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ABSTRACT
Despite its benefits, hardware acceleration under dynamic partial
reconfiguration (DPR) has not been fully leveraged by many sys-
tem designers, mostly due to the complexities of the DPR design
flow and the lack of efficient design tools to automate the design
process. Furthermore, making such a design approach suitable for
real-time embedded systems requires the need for extending the
standard DPR design flow with additional design steps, which have
to accurately account for the timing behavior of the software and
hardware components of the design, as well as of the components
of the computing platform (e.g., the reconfiguration interface).

To address this problem, this paper presents DART, a tool that
fully automates the design flow in a real-time DPR-based system
that comprises both software and hardware components. The tool
targets the Zynq 7-series and Ultrascale+ FPGA-based SoCs by
Xilinx. It aims at alleviating the manual effort required by state-of-
the-art tools while not expecting high expertise in the design of
programmable logic components under DPR. To this purpose, it
fully automates the partitioning, floorplanning, and implementa-
tion (routing and bitstream generation) phases, generating a set of
bitstreams starting from a set of tasks annotated with high-level
timing requirements. The tool leverages mathematical optimization
to solve the partitioning and floorplanning problems, and relies on
a set of auto-generated scripts that interact with the vendor tools
to mobilize the synthesis and implementation stages. DART has
been experimentally evaluated with a case study application from
an accelerated image processing system.
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1 INTRODUCTION
In the context of safety-critical systems, FPGA-based system-on-
chip (SoC) platforms are a particularly attractive solution. Com-
pared to other types of hardware acceleration, such as GPU co-
processing, FPGA-based acceleration allows for a fine-grained con-
trol of the logic design, resulting in a very flexible and time-predictable
type of acceleration. This characteristic is crucial for allowing an
accurate estimation of the worst-case execution times (WCET). Fur-
thermore, the dynamic partial reconfiguration (DPR) capabilities of
modern FPGA-based SoC platforms can be leveraged to improve
resource utilization, resulting in lower requirements in terms of
FPGA resources compared to a static approach. In addition to the
improvement in resource utilization, the increasingly lower FPGA
reconfiguration time makes these platforms particularly interest-
ing in the context of real-time systems, which typically consist of
periodic or sporadic computational activities [3].

A typical co-design flow for implementing a real-time system
on a DPR-enabled FPGA-based SoC platform begins by classifying
the ensemble of activities performed by the system into (i) software
tasks (SW-tasks), which are regular software activities executed on
the CPUs available on the SoC, and (ii) hardware tasks (HW-tasks),
which are hardware description language (HDL) implementations of
computationally-intensive functions to be offloaded on the FPGA.

Under DPR, HW-tasks can be logically partitioned and assigned
to one or more reconfigurable regions (RRs) defined in the total
FPGA area. Such a partitioning phase is an important design step
in the DPR design flow as it has the potential to determine both
the FPGA resource consumption and performance of the system.
For instance, if two hardware tasks are partitioned on the same RR,
then the RR must contain enough FPGA resources to host both of
them in mutual exclusion, hence requiring the maximum of the
FPGA resources requested by each hardware task for each resource
type (CLB, DRAM, DSP). At the same time, the two hardware tasks
must be capable of tolerating the delays that can be originated due
to contention of the RR, i.e., in the worst case, one of the two must
wait for the entire time the other occupies the RR before being able
to be dynamically configured on it.

The partitioning design step is followed by the floorplanning
phase, which geometrically maps the RRs on the physical FPGA
fabric, which is known to be a non-trivial task due to the vast
design space to be explored. The last design steps in a DPR design
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flow are the implementation (placement and routing) and bitstream
generation phases. These design stages are usually automated by the
vendor design tools, but can sometimes require manual intervention
to some extent. At the completion of the design flow, full and partial
bitstreams are generated.

These issues constitute a barrier to unlock the potential of FPGA-
based acceleration under DPR and we attribute them to the manual
steps involved in the flow. Despite the benefits introduced by DPR-
based hardware acceleration for real-time systems, performing a
DPR design flow is a tedious and time-consuming process. Devel-
opers are required to be familiar with low-level hardware details
while, at the same time, taking into account the timing require-
ments of the application. The need to follow such a multifaceted
approach can hinder software-oriented developers from leveraging
the benefits provided by DPR.

Existing commercial DPR design tools partially/fully automate
some of the individual design steps, but manual effort is still re-
quired to perform the full design flow, which also calls for consid-
erable expertise with the technology and tools. Therefore, to date
and to the best of our records, the lack of efficient design tools to
fully automate the DPR design flow is a key problem to solve to
push for a wider adoption of DPR-based hardware acceleration.

Contribution. The purpose of this paper is to meet the aforemen-
tioned demand by presenting DART (Design Automation for partial
Reconfiguration Tool), a tool that fully automates the design flow
for hardware-accelerated real-time systems on DPR-enabled, FPGA-
based SoC platforms. DART inputs the implementations of the
HW-tasks, the timing requirements of the SW-tasks and HW-tasks,
and the type of FPGA, and generates as output the full and partial
bitstreams of the design without requiring any intervention from
the designer.

DART advances the state of the art as follow:

• It combines the DPR partitioning and floorplanning prob-
lems into a single optimization problem and solves it us-
ing a holistic objective mixed integer linear programming
(MILP) optimization. Despite the partitioning and floorplan-
ning have been independently solved in the past using MILP
optimization based approaches [4, 12], combining them into
a single optimization problem is the unique way to guarantee
globally optimal solutions.

• It fully automates the placement, routing, and bitstream
generation design steps in the DPR design flow by utilizing
a set of auto-generated Tcl scripts that interact with, and
command, the vendor design tools. To further support the
designer, DART also includes a diagnostic stage to fix errors
and rerun the design in case of an error at the implementation
(routing and bitstream generation) stage.

The performance of DART was finally evaluated by automating
the design flow of a DPR-based image processing system on a
PYNQ-Z1 platform.

