemma following by summing up these contributions. J

I Lemma 2. Under the same hypotheses of Lemma 1, the response time for a write transaction
W issued by HW-task τi is bounded by

dNoCont,write(Ij) = L · (taddr + max{daddr
Int , ddata

Int }) +B · tdata + dwrite
PS + L · (tbresp + dbresp

Int).

Proof. The write transaction W begins with the issue of the address write request Waddr by
τi, which lasts taddr time units . Following the AXI standard, once Waddr is granted at the
interconnect Ij , the HW-task τi is granted to provide the corresponding data words Wdata on
the write channel. Waddr and Wdata are propagated through the interconnect network tree
on the corresponding (parallel) channels, until reaching the FPGA-PS interface. Data can be
propagated only after the corresponding address; hence, the latency experienced by Waddr
and Wdata to traverse an interconnect is no larger than the maximum between daddrInt and
ddataInt . Overall, considering all the interconnects up to the FPGA-PS interface, the latency
introduced on Waddr and the entire burst Wdata is given by L · (taddr + max{daddrInt , ddataInt }),
which must be summed to the time to transmit the data themselves, i.e., B · tdata. At this
point, the Processing System routes Waddr and Wdata to the memory controller. Following
Section 3.3, after at most dwritePS time units the write response Wresp is available at the FPGA-
PS interface. Finally, Wresp is propagated through the interconnect tree, until reaching
τi, experiencing a latency of L · (tbresp + dbrespInt). The lemma follows by summing up these
contributions. J

It is worth noting that the bounds provided by the two above lemmas just depend on
the hierarchical level L (identified by the interconnect Ij) at which a HW-task is directly
connected.

4.2 First bound on the number of interfering transactions

We proceed in an incremental manner by starting from the simple case in which contention
at a single interconnect is considered, say Iroot for simplicity (see Figure 3(a)). The following
lemma establishes a bound on the number of interfering transactions (issued by other
HW-tasks) that a transaction issued by the HW-task under analysis can suffer.

F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo 12:11

I Lemma 3. Consider the interconnect Iroot and let τi ∈ Γ(Iroot) be the HW-task under
analysis. In the worst-case, each address request for transaction issued by τi grants the access
to the master port of Iroot after at most∑

τj∈Γ(Iroot)\{τi}

min(φj , φI) (1)

transactions.

Proof. As mentioned in Section 3, the interconnects implement a round robin arbitration to
solve conflicts on address requests issued by different HW-tasks. In the worst-case scenario,
τi is the last HW-task served in the round robin arbitration cycle, i.e., after all the other
HW-tasks in Γ(Iroot). From the model in Section 3.1, each HW-task τj can have at most
φj pending transactions. On the other hand, from the model in Section 3.2, the maximum
number of transactions granted to each HW-task for each round robin cycle by interconnects is
equal to φI . For these reasons, Iroot grants at most min(φj , φI) for each interfering HW-task
τj ∈ Γ \ {τi} per round-robin cycle. The lemma follows by summing up the contribution of
each interfering HW-tasks. J

With the above lemma in place, we can proceed to bound the number of interfering
requests under a general hierarchical network of interconnects. We note that a HW-task
τi can incur two kinds of interference: (i) direct interference, which is the one that τi’s
transactions experience at the interconnect to which τi is directly connected to; and (ii)
indirect interference, which is the one that τi’s transactions, or other transactions that
generate direct interference to τi, experience in other interconnects at shallower hierarchical
levels on their way towards the FPGA-PS interface. Further details on both kinds of
interference are provided in the following.

Direct interference. The same reasoning used for Lemma 3 can be extended when con-
sidering a hierarchical network of interconnects such as the one illustrated in Figure 3(b).
Note that, in such a case, a HW-task can also experience contention at an interconnect due
to transactions coming from other interconnects placed at higher hierarchical levels. For
instance, in Figure 3(b), τi (directly connected to Iroot) can incur in a contention due to a
transaction issued by τz, which is directly connected to I1.

���1

�����

��

�����

��

��

�1

�� ��

��

(a) (b)

Figure 3 (a) A set of HW-tasks directly connected to Iroot. (b) Example hierarchical network
of interconnects and HW-tasks with two hierarchical levels. Each circle corresponds to a HW-task
(only the ones mentioned in the text are assigned a name).

ECRTS 2020

12:12 Modeling and Analysis of Bus Contention for Hardware Accelerators in FPGA SoCs

I Lemma 4. Consider an arbitrary interconnect Ij. Also, let τi ∈ Γ(Ij) be the HW-task
under analysis. In the worst-case, each address request for transaction issued by τi grants the
access to the master port of Ij after at most

Y direct(τi, Ij) =
∑

τj∈Γ(Ij)\{τi}

min(φj , φI) + |H(Ij)| × φI (2)

transactions.

