
OOSD
Introduction to JAVA

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

October 28, 2010

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 1 / 55

http://retis.sssup.it/~lipari

Outline

1 Introduction to JAVA

2 First JAVA program

3 Object creation and memory

4 Creating a new type

5 Anatomy of a JAVA program

6 Comments and documentation

7 Exercises

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 2 / 55

Outline

1 Introduction to JAVA

2 First JAVA program

3 Object creation and memory

4 Creating a new type

5 Anatomy of a JAVA program

6 Comments and documentation

7 Exercises

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 3 / 55

JAVA

JAVA is a language developed by James Gosling
at Sun Microsystems in 1995.

• Initially developed as an internal project, it was specifically
designed for embedded systems (sic!)

• it later became very popular for general purpouse programming
• The most prominent features of JAVA are

• Portability: JAVA programs are compiled into Bytecode, that can
be executed by the Java Virtual Machine (JVM)

• Easy of programming: JAVA is considered a programming
language that favors clean and structured code, and avoids some of
the most difficult aspects of other programming languages

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 4 / 55

http://en.wikipedia.org/wiki/James_Gosling

JVM
JAVA is semi-compiled

• A JAVA program is first compiled into
bytecode

• The bytecode is an
intermediate and platform
independent low-level
representation of the
program

• It is portable, i.e. it is
independent of the
underlying hardware
processor architecture

• The bytecode is interpreted and
executed by the JAVA VIRTUAL

MACHINE

• The JAVA RUN-TIME ENVIRONMENT

(JRE) includes the JVM and
supporting library classes

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 5 / 55

Bytecode

Of course, this approach has advantages and disadvantages:

• Portability is the greatest advantage: the same compiled
bytecode can be executed on any OS and on any hardware
platform

• Other advantages: Dynamic loading, run-time type identification,
etc.

• Efficiency is the primary concern: bytecode is not as efficient as
native machine code, as it needs to be interpreted by the JVM that
is a regular program.

• This issue is partially mitigated by the introduction of Just-In-Time
compilers : they translate byte-code into machine code on-the-fly,
while executing, thus speeding up the execution of programs

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 6 / 55

Which language is faster?

• Comparing the performance of different languages is quite
difficult, if not impossible because it depends on:

• The algorithm
• The programmer ability
• The input
• The Operating System and the JVM,
• etc.

1See http://en.wikipedia.org/wiki/Java_performance

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 7 / 55

http://en.wikipedia.org/wiki/Java_performance

Which language is faster?

• Comparing the performance of different languages is quite
difficult, if not impossible because it depends on:

• The algorithm
• The programmer ability
• The input
• The Operating System and the JVM,
• etc.

• In general, it is possible to say that JAVA programs performance
is1:

• 1-4 times slower than compiled languages as C or C++
• close to other Just-in-time compiled languages such as C♯,
• much higher than languages without an effective native-code

compiler (JIT or AOT), such as Perl, Ruby, PHP and Python.

1See http://en.wikipedia.org/wiki/Java_performance

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 7 / 55

http://en.wikipedia.org/wiki/Java_performance

Which language is faster?

• Comparing the performance of different languages is quite
difficult, if not impossible because it depends on:

• The algorithm
• The programmer ability
• The input
• The Operating System and the JVM,
• etc.

• In general, it is possible to say that JAVA programs performance
is1:

• 1-4 times slower than compiled languages as C or C++
• close to other Just-in-time compiled languages such as C♯,
• much higher than languages without an effective native-code

compiler (JIT or AOT), such as Perl, Ruby, PHP and Python.