2 BACKGROUND AND MODELING
This section describes the software programming model, the design
steps in a DPR flow, and the corresponding models adopted in this
paper. This work is based on the 7-series and Zynq UltraScale+ SoC

families from Xilinx and builds upon a series of previous works,
which are reviewed in the following sections.

2.1 Programming model
In a typical DPR-based hardware-software co-design approach, the
execution of HW-tasks on the FPGA is invoked by acceleration re-
quests issued by SW-tasks. If the HW-task of interest is not statically
allocated on the FPGA area, the acceleration request is followed
by a runtime partial-reconfiguration (dynamic loading) of the re-
quested reconfigurable hardware module (RM) that implements the
HW-task, which is hosted by predefined reconfigurable region (RR)
on the FPGA. Following the framework proposed in [3], the accel-
eration requests issued by SW-tasks are blocking, meaning that the
SW-task that requested the acceleration will remain suspended (i.e.,
it will release the CPU on which it is executing) until the requested
hardware accelerator finishes execution. Following the typical task-
based paradigms adopted in real-time systems, the ith SW-task is
periodically activated with a periodTi , i.e., it repeats a certain com-
putation every Ti time units, and is subject to a relative deadline
Di , meaning that it must complete its execution within Di units of
time from its activation.

As an example, consider the timing diagram reported in Fig-
ure 1, which depicts the execution of DPR-based application. The
application contains three SW-tasks, namely sw1, sw2, and sw3, and
four HW-tasks (each corresponding to an RM) allocated in two
RRs. The first two RMs, RM1 and RM2, are allocated to the first
reconfigurable region, RR_1, while the last two RMs, RM3 and RM4,
are allocated to the second reconfigurable region RR_2. Note that
two acceleration requests for different RMs allocated to the same
RR can cause interference both at the reconfiguration interface and
at the RR (e.g., see the 1st and 2nd acceleration requests in Figure 1).
Conversely, acceleration requests for RMs allocated to different RRs
can incur interference only at the reconfiguration port (e.g., see the
1st and 3rd acceleration requests in Figure 1).

To manage the contention at the FPGA reconfiguration port
(ICAP, PCAP, SelectMAP, etc.) and at the RRs, the scheduling in-
frastructure proposed in [3] is used, which consists of a multi-level
queuing mechanism. Under such a scheduling mechanism, the de-
lays incurred by HW-task requests are bounded and predictable1.

2.2 The DPR design flow
This work focuses on the DPR design flow for Xilinx platforms,
which is illustrated in Figure 2. The design flow includes four major
design steps, namely (i) partitioning, (ii) floorplanning, (iii) static
part generation, and (iv) routing and bitstream generation.
(i) Partitioning: In this step of the design flow, the set of HW-tasks
(each corresponding to an RM) is partitioned and allocated into
distinct RRs on the FPGA fabric. Each RR can host more than one
RMs, which will be executed in a time-multiplexed manner. The
considered applications have a total number N sw and Nhw of SW-
tasks and HW-tasks, respectively. The Nhw HW-tasks are hosted
on NRR FPGA reconfigurable regions (RRs), where NRR ≤ Nhw .
The RMs are allocated to RRs either in a "many to one" or "one to
one" mode and no RM can be allocated to more than one RR. The

1The interested reader can find further details and a detailed timing analysis in [3]
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Figure 1: An example of real-time DPR acceleration on
FPGA-based SoC with 3 SW-tasks and 4 RMs. The process-
ing system of the SoC has 4 processor cores and all SW-tasks
run in a different core. RM_1 andRM_2 are allocated toRR_1
while RM_3 and RM_4 are allocated to RR_2.
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Figure 2: Illustration of the Vivado DPR flow. Solid rect-
angles denote steps that are automated through scripting,
while dashed rectangles indicate manual phases requiring
user intervention.

former corresponds to the case in which the RR is managed under
DPR, while the latter corresponds to the special case in which an
RM is statically allocated to an RR. To mathematically express such
an allocation constraint, we define τ ij ∈ {0, 1}, a binary variable
such that τ ij = 1 if and only if the ith RM is allocated to the jth RR,
and τ ij = 0 otherwise. Hence, the constraint that asserts the "many
to one" or "one to one" allocation rule can be formulated as follows:

∀i = 1 . . . ,Nhw

N RR∑
j=1

τ ij = 1. (1)

A reconfigurable region (RR) must also satisfy the resource
requirements of all the RMs allocated to it. This resource con-
straint can be mathematically modeled by defining two param-
eters c jt ∈ R≥0 and α it ∈ R≥0, which respectively denote the num-
ber of resources of type t that are available in the jth RR, and

the number of resources of type t required by the ith RM , where
t ∈ {CLB, BRAM, DSP}. The above resource constraint can then
be formally stated as,

∀j = 1, . . . ,NRR , ∀t ∈ {CLB, BRAM, DSP}, ∀i = 1, . . . ,Nhw

c
j
t ≥ maxi {α

i
t · τ

i
j }. (2)

Furthermore, the sum of the resource requirements of all RRs
must not exceed the total available resources on the FPGA. Note
that, together with the RRs, the FPGA area must also host a static
region to implement accessory logic and parts of the system that do
not change their functionality at run time. To encode this constraint,
we first defineCt ∈ R≥0 and St ∈ R≥0 to represent the total number
of resources of type t in the whole FPGA area and those required by
the static region, respectively. Then, this condition can be asserted
using the following inequality:

∀t ∈ {CLB, BRAM, DSP}

Ct − St ≥

N RR∑
j=1

c
j
t . (3)

The partitioning of HW-tasks into RRs adopted in this work is
based on the timing behavior of both SW-tasks and HW-tasks. For-
mally speaking, let Ψi denote the maximum interference incurred
any acceleration request related to the ith RM . Also, let Ωi be the
FPGA execution time of the ith RM and ηj be the reconfiguration
time of the jth RR. For each ith RM allocated to the jth RR, it must
hold that the interference Ψi , plus the FPGA execution time Ωi and
the reconfiguration time ηj must not exceed the maximum time
that the SW-task invoking the RM can be suspended without violating
its deadline. This is called a deadline-driven timing constraint. The
partitioning problem, as considered in this work, is hence charac-
terized by a design space exploration to find RM-RR allocations that
ensure both the deadline-driven timing constraints and the FPGA
resource constraints discussed above. The formulation of the MILP
presented in [4] serve this purpose.
(ii) Floorplanning: Floorplanning involves the generation of phys-
ical placements for the RRs on the FPGA fabric. The generated FPGA
placements (i) must satisfy the resource requirement of the RMs
allocated to them, i.e., Equations (2) and (3), (ii) must adhere to the
set of technological and structural DPR floorplanning constraints
set by the FPGA vendor, and (iii) must not impact the performance
of the design, i.e., the placements should not be the cause for a
timing violation at the routing stage of the design.