Proof. Following the model of Section 3.2, at each round-robin cycle Ij grants at most φI
transactions per its slave port. Clearly, this consideration is true also when an interconnect
Ih, placed at a higher hierarchical level, is connected to a slave port of Ij . Hence, from the
perspective of τi, any bus traffic coming from Ih can interfere by at most φI transactions per
round-robin cycle, i.e., independently of the number of HW-tasks or interconnects connected
to Ih. Hence, the interconnects directly connected to Ij interfere with at most |H(Ij)| × φI
transactions. The first term of Eq. (2) follows due to the same considerations done for
Lemma 3. Hence the lemma follows. J

Indirect interference. While propagated through a series of interconnects on their way
towards the FPGA-PS interface, the transactions issued by the HW-task under analysis can
also incur contention at shallower hierarchical levels. For instance, the transactions issued by
τz in Figure 3(b) can incur contention at Iroot, e.g., due to other transactions issued by τi
or τx. Furthermore, note that indirect interference can also affect other transactions that
generate direct interference to the HW-task under analysis, hence leading to a transitive
interference phenomenon. For instance, still considering Figure 3(b), a transaction issued by
τk that delays τz in I1 can experience contention at Iroot due to a transaction issued by τx,
hence in turn delaying τz too: in this case, we say that a transaction of τx transitively delays
τz.

In the following, a set of lemmas are presented to account for indirect interference. We
proceed in an incremental manner by starting from the consideration of just two adjacent
hierarchical levels.

I Lemma 5. Consider an arbitrary interconnect Ij at hierarchical level L ≥ 2 that issues ∆
transactions in output to its master port. In the worst-case scenario, the ∆ transactions can
be indirectly interfered by

Y indirect
2-level (∆, Ij) = ∆×

 ∑
τi∈Γ(β(Ij))

min(φi, φI) + |H(β(Ij)) \ {Ij}| × φI

 (3)

transactions at β(Ij) (i.e., at hierarchical level L− 1).

Proof. Consider one of the ∆ transactions, say r. As addressed by Lemma 4, r can incur
direct interference at the (only) interconnect β(Ij) directly connected to Ij at hierarchical
level L− 1. As such, the interference at β(Ij) can be bounded as for Lemma 4. The only
differences here are that (i) as r comes from another interconnect Ij , it means that it has not
been originated by a HW-task connected to β(Ij) and hence no HW-task has to be excluded
from those that generate interfering transactions (first term in the sum of Eq. (2)); and (ii)
Ij has to be excluded from the interconnects that generate interfering transactions as it is the
one from which the interfered transaction is coming from (second term in the sum Eq. (2)).
Note that the second term in the multiplication of Eq. (3) serves this purpose. The lemma
follows by accounting for this bound for each of the ∆ transactions. J

F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo 12:13

With the above lemma in place, it is possible to generalize the bound of indirect interference
to an arbitrary hierarchical structure with L > 2 levels.

I Lemma 6. Let τz be the HW-task under analysis directly connected to interconnect Ij at
the hierarchical level L ≥ 2. The total number of transactions that interfere with those issued
by τz up to the l-th hierarchical level, with l ∈ [1, L], is bounded by Y lz , which is recursively
defined as follows for l < L:{

Y lz = Y indirect
2-level (Nz + Y l+1

z , I l+1) + Y l+1
z

I l = β(I l+1),

and as follows for l = L (base case):{
Y Lz = Nz × Y direct(τz, Ij)
IL = Ij .

Proof. The proof is by induction on the hierarchical level l ∈ [1, L]. We also show that
I l is the interconnect traversed by τz’s transactions at the l-th hierarchical level. Base
case: At hierarchical level L, τz is directly connected to Ij : hence, IL = Ij and τz suffers
direct interference only. Therefore, the number of interfering transactions up to the L-th
hierarchical level is bounded by accounting for the bound provided by Lemma 4 for each
of the Nz transactions issued by τz. Inductive case: We proceed by assuming that Y l+1

z

yields a safe bound for the number of interfering transactions up to the (l+ 1)-th hierarchical
level and that I l+1 is the interconnect traversed by τz’s transactions at the same level. Now,
we show that Y lz provides a safe bound for the l-th hierarchical level. First, note that by
definition, I l = β(I l+1) denotes the (only) interconnect across which τz’s transactions can
pass at the l-th hierarchical level. Second, observe that the transactions that are received
in input by I l and that affect τz’s execution are (i) those issued by τz itself and (ii) those
that generated interference to τz at the interconnects traversed at higher hierarchical levels.
The former are no more than Nz (by the model), while the latter are Y l+1

z (by inductive
assumption). Such requests are coming from I l+1 and can incur indirect interference at
I l, which can be bounded by Lemma 3 as Y indirect

2-level (Nz + Y l+1
z , I l+1). To bound the overall

number of interfering requests up to the l-th hierarchical level, it then remains to account
for all the (direct and indirect) interference collected at the higher levels, which is given by
Y l+1
z (by inductive assumption). Hence the lemma follows. J

Thanks to the above lemma, the total number of transactions that interfere with τz
(under analysis) across the entire hierarchical network of interconnects can be bounded by
looking at the interference collected up to the root interconnect, i.e., Y 1

z .

4.3 Second bound on the number of interfering transactions
A different approach can be used to derive an alternative bound on the number of interfering
transactions by leveraging the observation that the HW-tasks are periodically executed, and
hence can only generate a limited number of transactions in a given time window.