• Also, see http://bit.ly/9AwPXG for a comparison of JAVA

against various other languages

1See http://en.wikipedia.org/wiki/Java_performance

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 7 / 55

http://bit.ly/9AwPXG
http://en.wikipedia.org/wiki/Java_performance

Outline

1 Introduction to JAVA

2 First JAVA program

3 Object creation and memory

4 Creating a new type

5 Anatomy of a JAVA program

6 Comments and documentation

7 Exercises

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 8 / 55

First JAVA program

A simple Hello world in JAVA HelloDate.java

// HelloDate.java
import java.util.*;

public class HelloDate {
public static void main(String[] args) {
System.out.println("Hello, it’s: ");
System.out.println(new Date());

}
}

Tell the system to im-
port all classes in an
external package (see
Date below)

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 9 / 55

./examples/03.java-examples/HelloDate.java

First JAVA program

A simple Hello world in JAVA HelloDate.java

// HelloDate.java
import java.util.*;

public class HelloDate {
public static void main(String[] args) {
System.out.println("Hello, it’s: ");
System.out.println(new Date());

}
}

Tell the system to im-
port all classes in an
external package (see
Date below)

Program starts from
here

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 9 / 55

./examples/03.java-examples/HelloDate.java

First JAVA program

A simple Hello world in JAVA HelloDate.java

// HelloDate.java
import java.util.*;

public class HelloDate {
public static void main(String[] args) {
System.out.println("Hello, it’s: ");
System.out.println(new Date());

}
}

Tell the system to im-
port all classes in an
external package (see
Date below)

Program starts from
here

Prints the string on the
screen

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 9 / 55

./examples/03.java-examples/HelloDate.java

First JAVA program

A simple Hello world in JAVA HelloDate.java

// HelloDate.java
import java.util.*;

public class HelloDate {
public static void main(String[] args) {
System.out.println("Hello, it’s: ");
System.out.println(new Date());

}
}

Tell the system to im-
port all classes in an
external package (see
Date below)

Program starts from
here

Prints the string on the
screen

Prints the date on the
screen

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 9 / 55

./examples/03.java-examples/HelloDate.java

Classes

• the class keyword define a class
• everything is an object: therefore, every JAVA program only

contains classes declarations and objects
• every class goes in a separate file that must have the same name

as the class name (in our case, HelloDate.java)
• every JAVA program must contain a class with a method called
main

• By convention, usually all class names begin with a capital letter,
to distinguish them from variables that start with a lower letter.
Exercise

Compile and execute the program

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 10 / 55

A more interactive example
IntroducingHello.java

import java.util.*;

class IntroducingHello {
public static void main(String[] args) {
String name;
String surname;

name = new String("Giuseppe");
surname = new String ("Lipari");

System.out.println("Hello " + name
+ " " + surname);

System.out.println("Today is: ");
System.out.println(new Date());

}
}

A reference to an ob-
ject of type String

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 11 / 55

./examples/03.java-examples/IntroducingHello.java

A more interactive example
IntroducingHello.java

import java.util.*;

class IntroducingHello {
public static void main(String[] args) {
String name;
String surname;

name = new String("Giuseppe");
surname = new String ("Lipari");

System.out.println("Hello " + name
+ " " + surname);

System.out.println("Today is: ");
System.out.println(new Date());

}
}

A reference to an ob-
ject of type String

Another reference

• There is no object yet, only references!

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 11 / 55

./examples/03.java-examples/IntroducingHello.java

A more interactive example
IntroducingHello.java

import java.util.*;

class IntroducingHello {
public static void main(String[] args) {
String name;
String surname;

name = new String("Giuseppe");
surname = new String ("Lipari");

System.out.println("Hello " + name
+ " " + surname);

System.out.println("Today is: ");
System.out.println(new Date());

}
}

A reference to an ob-
ject of type String

Another reference

Object creation

• There is no object yet, only references!

• Now the first object is created

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 11 / 55

./examples/03.java-examples/IntroducingHello.java

A more interactive example
IntroducingHello.java

import java.util.*;

class IntroducingHello {
public static void main(String[] args) {
String name;
String surname;

name = new String("Giuseppe");
surname = new String ("Lipari");

System.out.println("Hello " + name
+ " " + surname);

System.out.println("Today is: ");
System.out.println(new Date());

}
}

A reference to an ob-
ject of type String

Another reference

Object creation

Object creation

• There is no object yet, only references!

• Now the first object is created

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 11 / 55

./examples/03.java-examples/IntroducingHello.java

Objects and references

• In JAVA, you treat everything as an object, using a single
consistent syntax

• The identifier you manipulate is actually a “reference” to an object
• You might imagine this scene as a television (the object) with your

remote control (the reference).