As an example, some of the floorplanning technological con-
straints posed by Xilinx include [14]: (i) RRs must not overlap; (ii)
RRs must not share tiles in the same clock region; (iii) RRs must be
rectangular; and (iv) the left and right vertical boundaries of RRs
cannot be placed between back-to-back connected interconnect
tiles. In this work, following the approach of [10, 12], the distribu-
tion of resources on the FPGA fabric is modeled using a discrete
Cartesian coordinate system whose origin is located at the bottom-
left corner of the fabric, as shown in Figure 4(a). Each unit on the
x-axis denotes a column of a single type of resource (CLB, BRAM,
DSP), while each unit on the y-axis represents a clock region. De-
pending on the family type, the FPGA fabric is also characterized
by columns, which contain non-partially-reconfigurable resources
such as the PLLs, ICAP, clock buffers, etc., and are referred to as
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forbidden regions. The placement of the jth RR is characterized by
the tuple (x j ,yj ,w j ,hj ), where x j and yj represent the bottom-left
coordinates, andw j ≥ 1 and hj ≥ 1 represent the width and height
of the RR, respectively. Note that, such a lower bound for the width
and height implies a finegranularity of RRs as low as one column
wide and one clock region high. If the total FPGA area isW columns
wide andH clock regions high, then the RR placements must respect
the following structural constraints:

∀j = 1, . . . ,NRR , x j +w j ≤W ∧ yj + hj ≤ H (4)

In Xilinx FPGAs, vertically stacked clock regions usually contain
a uniform resource distribution layout. In fact, as demonstrated
in Figure 4(a), the resource layout in all the clock regions of the
FPGA can be described by using the resource layout in only a single
clock region and all the forbidden regions on the fabric. By taking
advantage of such a simplified approach for describing the full
layout of resources in Xilinx FPGAs, the authors in [12] proposed a
resource finger-printing model to analytically define the number of
resources of type t in the jth RR, i.e., c jt . Accordingly, the resource
finger-printing model involves the encoding of the distribution
of resources of type t found in the first clock region only, which
is accomplished using a set of piecewise functions, ft (x), such
that ft (x) denotes the number of resources of type t in a single
clock region within the range [0,x]. In [12], this model was used to
calculate the t type of resource in the jth RR as

c
j
t = hj · (ft (x j +w j ) − ft (x j )). (5)

Equation (5) states that, once the number of resources of type
t in the jth RR is determined for a single clock region (using the
ft (x j +w j ) − ft (x j ) term), then c jt is equivalent to the iterative sum
of this value for the number of clock regions included in the RR.
Since the authors in [12] constrained all the generated placements
not to include forbidden regions, they did not need to model the
negative resource contribution of forbidden regions in RRs [12].

Under this modeling approach, the inputs to the floorplanning
step are (i) the number of RRs, i.e., NRR , (ii) the resource require-
ment of the RRs, i.e., c jt , and (iii) a description of the resource
distribution on the FPGA area (to obtain functions ft (x)), while the
outputs of the floorplanning step are placements of RRs in Cartesian
coordinates, i.e., (x j ,yj ,w j ,hj ).
(iii) Static part generation: The static part of a DPR design in-
cludes the portion of area that is not subject to DPR. The static
part is usually design-specific and its contents can range from a
simple hierarchical chain of AXI interconnects (for connecting RRs
to memory and CPUs) to complex hardware implementations such
as cryptographic engines, video processing cores, HDMI encoders,
parallel I/O acquisition ports, and other support modules. In the
static part, the RRs are usually defined as black-boxes, i.e., modules
with no logic implementation inside, whose interfaces correspond
to the union of the interfaces of the RMs allocated to them.

The static part generation is a design step that follows the par-
titioning step, as the number of RRs and the allocation of RMs to
RRs is not known apriori. The static part of a DPR-based design
can be generated from a template at design time (based on the
outputs of the partitioning step) or the designer might prepare a
set of pre-synthesized static checkpoints with different number of

RRs, which can then be selected depending on the results of the
partitioning step for the final bitstream generation.
(iv) Routing and bitstream generation: The final step in the
DPR-based design flow is the routing and bitstream generation step.
The vendor design tools usually automate this step. The designer
might still provide the necessary high-level commands (e.g., Tcl
commands in Vivado design flow) to automate the process.

3 PROPOSED SOLUTION: DART
This section presents DART, a tool to fully automate the DPR
design flow for Xilinx Zynq 7-series and Ultrascale+ FGPA-based
SoC families. As such, DART interacts with the Vivado suite by
Xilinx. The design steps that are holistically automated by DART are
illustrated in Figure 3 and are organized as a concatenation of stages,
namely the pre-processing stage, the partitioning/floorplanning stage,
the static part generation stage, and the implementation stage.