I Lemma 7. Let τi be the HW-task under analysis and let I l the interconnect traversed
by τi’s transactions at the l-th hierarchical level. In a schedulable system, the number of
transactions that can interfere with τi up to I l is bounded by

Y time(τi, I l) =
∑

τj∈Γ+(Il)\{τi}

ηi,j , where ηi,j =
⌈
Ti + Tj
Tj

⌉
×Nj .

ECRTS 2020

12:14 Modeling and Analysis of Bus Contention for Hardware Accelerators in FPGA SoCs

Proof. Consider HW-task τi and assume all HW-tasks never execute after their deadlines3.
Without loss of generality, suppose that a period instance of τi begins at time 0. To interfere
with τi, a job of another HW-task τj must be released after time −Tj , otherwise, it would be
completed when τi is released. In the same way, an interfering job of τj must be released
before time Ti, otherwise τi would already be completed and hence no contention can be
generated. As a result, the time window of interest to study the contention generated
by τj to τi is (−Tj , Ti] with length Tj + Ti. In this time window there can be at most
d(Ti + Tj)/Tje jobs of τj . As each job of τj can issue at most Nj transactions, there are at
most d(Ti + Tj)/Tje ×Nj transactions that can interfere with τi. The number of interfering
transactions is hence bounded by the sum of such contributions from each HW-task that can
interfere with τi. Note that only the HW-tasks whose transactions traverse I l can interfere
at I l: according to the system model, the set of such tasks is Γ+(I l). Clearly, τi has to be
excluded from Γ+(I l) as it cannot interfere with itself. Hence the lemma follows. J

4.4 Combining the two bounds
This lemma combines the bounds proposed in Section 4.2 and Section 4.3 to introduce a
less pessimistic bound on the overall number of interfering transactions for an arbitrary
interconnect architecture tree and HW-task set. The proposed formula is iterative on
the interconnect levels. Iterating the formula for each interconnect in the path, from the
interconnect to which the HW-task under analysis is directly connected to Iroot, it is possible
to find the overall number of interfering transactions a request under analysis issued by the
HW-task under analysis suffers.

I Lemma 8. In a schedulable system, the same claim of Lemma 6 still holds if Y lz is
recursively defined as follows for l < L:{

Y lz = min
(
Y indirect

2-level (Nz + Y l+1
z , I l+1) + Y l+1

z , Y time(τz, I l)
)

I l = β(I l+1),

and as follows for l = L (base case):{
Y Lz = min

(
Nz × Idirect(τz, Ij), Y time(τz, IL)

)
IL = Ij .

Proof. The lemma follows as for Lemma 6 after recalling that both Lemma 6 and Lemma 7
provide a safe bound on the number of transactions that can interfere with τz. Hence, the
minimum of the two bounds is still a safe bound. J

4.5 Response-time analysis algorithm
Leveraging the results of the previous sections, this section presents an algorithm to bound
the worst-case response time of HW-tasks connected at arbitrary hierarchical levels. While
the lemmas presented in the previous sections allow bounding the number of interfering
transactions, this section is concerned with assigning a contention cost to them in order to
obtain the corresponding temporal interference.

3 Assuming a schedulable system to bound response times is a typical approach when circular dependencies
are present in the response-time equations. The interested reader is invited to refer to [20] (Sec. VI.C)
for an explanation about why this is a sound approach to bound response times.

F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo 12:15

To begin, note that the contention cost associated to each interfering transaction is not
constant: indeed, following the model of Section 3, transactions experience a propagation
delay each time they traverse an interconnect. Hence, a transaction that interferes at a
high hierarchical level generates more delay than another one that interferes at a shallower
hierarchical level.

Clearly, given a HW-task τz under analysis, a safe bound can be obtained by first com-
puting Y 1

z from Lemma 8, which provides a bound on the number of interfering transactions
across the whole hierarchical network of interconnects (i.e., up to Iroot), and then multiplying
Y 1
z by the largest contention cost, i.e., the one related to the highest hierarchical level.

However, a more accurate bound can be devised if a level-specific contention cost is accounted
for each transaction by detecting the highest hierarchical level at which it can interfere.

Algorithm 1 Bounding the worst-case contention delay experienced by τz due to interfering
transactions across the whole hierarchical network of interconnects.

Input: HW-task τz ∈ Γ directly connected to Ij at level L
Output: dinterf

z

dinterf
z ← 0
IL = Ij

Nacc ← 0
for l = L,L− 1, . . . , 1 do

N l ← Y l
z from Lemma 8

dinterf
z ← dinterf

z + (N l −Nacc)× dNoCont(Il)
Il−1 = β(Il)
Nacc ← N l

end
return dinterf

z

This strategy is implemented by Algorithm 1. As mentioned at the beginning of Section 4,
read and write transactions are independently managed by AXI and hence can be separately
treated. For this reason, analogously as for the lemmas presented above, Algorithm 1 holds
for both read and write transactions. To avoid duplicating its definition, the algorithm
considers a contention cost dNoCont(Ij) that has to be replaced with dNoCont,read(Ij) or
dNoCont,write(Ij) depending on the type of transactions that are studied. Consequently, the
algorithm can be used to produce two outputs, which to keep a compatible notation are
named dinterf,readz and dinterf,writez . In essence, the algorithm iterates over all hierarchical levels
interested by the HW-task τz under analysis (from l = L to l = 1) and copes with the number
of interfering transactions collected up to each interconnect traversed by τz transactions. For
each interconnect I l traversed at the l-th hierarchical level, the algorithm accounts for the
contention delay of the interfering transactions that insist on I l but have not been accounted
at a higher hierarchical level. As said before, this is because the contention cost dNoCont(Ij)
is monotone with the hierarchical level (the higher the level the larger the cost).