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 12 / 55

Objects and references

• In JAVA, you treat everything as an object, using a single
consistent syntax

• The identifier you manipulate is actually a “reference” to an object
• You might imagine this scene as a television (the object) with your

remote control (the reference).
• As long as you’re holding this reference, you have a connection to

the television, but when someone says “change the channel” or
“lower the volume” what you’re manipulating is the reference, which
in turn modifies the object.

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 12 / 55

Objects and references

• In JAVA, you treat everything as an object, using a single
consistent syntax

• The identifier you manipulate is actually a “reference” to an object
• You might imagine this scene as a television (the object) with your

remote control (the reference).
• As long as you’re holding this reference, you have a connection to

the television, but when someone says “change the channel” or
“lower the volume” what you’re manipulating is the reference, which
in turn modifies the object.

• If you want to move around the room and still control the television,
you take the remote/reference with you, not the television.

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 12 / 55

Objects and references

• In JAVA, you treat everything as an object, using a single
consistent syntax

• The identifier you manipulate is actually a “reference” to an object
• You might imagine this scene as a television (the object) with your

remote control (the reference).
• As long as you’re holding this reference, you have a connection to

the television, but when someone says “change the channel” or
“lower the volume” what you’re manipulating is the reference, which
in turn modifies the object.

• If you want to move around the room and still control the television,
you take the remote/reference with you, not the television.

• Also, the remote control can stand on its own, with no television.
That is, just because you have a reference doesn’t mean there’s
necessarily an object connected to it.

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 12 / 55

References and object creation

When you create a reference, you want to connect it with a new object.
You do so, in general, with the new keyword. The keyword new says,
“Make me a new one of these objects.” So in the preceding example,
you can say:

String s;
s = new String("Giuseppe");

• s is the reference (the remote control)

• initially, every reference is automatically initialized to null, a
special constant to denote “nothing”. s is a dangling reference, it
refers to nothing

• You create an object with the new keyword, followed by the class
name and the initialization parameter

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 13 / 55

References

• String is a predefined class in JAVA, but we will see how to do it
with our own classes

• You can define a reference and initalize it in the same line: (the
latter is only valid for String)

String s = new String("Giuseppe");
String s2 = "Lipari";

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 14 / 55

Primitive types

“Everything is an object” has exceptions.
• basic low level data are implemented as primitive types. Here are

the primitive types in java.

Primitive type Size Minimum Maximum Wrapper type
boolean – – – Boolean

char 16-bit Unicode 0 Unicode 216
− 1 Character

byte 8-bit −128 +127 Byte
short 16-bit −215

+215
− 1 Short

int 32-bit −231
+231

− 1 Integer
long 64-bit −263

+263
− 1 Long

float 32-bit IEEE754 IEEE754 Float
double 64-bit IEEE754 IEEE754 Double

void – – – Void

• The size of the boolean type is not explicitly specified; it is only
defined to be able to take the literal values true or false.

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 15 / 55

Primitive types

Primitive type variables are not object

• You can define and assign a value to a primitive variable, without
using the new command

char c = ’x’;
int i = 0;
int a, b;
a = b = 5;
int c = a + b;

• Wrappers are objects that “wrap” primitive types.

Integer a = new Integer(5);
Integer b = Integer.valueOf("125");

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 16 / 55

Arrays

• Arrays objects that contain sequences of other elements

• Unlike other containers (Lists, Trees, etc.), which are
implemented as pure objects into libraries, arrays are objects
built-in into the language

int[] anArray;

anArray = new int[10];
anArray[5] = 10;
anArray[12] = 200;

Declaration of the reference

• Notice that the array index goes from 0 to 9, thus 10 is an invalid
index.

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 17 / 55

Arrays

• Arrays objects that contain sequences of other elements

• Unlike other containers (Lists, Trees, etc.), which are
implemented as pure objects into libraries, arrays are objects
built-in into the language

int[] anArray;

anArray = new int[10];
anArray[5] = 10;
anArray[12] = 200;

Declaration of the reference

Creation of the array

• Notice that the array index goes from 0 to 9, thus 10 is an invalid
index.