3.1 Pre-processing block
The pre-processing stage, which is the first one in the DART archi-
tecture, serves to automate the synthesis of RMs (using the Vivado
suite by Xilinx) and extracts the resource requirements of RMs from
the synthesis reports. This stage takes as input (i) the design sources
for RMs (and, optionally, a pre-synthesized static part), (ii) the tim-
ing requirements of SW-tasks and HW-tasks (WCETs and deadlines),
and (iii) the specific type of FPGA platform to be used. The RM
design sources can be either HDL source files, or Xilinx/third-party
IP cores, including those obtained via HLS tools. The RMs must
comply with a common RR interface (discussed in Section 3.3). Note
that, if the RMs’ inputs are provided in the form of HDL source files,
then the name of the top function of each RM must also be provided
for synthesizing the modules. The timing requirements of the SW-
tasks are required to enable a timing-aware partitioning of the RMs.
However, if the designer intends to force a given partitioning of
the RMs to RRs, then the timing requirements can be replaced with
a predetermined configuration of the partitioning. All such inputs
are specified in a csv file that has a variable format depending on
the type of usage of DART. The type of FPGA platform is required
as an input to build the resource finger-printing model discussed
in Section 2 and also for instructing Vivado when performing the
synthesis of the RMs.

The automated synthesis and resource requirement extraction
of RMs in DART are achieved thanks to the synthesis script gen-
erator and utilization parser sub-stages, respectively, inside the
pre-processing stage (see Figure 3). The synthesis script generator
sub-stage generates an out-of-context synthesis Vivado Tcl script
by analyzing the type and hierarchy of the design source of each
RM . In the Vivado synthesis flow, an out-of-context synthesis is a
bottom-up synthesis flow where hardware modules in the design
hierarchy are synthesized independently. Although this way of
synthesizing RMs prevents the synthesis tool from applying global
synthesis optimizations, performing synthesis in this mode is a
strict requirement on Xilinx FPGAs for a DPR flow [20].

For example, when a Vivado-HLS IP core is used as a source, the
synthesis script generator first creates a .prj file that enumerates
all the VHDL source files and the auxiliary IPs (if there are any)
inside the IP source. It then creates the synthesis Tcl script by
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Figure 3: Block diagram of DART design flow.

including the definitions of some of the design properties, such as
the type of FPGA, Vivado synthesis settings, list of project directo-
ries for synthesis sources, etc. Subsequently, the utilization parser
extracts the resource consumption of the RMs from the utilization
reports generated by vivado.

The output of this stage, i.e., the resource requirements of each
RM , serves as an input for the partitioning and floorplanning design
step. Note that DART performs the synthesis of all the input RMs
in parallel by invoking Vivado per each module, hence resulting in
a faster synthesis if enough computing resources are available.

3.2 Partitioning and floorplanning
The partitioning/floorplanning functional stage comprises two sub-
stages, namely the MILP implementation sub-stage, which contains
a C++ implementation of our integrated partitioning/floorplanning
MILP optimization algorithm, and the xdc-generation sub-stage,
which generates Vivado-compliant placement constraints in the
form of Xilinx design constraints (xdc) file.
MILP implementation sub-stage: Rather than separately consid-
ering the partitioning and floorplanning problems, and therefore
producing sub-optimal solutions, DART fuses the two problems
into a single optimization problem formulation to obtain globally-
optimal partitioning and placement results. In this work, the MILP
formulation for partitioning proposed in [4] has been merged to the
one for floorplanning proposed in [12]. Despite both approaches be-
ing based on MILP optimization, some modifications and additional
MILP constraints were required to let the two MILP formulations
coexist. Furthermore, the floorplanning MILP formulation of [12]
has been improved to leverage the SNAPPING_MODE property of
Vivado’s pblocks, which is detailed below. Similarly to [12], DART
also uses floorplanning-related optimizationmetrics, such as wasted
resources, maximum inter-region wire length, aspect ratio, etc. Due
to space limitations, the analytical formulation of the MILP con-
straints is not reported in this paper. Rather, a textual description
of their purposes is reported next and the complete formulation is
available in an on line appendix2.

2https://github.com/biruk-belay/DART_MILP_constraints

The inputs to this sub-stage are (i) the resource requirement
of the RMs (which are obtained from the prior design step), (ii)
the timing requirements of SW-tasks and HW-tasks, and (iii) the
type of the FPGA. As an output, theMILP implementation sub-stage
produces (i) the number of RRs, i.e., NRR , (ii) the description of
placements of RRs in Cartesian coordinates, and (iii) an allocation
matrix that associates RMs to RRs (i.e., the partitioning of the RMs).

Overall, the optimization is realized by using a series ofMILP con-
straints, which are classified as (i) general constraints, (ii) resource
constraints, (iii) timing constraints, and (iv) structural constraints.
General constraints, which encode the properties of RMs and RRs,
are also used to describe the relationships between RMs and RRs
as defined in Section 2. For example, Equation (1) is an instance
of a general constraint. Resource constraints include those that
pose restrictions on the resource consumption of RRs, as well as
the constraints that guarantee resource availability in the RRs. In
this regard, the most fundamental resource constraints are those re-
ported in Equation (2) and Equation (3). As discussed in Section 2.2,
the amount of resources in each RR are calculated by leveraging the
resource finger-print model from [12] using Equation (5). Please
note that, given the fact that Equation (5) is nonlinear, it must be lin-
earized with the help of auxiliary constraints and variables before it
is encoded into a MILP constraint [12]. Timing constraints ensure
that the partitioning does not violate the timing requirements of
the SW-tasks and HW-tasks.