Thanks to this algorithm, it is finally possible to bound the worst-case response time of
each HW-task, which is given by (i) its worst-case execution time, (ii) the time required to
perform its read and write transactions, and (iii) the contention delay experienced by the
latter. Hence, for each HW-task τz connected to interconnect Ij it is bounded by

Rz = Cz +NR
z × dNoCont,read(Ij) +NW

z × dNoCont,write(Ij) + dinterf,readz + dinterf,writez . (4)

A system is then schedulable if all HW-tasks meet their deadlines, i.e., if Rz ≤ Tz,∀τz ∈ Γ.

ECRTS 2020

12:16 Modeling and Analysis of Bus Contention for Hardware Accelerators in FPGA SoCs

5 Experimental results

This section first presents an experimental evaluation that has been conducted to validate
the system model and assess the performance of the proposed analysis (Section 5.3). The
experiments have been performed on two state-of-the-art Xilinx SoC FPGA platforms,
namely the Zynq-7020 and the ZCU102 Zynq Ultrascale+. On both platforms, one of the
high-performance (HP) ports of the Processing System is used in the FPGA-PS interface.
Due to the lack of space, this section reports only the results of the experiments performed
on Zynq Ultrascale+, since the Zynq-7000 exhibit comparable behavior. Finally, Section 5.4
reports other experimental results obtained with the synthetic workload.

5.1 Experimental setup

In order to perform a clock-level accurate evaluation, two custom IPs have been developed:
a programmable traffic generator IP, named greedy HW-task (GHW-task for short), and a
multichannel timer IP. The purpose of the GHW-task IP is to generate, in a controllable
way, cycle-accurate patterns of transactions compliant with the AXI standard with arbitrary
offsets, spacing, burst size, and maximum number of outstanding transactions. GHW-tasks
have been developed to cope with any possible bus behavior of HW-tasks, i.e., they can mimic
any kind of pattern of bus transactions issued by real-world, memory-intensive HW-tasks,
and are hence useful to stress bus contention. On the other hand, the multichannel timer
IP is used to perform clock-level accurate measurements of the GHW-tasks’ response times
without perturbating their execution. Both IPs have been synthesized and implemented
using Xilinx Vivado 2018.2. The FPGA clock is set to the default value (100 MHz), while
the Processing System runs at the default clock speed of 1.2 GHz.

5.2 Profiling

This set of experiments aims at characterizing the propagation delay and the hold times,
introduced in Section 3.2, for the AXI SmartConnect. To this end, a test setup composed of
three GHW-tasks connected to the HP0 port in the FPGA-PS interface through an AXI
SmartConnect has been realized. An Integrated Logic Analyzer (ILA) [34] module has been
placed to monitor the AXI links that connect each GHW-task to the AXI SmartConnect and
the AXI link that connects the AXI SmartConnect to the HP0 port. From the waveform
track provided by the ILA, we measured the delays experienced by addresses and data while
traversing the AXI SmartConnect (respectively, daddrInt and ddataInt , see Section 3.2) and the
hold times taddr, tdata, and tbresp introduced in Section 3.2. The propagation delays (in clock
cycles) observed on both hardware platforms are daddrInt = 12, ddataInt = 11, and dbrespInt = 9,
while the hold times taddr, tdata, and tbresp have been observed to be all constant and equal
to one clock cycle. We note that these constant delays may be larger in different settings (not
considered in this work) in which HW-tasks are not always ready to sample data or write
responses, or when the FIFO queues of the interconnect or the FPGA-PS interface saturate.
As mentioned in Section 3.3, the cumulative delays dreadPS and dwritePS in accessing the DRAM
memory from the FPGA-PS interface depend on several aspects and on the masters that insist
on the memory controller. In our experiment we did not used memory-intensive workload
executed on the processors and we experimentally estimated these delays as dreadPS = 50 clock
cycles and dwritePS = 40 clock cycles.

F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo 12:17

5.3 Model validation
This experiment aims at validating the assumptions made in Section 4 to characterize the
interference that a HW-task may suffer from other HW-tasks. We distinguish between the
case of a flat network and the one of a hierarchical network.

Interference in a flat network. The test setup used for these experiments comprises four
GHW-tasks τ0, . . . , τ3 directly connected to a single interconnect I, which is in turn directly
connected to the HP0 port exported by the FPGA-PS interface (e.g., likewise as in Fig. 3).
The GHW-tasks’ activation and finishing times are measured using one of the custom
timer IP deployed on the fabric. In this experiment, all the GHW-tasks are simultaneously
activated (at the same clock cycle) by the Processing System using a single shared logic
signal generated by an AXI GPIO module. With this experimental setup, all transactions
issued by the GHW-tasks are subject to a single arbitration step performed by the AXI
SmartConnect. The purpose of this evaluation is to experimentally evaluate the behavior of
the AXI SmartConnect in the condition of contention. Furthermore, this experiment aims at
experimentally measuring the maximum response time of a transaction in the worst-case
scenario, i.e., when it loses an entire arbitration cycle, and comparing it with the proposed
upper bound on the response time proposed in Section 4.5. To this end, all the GHW-tasks
have been programmed to issue a single read (or write) request corresponding to a burst of
sixteen 32-bit words. The experiment has been repeated for both read and write transactions.
Figure 4 reports the maximum response time measured among all the GHW-tasks, compared
with the upper-bound proposed for the flat architecture considered in this experiment.

0 50 100 150 200 250 300 350 400

Read

Write

190

160

364

316

Clock cyclesMaximum measured Analytical upper bounds

Figure 4 Maximum measured response times for read and write transactions compared with the
upper bound proposed in Section 4 (in clock cycles).

The results reported in Figure 4 confirm that in the worst-case scenario stimulated here,
i.e., when a HW-task loses an entire arbitration cycle, the measured response times can be
safely bounded by the upper bound proposed in Section 4.

Interference in a hierarchical network. This set of experiments aims at validating the
assumptions made in Section 4 to characterize the interference that a HW-task may suffer in
a hierarchical network of Interconnects, due to the interfering HW-tasks in the system. The
test setup used for this set of experiments comprises four GHW-tasks, τ0, . . . , τ3, and three
interconnects, I0, I1, I2, organized as shown in Figure 5.

In this configuration, the transaction requests issued by τ0 pass through a single step
of arbitration occurring at interconnect I0, while the requests issued by τ1 traverse two
arbitration steps occurring at I1 and then I0. Finally, the transaction requests issued by
τ2 and τ3 pass through three arbitration steps at I2, I1, and I0. The GHW-tasks are
programmed and released as for the previous experiment. The first subset of experiments
aims at validating the direct interference that a HW-task may suffer due to other HW-tasks
connected to the same interconnect and the indirect interference coming from HW-tasks

ECRTS 2020

12:18 Modeling and Analysis of Bus Contention for Hardware Accelerators in FPGA SoCs

�0

�0

�1

�1

�2

�2

�3

Figure 5 Reference architecture for the model validation in hierarchical network.

Figure 6 Sample waveform track from the Integrated Logic Analyzer on Zynq Ultrascale+.

connected to the lower-level Interconnects. In this experiment, τ3 is the HW-task under
investigation. τ3 is programmed to issue a single request for transaction AR3 (read or write)
while the interfering tasks, τ2, τ1, τ0, are programmed to issue eight consecutive interfering
requests for transactions of the same type of AR3. In order to stimulate contention at the
interconnects, τ1 is released with an offset equal to the interconnect propagation delay daddrInt ,
while τ0 is released with a delay equal to 2daddrInt (offsets are with respect to the release time of
AR3 by τ3). Each GHW-task-to-SmartConnect AXI link and the SmartConnect-to-HP0 AXI
link are monitored by an ILA module deployed on the fabric and the HW-task’s response
times are measured using the timer module.

Figure 6 reports the ILA waveform track for read transactions acquired on the Zynq-7020
SoC using Vivado 2018.2. At time 15, all GHW-tasks are simultaneously released. Soon
afterwards, at time 16, τ3 issues its address request AR3. At the same time, τ2 starts issuing
its first transaction request, say AR0

2, causing a contention at the interconnect I2. The
arbitration round is won by τ2. Hence I2 first propagates AR0

2 to I1 and then AR3. The
interference at this level is compatible with the direct interference described in Lemma 4.
After the propagation delay of the interconnect, I2 issues the requests at the corresponding
slave port of I1. At the same instant, τ1 releases its first transaction request, AR0

1. Hence
another contention happens, and the arbitration round at I1 is won by τ1. Consequently, I1
forwards to I0 the transaction requests in the following order: AR0

1, AR
0
2, AR

1
1, AR3, hence

according to round-robin arbitration as assumed in our model. Note also that the amount
of interfering requests on AR3 at this level is compatible with the one found in Lemma 5
for indirect interference. When I1 propagates this sequence of requests to I0, τ0 starts
issuing its transaction requests, hence causing contention. τ0 wins the arbitration round,
hence the transaction requests are issued by I0 to the HP0 port in the following order:
AR0

0, AR
0
1, AR

1
0, AR

0
2, AR

3
0, AR

1
1, AR

3
0, AR3. Therefore, in the worst case, the request AR3

F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo 12:19

issued by the GHW-task under investigation is interfered by seven requests coming from
interfering GHW-tasks, as considered by direct and indirect interference phenomena captured
by our analysis in Section 4. Since HP0 serves the incoming requests in order, τ3 receives its
data response only after all the interfering requests have been served with data. At time 274,
the first word of data corresponding to AR3 reaches τ3 and at time 292 the transaction is
completed. It is worth observing that Figure 6 also confirms that the AXI SmartConnect is
compatible with the model introduced in Section 3.2 and that is characterized by φI = 1.