Structural constraints are used to ensure the integrity and con-
sistency of the RRs, in order not to violate the technological and
structural floorplanning constraints defined in Section 2. Equa-
tion (4) is an example of a structural constraint, which bounds the
generated RR placements according to the FPGA fabric specifica-
tions, while also guaranteeing minimum RR dimensions. Structural
constraints also ensure that the vertical boundaries of the gener-
ated RR placements do not split the back-to-back interconnect tiles
on the fabric. This restriction is enforced by combining a set of
structural MILP constraints with the SNAPPING_MODE property of
Vivado’s pblocks. When the SNAPPING_MODE property of a RR is
enabled in the corresponding xdc constraint file, Vivado automati-
cally resizes the RR in case there is a back-to-back violation during

https://github.com/biruk-belay/DART_MILP_constraints
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the implementation design step [14]. Such an automatic resizing
employed by Vivado works as follows. The x-axis coordinates of
the left and right vertical boundaries of each RR are first compared
against the x-axis coordinates of the interconnect tiles on the fabric.
If the left vertical boundary of a RR causes a violation, i.e., if the
x-axis coordinate of the vertical boundary of the RR is equal to one
of the x-axis coordinate of the interconnect tiles, then the location
of the violating vertical boundary is updated by moving it one unit
to the right on the x-axis. Conversely, if the right vertical boundary
of a RR causes a violation, then the location of the violating vertical
boundary is updated by moving it one unit to the left on the x-axis.
This automatic resizing of RRs causes the shrinking of the RRs, as it
is achieved by removing columns of resources from the original RR.
As an example, consider Figure 4(a), which depicts an RR placement
generated by DART at the partitioning/floorplanning stage, and
Figure 4(b), which depicts the RR after it was resized by Vivado at
the implementation stage. As it can be seen from Figure 4(b), the
number of both BRAMs and DSPs is reduced by 6 units. Unless
such future reduction of RR resources is properly modeled by the
partitioning/floorplanning, it can cause the violation of a resource
constraint during the implementation stage, i.e., there might not be
enough resources for the RMs hosted after the RRs are shrunk.
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Figure 4: Illustration of the automatic Vivado resizing. (a) A
RR that causes a back-to-back violation, and (b) the sameRR
after being automatically resized in Vivado.

A straightforward way to overcome this problem can be generat-
ing placements with higher resource margins, such that when the
RRs are shrunk there will still be enough resources. This approach
can be suitable for the most abundant resources on the FPGA, i.e.,
CLBs, but it is an inefficient approach for the most scarce resources,
i.e., BRAMs and DSPs. In a different approach, DART mitigates
this condition by defining the following structural constraints: (i)
Placements must be generated with a higher margin of CLBs; (ii)
The left vertical columns of a RR placement cannot fall immediately
to the left of a BRAM or a DSP column on the fabric; and (iii) The
right vertical column of a RR placement cannot fall immediately to
the right of a BRAM or a DSP column on the fabric.

Under these conditions, even if Vivado shrinks the RRs, it can
be asserted that the excluded resources will neither be BRAMs nor
DSPs (guaranteed by the last two constraints). The excluded CLBs
will also be accounted for by the extra CLBs that are contained in
the RR (guaranteed by the first constraint).
Xdc-generation sub-stage: In this sub-stage, the Cartesian place-
ments that are generated by the MILP implementation sub-stage
are mapped into their equivalent Xilinx FPGA pblock descriptions.

The contents of a Xilinx FPGA pblock description includes the
name of the pblock, the unique IDs of the resources contained
inside the pblock, and a set of properties of the pblock (e.g., "SNAP-
PING_MODE"). Note that decoupling the MILP optimization from
the xdc-generation allows re-using the optimization for similar
FPGA families by only changing the way the xdc file is generated.

3.3 Static part generation
After performing partitioning/floorplanning and the generation of
placement constraints, DART generates the Verilog implementation
of the static part of the design from a parametric template, where
the parameters are set from a configuration input provided by the
designer. If no configuration input is provided by the designer, then
the static part will be generated from a default configuration.

Figure 5 depicts the default static design generated by DART for
two RRs (NRR = 2). Such a default static design contains black-box
instances of the RRs and some AXI interconnects for connecting
the RRs to the DRAM memory controller and the processing sys-
tem (PS). The default configuration also includes a specification
for the RR interfaces, which is generated considering the typical
FPGA-based hardware acceleration setting in which SW-tasks and
their corresponding RMs communicate using a shared-memory
communication paradigm. Under this communication scheme, the
RR interfaces should allow the RMs to read/write the main memory
as well as receive control commands from the CPU, and be capa-
ble of sending notification signals (interrupt) to the CPU. To this
end, DART creates a common interface definition for the RRs that
includes (i) one or more AXI master interfaces that allow RRs to
access the system memory through the DRAM controller (AXI_M
in Figure 5), (ii) an AXI slave interface to export a set of (memory-
mapped) control registers (AXI_S in Figure 5), and (iii) an interrupt
signal (INT in Figure 5).

By default, as denoted in Figure 5, DART assigns each RR with a
single AXI master interface (denoted as AXI_M in Figure 5) to allow
the hardware accelerators to access the DRAM memory through
the DDR controller in the processing system (PS). DART also as-
signs a single AXI slave interface (denoted as AXI_S in Figure 5)
for each RR, which is used to map the control and data registers of
the accelerator into the system memory space, hence making them
available from the PS. Finally, for each RR, a designated interrupt
signal (denoted as INT in Figure 5) is used to notify the completion
of the HW-task to the PS. The default static design also pairs each
RR with a partial reconfiguration decoupler (PR decoupler) mod-
ule [19] to prevent temporary glitches during reconfiguration [20].
Alternatively, DART also allows the designer to override the default
interface definition and specify a custom interface definition for
the RRs.

All the RMs allocated to the same RR must have a matching
name and interface with respect to the corresponding black-box
RR in the static design. To match this requirement, DART creates
a wrapper module that has the same name of the black-box RRs
in the static design and wraps the RMs or IPs allocated to that
black-box, hence guaranteeing namematching. After generating the
static part and wrapping the RMs, DART synthesizes both the static
part and the newly wrapped RMs, once again by using a similar
approach described in Section 3.1. Finally, it stores the synthesized
checkpoints in their appropriate locations in the project directory.
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The outputs of this design stage, i.e., the set of synthesized RMs and
the synthesized static part, are used in the routing and bitstream
generation stage of the design.