0 100 200 300 400 500 600 700 800 900

Read

Write

350

280

866

756

Clock cyclesMaximum measured Analytical upper bounds

Figure 7 Maximum measured response times for read and write transactions compared with the
upper bound proposed in Section 4 (in clock cycles).

Figure 7 compares the maximum measured response times for read/write transactions
with the upper bounds computed by our analysis for the architecture under evaluation in
this experiment. Also in this case, the results confirm that the delay incurred by transactions
can be safely bounded.

5.4 Experiments with synthetic workload
This experimental study has been carried out to evaluate the analysis presented in Section 4
with synthetic workloads. We considered systems with N HW-tasks (τ1, . . . , τN) connected
over a binary tree of M interconnects (I1, . . . , IM). Task sets have been generated as
follows. First, the period Ti and computation time Ci of each HW-task τi have been
generated using the fixedrandsum algorithm [7] (Ti between Tmin = 10ms and Tmax = 100ms,
using log-normal distribution) by keeping the task set utilization equal to 1 as a reference
value (note that the tasks’ execution times are not relevant for bus contention in this
context). Second, the number of transactions have been generated by first computing
the maximum number of transactions that each HW-task τi can perform in isolation, as
Nmax
i = (Ti−Ci)/max (dNoCont,read, dNoCont,write). Then, the total number of transactions

NR+W
i = NR

i + NW
i is computed by multiplying Nmax

i with a transaction density factor
ρ ∈ (0, 1] such that NR+W

i = ρ ·Nmax
i . Finally, the NR+W

i transactions are split between
reads and writes using a random uniformly-generated ratio in the range ν ∈ [0.4, 0.6], such
that NR

i = ν · NR+W
i and NW

i = (1 − ν) · NR+W
i . All HW-tasks have been configured

with φi = 6 (we found it being a typical value from experimental profiling of HAs in the
Xilinx IP library) and Bi = 16, while all interconnects have φI = 1. In order to test realistic
configurations, it has been assumed that each interconnect cannot have more than 16 input
ports (as it is the case for the Xilinx SmartConnect [35]).

The study considers 16 possible configurations generated by testing combinations of
parametersN andM such thatN ∈ {4, 8, 16, 24} andM ∈ {1, 2, 4, 8}. Unuseful configuration,
in which at least one interconnect hosts just a single HW-task, are discarded. This because,
in such configurations, that Interconnect(s) would not perform any arbitration, adding
only additional latency. For each valid configuration (N,M), 100 random values for ρ are
uniformly chosen in the range [0.1, 1.0). Then, for each value of ρ, K = 50000 synthetic
task sets have been generated, each comprising N HW-tasks evenly distributed over M

ECRTS 2020

12:20 Modeling and Analysis of Bus Contention for Hardware Accelerators in FPGA SoCs

interconnects (i.e., each interconnect is directly connected to at most dN/Me HW-tasks).
The HW-tasks have been distributed over the interconnect tree according to their slack times
Si = Ti − Ci, i.e., tasks with shorter slack times are placed closer to the root interconnect.

Figure 8 reports the results of the experimental study. Please note that, since each
interconnect cannot be connected to more than 16 tasks, some configurations are topologically
unfeasible. Hence, they are not considered and the corresponding data is not reported. The
experimental results show that increasing the number of interconnects not only allows to
connect a larger number of HW-tasks, but also can improve the system schedulability ratio
by moving HW-tasks with larger slack time to interconnects at higher hierarchical levels,
thus reducing their interference on more time-constrained HW-tasks (i.e., HW-tasks with
shorter slack times). However, moving HW-tasks to a higher hierarchical level also increases
the latency and the worst-case contention experienced by its transactions. The exploration
of this trade off requires investigating on allocation strategies for HW-tasks, which is left as
future work.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

ρ (bus load)

Sc
he

d.
ra
tio

4 HW-tasks

0 0.2 0.4 0.6 0.8 1
0

0.5

1

ρ (bus load)

Sc
he

d.
ra
tio

8 HW-tasks

0 0.2 0.4 0.6 0.8 1
0

0.5

1

ρ (bus load)

Sc
he

d.
ra
tio

16 HW-tasks

1 Interconnect 2 Interconnects 4 Interconnects 8 Interconnects

0 0.2 0.4 0.6 0.8 1
0

0.5

1

ρ (bus load)

Sc
he

d.
ra
tio

24 HW-tasks

Figure 8 Experimental results with synthetic workload.

6 Related work

Considerable efforts have been spent in bounding and controlling response times in SoCs
by addressing the problem from several prospectives. From an architectural point of view,
several mechanisms and policies have been proposed, as support for HW prefetch and new
arbitration policies [12, 15, 26]. Other works proposed to consider memory inteference in the
context of task allocation [16, 17]. Significant work has been dedicated to the integration
of memory interference in the schedulability analysis of both COTS and ad-hoc solutions,
with a focus on specific elements in the memory tree, like the contribution of caches [9, 19],
busses [6, 8], and the memory controller [4, 11]. Also, the explicit effect on the performance
of control applications has been investigated [5]. Recently, FPGA-based SoCs have received
particular interest, but allocating multiple HW-tasks inside the FPGA requires the use
of a shared bus to access the off-chip memory. The AXI bus [2] is the de-facto standard

F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo 12:21

but has been designed considering flexibility and performance, not time predictability. In
fact, the evaluation of bus interference is achieved with hardware monitors in charge of
observing HW-tasks performance [29]. Moreover, the standard entrusts several design details
to the single implementation and assumes all components behave accordingly [32]. Some
mechanisms have been proposed to increase predictability. For example, Pagani et al. [22]
proposed an approach to apply bandwidth reservation techniques to HW-tasks memory
accesses, while Restuccia et al. designed a mechanism to guarantee fairness among HW-tasks
transactions [25], a mechanism to prevent unbounded delays during bus transactions [23],
and proposed a predictable, Hypervisor-level AXI interconnect for FPGA SoC [24]. However,
these contributions only address single interconnects and are not concerned with a fine-grained
timing analysis of bus transactions.

7 Conclusion and future work

This work focused on FPGA-based SoC and presented a fine-grained model for the AXI
bus and AXI interconnects. An analysis has been proposed to bound the contention delays
experienced by HW-tasks under hierarchical networks of interconnects that allow reaching
the FPGA-PS interface (and hence shared memories connected to the Processing System).
The model and the effectiveness of the analysis have been validated with experimental results
on two modern FPGA SoC by Xilinx. Future work should focus on deriving a more accurate
model and analysis of the AXI bus to capture pipelining effects, and on allocation strategies
and bus network synthesis for a given set of HAs.

References

1 Benny Akesson, Kees Goossens, and Markus Ringhofer. Predator: a predictable SDRAM
memory controller. In Proceedings of the 5th IEEE/ACM international conference on Hard-
ware/software codesign and system synthesis, pages 251–256. ACM, 2007.

2 ARM. AMBA AXI and ACE Protocol Specification, 2011.
3 A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. Buttazzo. A framework for

supporting real-time applications on dynamic reconfigurable fpgas. In 2016 IEEE Real-Time
Systems Symposium (RTSS), pages 1–12, 2016.

4 D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo. A holistic memory contention analysis
for parallel real-time tasks under partitioned scheduling. In Proceedings of the 26th IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS 2020), 2020.

5 W. Chang, D. Goswami, S. Chakraborty, L. Ju, C. J. Xue, and S. Andalam. Memory-aware
embedded control systems design. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 36(4):586–599, April 2017. doi:10.1109/TCAD.2016.2613933.

6 Sudipta Chattopadhyay, Lee Kee Chong, Abhik Roychoudhury, Timon Kelter, Peter Mar-
wedel, and Heiko Falk. A unified WCET analysis framework for multicore platforms. ACM
Transactions on Embedded Computing Systems (TECS), 13(4s):124, 2014.

7 Paul Emberson, Roger Stafford, and Robert I Davis. Techniques for the synthesis of multipro-
cessor tasksets. In proceedings 1st International Workshop on Analysis Tools and Methodologies
for Embedded and Real-time Systems (WATERS 2010), pages 6–11, 2010.

8 Gabriel Fernandez, Javier Jalle, Jaume Abella, Eduardo Quiñones, Tullio Vardanega, and
Francisco J. Cazorla. Increasing confidence on measurement-based contention bounds for
real-time round-robin buses. In Proceedings of the 52nd Annual Design Automation Conference,
DAC ’15, New York, NY, USA, 2015. Association for Computing Machinery. doi:10.1145/
2744769.2744858.

ECRTS 2020

https://doi.org/10.1109/TCAD.2016.2613933
https://doi.org/10.1145/2744769.2744858
https://doi.org/10.1145/2744769.2744858

12:22 Modeling and Analysis of Bus Contention for Hardware Accelerators in FPGA SoCs

9 Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. Cache-aware scheduling and analysis for
multicores. In Proceedings of the seventh ACM international conference on Embedded software,
pages 245–254. ACM, 2009.

10 Kaiyuan Guo, Shulin Zeng, Jincheng Yu, Yu Wang, and Huazhong Yang. A Survey of FPGA-
based Neural Network Inference Accelerators. ACM Transactions on Reconfigurable Technology
and Systems (TRETS), 12(1):2, 2019.

11 Mohamed Hassan and Rodolfo Pellizzoni. Bounding DRAM interference in COTS heteroge-
neous MPSoCs for mixed criticality systems. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 37(11):2323–2336, 2018.

12 F. Hebbache, M. Jan, F. Brandner, and L. Pautet. Shedding the shackles of time-division
multiplexing. In 2018 IEEE Real-Time Systems Symposium (RTSS), pages 456–468, December
2018. doi:10.1109/RTSS.2018.00059.

13 Intel. Stratix 10 GX/SX Device Overview, October 2017.
14 Intel FPGA. Custom IP Development Using Avalon® and Arm AMBA AXI Interfaces.

OQSYS3000.
15 J. Jalle, L. Kosmidis, J. Abella, E. Quiñones, and F. J. Cazorla. Bus designs for time-

probabilistic multicore processors. In 2014 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 1–6, March 2014. doi:10.7873/DATE.2014.063.

16 H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar. Bounding memory
interference delay in COTS-based multi-core systems. In 2014 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS), April 2014.