As noted before, the designer can totally bypass the whole static
generation stage when either intending to use a static design that
contains hardware modules that cannot be disclosed (and hence can-
not be generated by DART), or when requiring a fairly complicated
static design with custom hardware modules and non-standard
interconnections. In such a case, the designer can provide the syn-
thesized checkpoints of the static part as an input to DART.
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Figure 5: Illustration of a reconfigurable design containing
the static part and two reconfigurable regions.

3.4 Routing and bitstream generation
The last stage in DART is the implementation stage, where by in-
teracting with Vivado, and by iteratively swapping RMs into their
corresponding RRs inside the static design, DART performs place-
ment, routing, and finally bitstream generation for the design. To
perform this design step, DART uses an implementation Tcl script
generated by the implementation script generator available within
the stage. This script, in combination with a set of pre-prepared
Tcl scripts, automates the Vivado implementation and bitstream
generation. The auto-generated implementation script contains the
description of the project in terms of the type of FPGA, the list of
the RMs to be implemented, and different Tcl headers for Vivado.
The script also includes one implementation configuration for each
implementation iteration. An implementation configuration con-
tains a set of details that are required to properly instruct Vivado,
which include the mapping of RMs to the RRs, the XDC placement
constraints, and routing and placement settings needed by Vivado.

Listing 1 provides a pseudo-code that describes the generation
of the implementation configurations as well as the correspond-
ing implementation flow. The algorithm starts by initializing the
required variables for the implementation stage, which include the
number of RRs, the number of RMs in each RR, and the partitioning
allocation matrix as provided by the partitioning and floorplanning
stage (line 3 - line 10). The number of implementation iterations
and the number of implementation configurations are equivalent
to the maximum number of modules allocated to partitions. After

the initialization, DART loads the synthesized static checkpoint
into memory (line 14). Remember that the RRs inside the static
checkpoint are black-boxes. Then, for each implementation iter-
ation (line 16 - line 39), DART (i) creates a new implementation
configuration (line 18), (ii) populates the configuration with ap-
propriate RM-RR combinations (line 19 and line 28), and (iii) runs
a Vivado place and route (line 30 - line 33) and stores the routed
design checkpoints for a subsequent generation of the bitstream. At
the end of each iteration, the implementation script swaps out the
inserted modules and replaces themwith their black-box equivalent
for the next iteration (line 38). Finally, at the end of the implemen-
tation iteration, DART generates the bitstreams using the stored
routed checkpoints (line 42).

In case of an error in the Vivado implementation stage (place-
ment, routing, or bitstream generation), DART performs a diagnos-
tic step that starts by identifying the type of error, i.e., it extracts the
error id by parsing the error reports generated by Vivado (line 47). If
the error is among an enumerated list of supported errors, DART is
able to fix it (line 48). Then, it performs the appropriate fix (line 49)
and restarts the design step from the partitioning/floorplanning
step (line 50 - line 51). If the error is not in the list, i.e., DART is
not able to fix it, then it notifies the designer and aborts the design
process (line 52). One example of an error that can be fixed by
DART at the diagnostic step is related to the violation of a resource
constraint, i.e., unavailability of resources in the RRs. This error can
occur either due to an imprecise resource utilization estimation of
Vivado at the synthesis stage, or from resource columns removed
by the SNAPPING_MODE as discussed in Section 3.2. In case of such
an error, DART fixes the error by increasing the resource margin
discussed in Section 3.2.

4 EXPERIMENTAL EVALUATION
This section presents a case study application consisting of a hybrid
accelerated system for image processing, which has been designed
using DART. The system features a set of filter IPs for processing
images and two binary neural networks (BNNs) for image classifi-
cation. The considered application is, for instance, representative
of those in driver-assistance systems, where a co-design approach
is often used to accelerate computer vision, object detection, route
planning, and actuation workloads.
Experimental Setup. The experimental evaluation has been per-
formed using the PYNQ-Z1 board, which is equipped with the Zynq-
7020 SoC from Xilinx (dual-core Cortex-A9 processor coupled with
an Artix-7 family FPGA fabric). The FPGA fabric of the Zynq-7020
comprises 53200 LUTs, 140 BRAMs, 220 DSPs, and 106400 FFs. The
SoC is connected to a shared DRAM memory of size 512MB.

DART has been implemented in C++, leveraging the Gurobi
solver v.7.0.2 as a MILP optimization engine. The design flow has
been tested on a 26-core Intel Xeon machine running Ubuntu Linux
18.04 and equipped with 132 GB of RAM. The placement, routing,
and bitstream generation steps have been automated using Vivado
2018.3.
Image processing system The reconfigurable image processing
system uses a set of filters and two BNNs from the BNN-FINN
framework [15] for processing images stored inside the DRAM
memory of the PYNQ-Z1 platform. Table 1 summarizes the activities
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Listing 1: Pseudo-code of the implementation script.
1 run_implementation:
2 // These variables represent the partitioning result

3 num_part = N RR ; // number of partitions

4 num_mod[N RR ] = {...} // Number of RMs in each partition
5
6 // Number of implementation iterations
7 num_iter = max(num_mod);
8
9 // Partition allocations
10 partition[num_part][max_mod] = {{RM_1, RM_2, ...}, {RM_3, ...}};
11
12 num_stored_check_points = 0;
13 // Load the synthesized static check point to memory
14 load_synthesized_static_design();
15
16 for (i = 1; i < num_iter; i++) {
17 // Create a new configuration
18 conf_ptr = create_config(i);
19 for (j = 0; k < num_part; j++) {
20 if (num_mod[j] > 0) {
21 num_mod[j]--;
22 RM = partition[j][num_mod[j]];
23 set_config(conf_ptr, j, RM);
24 } else {
25 RM = partition[j][0];
26 set_config(conf_ptr, j, RM);
27 }
28 }
29
30 if (place_design(conf_ptr) != SUCCEEDED)
31 goto diagnostics;
32
33 if (route_design(conf_ptr) != SUCCEEDED)
34 goto diagnostics;
35
36 store_routed_checkpoint();
37 num_stored_check_points++;
38 insert_black_box();
39 }
40
41 for (i = 0; i < num_stored_check_points; i++) {
42 if(generate_bitstream() != SUCCEEDED))
43 goto diagnositcs;
44 else return OK;
45
46 diagnostics:
47 error_id = parse_error_report();
48 if (error_list(error_id)) {
49 fix_error(error_id);
50 run_partitioning_floorplanning();
51 goto run_implementation
52 } else return UNKNOWN_ERROR;

and parameters of the case study. The software part of the system
consists of three periodic SW-tasks running on the Zynq ARM
cores and periodically activated every 200 ms, 250 ms and 300 ms,
respectively. The SW-tasks’ deadlines are equal to the periods, i.e.,
each SW-task must complete its execution before the next instance
is released. The maximum times the SW-tasks can be suspended
waiting for pending acceleration requests without missing their
deadlines, which are referred to as slacks in the following, are 150
ms, 190 ms and 200 ms, respectively. The reconfigurable part of
the system features three reconfigurable filter IPs (i) FAST corner
detector (FASTx), (ii) Gaussian blur (Gaussian), and (iii) a finite input
response filter (FIR), which were built using the OpenCV library
included in Vivado HLS. The reconfigurable part also includes two
BNNs, namely the LFCW1A1 network and a customized version of
the CNVW1A1 network from the BNN-FINN framework [9]. Both
neural networks use a 1-bit precision for weights and activations.
The LFCW1A1 network features four fully-connected layers with
1024 neurons on each layer and it is trained to classify the MNIST
dataset. The topology of the CNVW1A1 network used for this

Table 1: Parameters of the case study application.

SW-task id Period (ms) Slack (ms) RMs
1 200 150 FASTx, Gaussian, FIR
2 250 190 CNVW1A1
3 300 200 LFCW1A1

case study is inspired by the VGG-16 architecture and consists of
four convolutional layers, two max-pooling layers, and two fully-
connected layers. It is trained to classify the CIFAR-10 dataset. The
combination of the two IP filters and two BNNs constitute the
considered RMs. The three filters are used by the first SW-task,
while the LFCW1A1 and CNVW1A1 networks are used by the
second and third SW-tasks respectively.

All RMs use the same hardware interface, which includes one
AXI4-lite slave interface, two AXI4 master interfaces, and an inter-
rupt. The RMs are controlled by the SW-tasks using a set of control
registers mapped through the AXI4-lite slave interface. Internally,
when an RM is reconfigured on the FPGA and activated, it fetches
data from the system DRAM and processes the image batch. The
filter RMs are configured to process a batch of 24 images with a
resolution of 176 x 144 pixels on each acceleration request, while
the BNN RMs process a batch of 256 images on a single acceleration
request. In the original implementation of the FINN accelerators,
the parameters of the neurons, i.e., weights and activations, are
loaded from DRAM memory into the hardware accelerators at
run-time by the software. The software was also responsible for
pre-processing a batch of images for classification. Hence, for both
BNN accelerators, the total execution time for the inference of a
batch was composed of (i) the time for pre-processing of a batch
of input images, (ii) the time for loading of the neuron parameters
from memory, and (iii) the time for the actual hardware inference.
By profiling the accelerators, we have found that, despite its low
memory footprint, the loading of the parameters of the accelerators
from DRAM memory at run-time takes a large portion of the total
execution time. To address this issue, the FINN accelerators of both
networks have been modified to embed the neuron parameters
directly into the accelerator during the generation of the bitstream.
In this way, the loading of the parameters can be skipped and, once
configured on the fabric, the BNN RMs are immediately ready to
run. The design has been implemented with a PL clock frequency
Fclk of 125 MHz.

Before starting the DPR design flow, the WCETs of RMs are esti-
mated using the following process: first, each RM is implemented
individually on a static design, including only the RM under anal-
ysis and the interconnects necessary to reach the PS ports. Then,
the execution times are profiled using a bare-metal application.
On each run, the profiling application (i) prepares the batch input
images in a memory buffer, (ii) initiates a timer and starts the RM
module, and (iii) when receiving the completion interrupt signal
from the RM module, stops the timer. WCETs have been finally
estimated by the maximum observed execution times. Due to the
dataflow nature of the RM used in this experimental evaluation,
limited fluctuations of the execution times occur.

For this experimental session, DART was configured to generate
the default template for the static part, which with the exception
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of one additional AXI master interface on each RR, is similar to
the one reported in Figure 5. Hence, the static part includes NRR

black-boxes for hosting the RRs, NRR decouplers, and two AXI
interconnects. One interconnect is used for connecting the AXI4
master interfaces exported by the RRs to the high-performance AXI
interfaces of the PS. The other interconnect links one of the AXI
general-purpose AXI master ports of the PS to the AXI4-lite slave
interfaces exported by the RRs and the PR decouplers. The objective
function to be minimized was the amount of wasted resources as
formally defined in [12].

4.1 Performance analysis of DART
Table 2 reports the resource requirements of the RMs after the syn-
thesis in the pre-processing stage. The results of the partitioning
and the execution time of the inference are reported in Figure 6.
Based on the input timing specifications and post-synthesis re-
source consumption of the RMs, DART partitioned the HW-tasks
into two RRs: the first RR, i.e., RR_1, hosts both BNNs, meanwhile,
all the filter RMs are allocated to the second RR, i.e., RR_2. The
reconfiguration time overheads of the RRs are 32 ms and 9 ms,
respectively.

Table 2: Resource requirement of the RMs.

RM type Kernel
size

LUT FF BRAM DSP

FASTx 5x5 2889 3474 6 8
Gaussian 5x5 2275 2055 8 3
FIR 5x5 4087 4122 4 9
CNVW1A1 - 13522 20112 85 0
LFCW1A1 - 19580 21443 103 0

It is worth noting that DART performs synthesis twice for each
input RM, i.e., once at the pre-processing stage and the other one
after the wrapping stage in the static part generation. Conversely,
in the standard Xilinx DPR flow [20] (shown in Figure 2), the input
modules are synthesized only once. These additional synthesis steps,
in conjunction with the other extra design steps, can increase the
running time of the design flow. To help contain the increase of the
running time, the synthesis script generated by DART (in both the
pre-processing step and the static part generation step) performs
the synthesis in parallel for each RM , while in the standard Xilinx
DPR flow the synthesis of the RMs is done sequentially.
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Figure 6: The partitioning and execution time of RMs.