17 Hyoseung Kim, Dionisio de Niz, Björn Andersson, Mark Klein, Onur Mutlu, and Ragunathan
Rajkumar. Bounding and reducing memory interference in COTS-based multi-core systems.
Real-Time Systems, 52(3):356–395, May 2016.

18 Jörg Henkel Lars Bauer, Marvin Damschen. Runtime-reconfigurable architectures for WCET
guarantees and mixed criticality. In Special session at ESWEEK 2019: Analyses and Ar-
chitectures for Mixed-Critical Systems: Industry Trends and Research Perspective. ACM,
2019.

19 Mingsong Lv, Nan Guan, Jan Reineke, Reinhard Wilhelm, and Wang Yi. A survey on static
cache analysis for real-time systems. Leibniz Transactions on Embedded Systems, 3(1):05–1–
05:48, 2016. doi:10.4230/LITES-v003-i001-a005.

20 Geoffrey Nelissen and Alessandro Biondi. The SRP Resource Sharing Protocol for Self-
Suspending Tasks. In 2018 IEEE Real-Time Systems Symposium (RTSS), pages 361–372.
IEEE, 2018.

21 Marco Pagani, Alessio Balsini, Alessandro Biondi, Mauro Marinoni, and Giorgio Buttazzo. A
linux-based support for developing real-time applications on heterogeneous platforms with
dynamic fpga reconfiguration. In 2017 30th IEEE International System-on-Chip Conference
(SOCC), pages 96–101. IEEE, 2017.

22 Marco Pagani, Enrico Rossi, Alessandro Biondi, Mauro Marinoni, Giuseppe Lipari, and Giorgio
Buttazzo. A Bandwidth Reservation Mechanism for AXI-Based Hardware Accelerators on
FPGAs. In 31st Euromicro Conference on Real-Time Systems (ECRTS 2019), volume 133
of Leibniz International Proceedings in Informatics (LIPIcs), pages 24:1–24:24, Dagstuhl,
Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

23 Francesco Restuccia, Alessandro Biondi, Mauro Marinoni, and Giorgio Buttazzo. Safely
Preventing Unbounded Delays During Bus Transactions in FPGA-based SoC. In 2020 IEEE
28th Annual International Symposium on Field-Programmable Custom Computing Machines
(FCCM). IEEE, 2020.

24 Francesco Restuccia, Alessandro Biondi, Mauro Marinoni, Giorgiomaria Cicero, and Giorgio
Buttazzo. AXI HyperConnect: A Predictable, Hypervisor-level AXI Interconnect for Hardware
Accelerators in FPGA SoC. In Proceedings of the 57th ACM/IEEE Design Automation
Conference (DAC 2020), 2020.

https://doi.org/10.1109/RTSS.2018.00059
https://doi.org/10.7873/DATE.2014.063
https://doi.org/10.4230/LITES-v003-i001-a005

F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo 12:23

25 Francesco Restuccia, Marco Pagani, Alessandro Biondi, Mauro Marinoni, and Giorgio Buttazzo.
Is Your Bus Arbiter Really Fair? Restoring Fairness in AXI Interconnects for FPGA SoCs.
ACM Trans. Embedded Computing Systems, 18(5s):51:1–51:22, October 2019.

26 M. Slijepcevic, C. Hernandez, J. Abella, and F. J. Cazorla. Design and implementation of a
fair credit-based bandwidth sharing scheme for buses. In Design, Automation Test in Europe
Conference Exhibition (DATE), 2017, pages 926–929, March 2017. doi:10.23919/DATE.2017.
7927122.

27 Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott, Philip Leong,
Magnus Jahre, and Kees Vissers. Finn: A framework for fast, scalable binarized neural
network inference. In Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 65–74. ACM, 2017.

28 Xilinx. Zynq-7000 All Programmable SoC - Reference Manual, September 2016. UG585.
29 Xilinx. AXI Performance Monitor v5.0, 2017. PG037.
30 Xilinx. Vivado Design Suite: AXI Reference Guide, July 2017. UG1037.
31 Xilinx. Zynq UltraScale+ Device - Reference Manual, December 2017. UG1085.
32 Xilinx. AXI Interconnect, LogiCORE IP Product Guide, 2018. PG059.
33 Xilinx Inc. The CHaiDNN official github website. https://github.com/Xilinx/chaidnn.
34 Xilinx Inc. Integrated Logic Analyzer, LogiCORE IP Product Guide, 2016. PG172.
35 Xilinx Inc. SmartConnect, LogiCORE IP Product Guide, 2018. PG247.

ECRTS 2020

https://doi.org/10.23919/DATE.2017.7927122
https://doi.org/10.23919/DATE.2017.7927122

	Introduction
	Essential Background
	System model
	Hardware task model
	AXI interconnect model
	Processing System and Memory Controller model
	Overall architecture

	Response-time analysis
	No contention at the interconnects
	First bound on the number of interfering transactions
	Second bound on the number of interfering transactions
	Combining the two bounds
	Response-time analysis algorithm

	Experimental results
	Experimental setup
	Profiling
	Model validation
	Experiments with synthetic workload

	Related work
	Conclusion and future work