To measure the additional running time taken by DART to com-
plete the design process, the image processing system was also

implemented by using the standard Xilinx DPR flow [20], under
identical design conditions and on a similar design platform. The
static part of the Xilinx flow, whose contents are identical to the
static part generated by DART, is designed using the Vivado IP
integrator. The RMs are also allocated in a similar way to how they
are partitioned using DART and the floorplanning placements gen-
erated by DART are also used inside the Xilinx flow. The results of
the comparison are reported in Table 3. While it took 213 seconds
to synthesize the five RMs using DART, the Xilinx DPR flow needed
642 seconds to synthesize the same number of RMs. The MILP im-
plementation of the partitioning/floorplanning problem related to
this case study produces the result in about 0.9 seconds. Note that,
although the limited execution time of the MILP optimization can
be attributed to the well formulation of the optimization problem,
it can rise with the increase of the complexity of the design. The
generation of the static part performed by DART is slower com-
pared to the one performed by the standard design flow. This is due
to the timing overheads in generating the static part and wrappers,
in addition to the synthesis of the wrapped RMs in the same step.
Finally, both approaches have a more or less similar bitstream gen-
eration runtime. Overall, in terms of total design time, DART does
slightly better (2.03% less in design run time) than the Xilinx flow.
Nevertheless, it is worth remarking that the Xilinx flow tested in
this experimental comparison is disadvantaged by the fact that the
synthesis steps run sequentially, but also advantaged because (i) it
had no manual floorplanning and partitioning overheads, since it
was using the results provided by DART, and (ii) the time taken to
design the static part is not taken into account.

Table 3: Comparison of the design run time of DART against
the Xilinx DPR flow [20].

DART Time
(s)

Xilinx flow Time
(s)

Pre-processing 213 Partitioning floorplanning -
Partitioning/floorplanning 0.9 RM Synthesis 642
Static part gen. 1409 static synthesis 1100
Impl. + bitstream. gen. 1901 implementation 1854
Total 3523 3596

5 RELATEDWORK
During the last decade, several techniques have been proposed to
provide support for non-expert designers via a full or partial au-
tomation of the DPR design flow. However, most of the proposed
works have one or more of the following shortcomings: (i) they
focus on independently automating either the floorplanning or par-
titioning design steps, hence they do not provide a globally-optimal
solution for the integrated partitioning-floorplanning problem; (ii)
they are based on older (deprecated) vendor design tools (e.g., most
of the DPR automation tools proposed in literature only support ISE
from Xilinx, which is the predecessor of Vivado); (iii) they do not
support newer FPGA families and only provide outdated solutions.
These approaches include tools that automate the individual design
steps like partitioning [4, 17] and floorplanning step [7, 10, 12, 16].
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Other tools that automate the full design flow are DAPR [21], GoA-
head [1, 2], CoPR [18], and OpenPR [13]. These latter tools that
fully automate the Xilinx DPR flow are reviewed in this section.

OpenPR and GoAhead are among the earliest DPR automation
tools. OpenPR generates the static part of a DPR design from an
input description of the system along with blocker macros to pre-
vent the static region from using the routing resources inside the
RRs. It supports the deprecated Xilinx PlanAhead tool for manually
creating the floorplans of the design. GoAhead also allows designers
to create a separate implementation flow for the static part and the
RRs by utilizing blocker macros. The design flow in both of these
tools requires an expertise in FPGA design and does not include a
software-hardware co-design approach.

The partitioning in DAPR is based on an exhaustive search algo-
rithm while CoPR uses a partitioning based on a graph clustering
approach proposed in [17]. The floorplanner in DAPR uses a simu-
lated annealing technique to generate placements while in CoPR
the authors developed a custom floorplanning algorithm [16]. Both
tools generate the bitstream by using Xilinx utilities and abstract
the complexities of the DPR flow from the designer.

The DPR automation tool proposed in this work highly differs
from CoPR and DAPR, as (i) it considers real-time requirements
of SW-tasks and HW-tasks in a co-design approach, (ii) it inte-
grates the partitioning and floorplanning in a DPR flow, into a
single optimization problem and solves it using an optimization
technique that guarantees the optimality of the solutions, (iii) it
is based on existing vendor design tools and also considers newer
FPGA families of architectures, and (iv) it provides the designer
the option to generate the static region hence further minimizing
the manual intervention. These significant differences prevented a
fair comparison of CoPR and DAPR against DART.

Besides these tools, other researchers have also proposed alter-
native models for the DPR tool flow. In [5], the authors proposed a
framework to design DPR systems from a high-level unified mod-
eling language (UML), while in [6] the authors create a custom
modeling language to convert a Vivado HLS description of a system
into a DPR implementation. Several researchers have also proposed
design methodologies relying on bitstreams relocation [8, 11, 22].
Such approaches may offer some advantages in terms of flexibility.
However, since the standard Xilinx flow does not support bitstream
relocation, third-party tools may not offer the same level of depend-
ability. Moreover, as bitstream relocation techniques are typically
fabric-specific, they can limit the portability of the proposed flow.

6 CONCLUSION
This paper presented DART, a tool that fully automates the design
flow of a real-time DPR-based system featuring both software and
hardware components that run on FPGA-based SoC platforms un-
der timing constraints. DART automates all the steps required by
the DPR design flow, including partitioning, floorplanning, synthe-
sis, placement, routing, and bitstream generation. DART has been
experimentally evaluated with a case study consisting of a hybrid
acceleration system featuring BNN accelerators and a set of filter
IPs, which is executed upon a Xilinx PYNQ-Z1 platform.
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