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 17 / 55

Arrays

• Arrays objects that contain sequences of other elements

• Unlike other containers (Lists, Trees, etc.), which are
implemented as pure objects into libraries, arrays are objects
built-in into the language

int[] anArray;

anArray = new int[10];
anArray[5] = 10;
anArray[12] = 200;

Declaration of the reference

Creation of the array

Assignment at position 5

• Notice that the array index goes from 0 to 9, thus 10 is an invalid
index.

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 17 / 55

Arrays

• Arrays objects that contain sequences of other elements

• Unlike other containers (Lists, Trees, etc.), which are
implemented as pure objects into libraries, arrays are objects
built-in into the language

int[] anArray;

anArray = new int[10];
anArray[5] = 10;
anArray[12] = 200;

Declaration of the reference

Creation of the array

Assignment at position 5

This is a run-time error!

• Notice that the array index goes from 0 to 9, thus 10 is an invalid
index.

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 17 / 55

Arrays - II

Arrays can also be initialized inline:

int[] anArray = {100, 200, 300, 400, 500,
600, 700, 800, 900, 1000};

Multi-arrays are arrays of arrays. Here is an example:

class MultiDimArrayDemo {
public static void main(String[] args) {

String[][] names = {{"Mr. ", "Mrs. ", "Ms. "}, {"Smith",
"Jones"}};

System.out.println(names[0][0] + names[1][0]); //Mr. Smith
System.out.println(names[0][2] + names[1][1]); //Ms. Jones

}
}

You can also know the number of elements in an array:

System.out.println(anArray.length);

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 18 / 55

Copying arrays

Be careful when copying objects! WrongArrayCopy.java

import java.util.*;

class WrongArrayCopy {
public static void main(String [] args) {

String [] mys = {"Giuseppe", "Lipari"};
String [] mys2 = mys;

mys2[0] = "Roberto";
System.out.println("mys[0] = " + mys[0]);
System.out.println("mys2[0] = " + mys2[0]);

}
};

• The problem is that in this way we are only copying the reference,
not the entire object!

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 19 / 55

./examples/03.java-examples/WrongArrayCopy.java

Copying arrays

Be careful when copying objects! WrongArrayCopy.java

import java.util.*;

class WrongArrayCopy {
public static void main(String [] args) {

String [] mys = {"Giuseppe", "Lipari"};
String [] mys2 = mys;

mys2[0] = "Roberto";
System.out.println("mys[0] = " + mys[0]);
System.out.println("mys2[0] = " + mys2[0]);

}
};

• The problem is that in this way we are only copying the reference,
not the entire object!

• You must create a new object, then copy elements one by one

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 19 / 55

./examples/03.java-examples/WrongArrayCopy.java

Copying arrays

Be careful when copying objects! WrongArrayCopy.java

import java.util.*;

class WrongArrayCopy {
public static void main(String [] args) {

String [] mys = {"Giuseppe", "Lipari"};
String [] mys2 = mys;

mys2[0] = "Roberto";
System.out.println("mys[0] = " + mys[0]);
System.out.println("mys2[0] = " + mys2[0]);

}
};

• The problem is that in this way we are only copying the reference,
not the entire object!

• You must create a new object, then copy elements one by one

• The JAVA library helps us with an efficient method for copying arrays

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 19 / 55

./examples/03.java-examples/WrongArrayCopy.java

Copying arrays

Be careful when copying objects! WrongArrayCopy.java

import java.util.*;

class WrongArrayCopy {
public static void main(String [] args) {

String [] mys = {"Giuseppe", "Lipari"};
String [] mys2 = mys;

mys2[0] = "Roberto";
System.out.println("mys[0] = " + mys[0]);
System.out.println("mys2[0] = " + mys2[0]);

}
};

• The problem is that in this way we are only copying the reference,
not the entire object!

• You must create a new object, then copy elements one by one

• The JAVA library helps us with an efficient method for copying arrays
• see ./examples/03.java-examples/ArrayCopyDemo.java

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 19 / 55

./examples/03.java-examples/WrongArrayCopy.java
./examples/03.java-examples/ArrayCopyDemo.java

Outline

1 Introduction to JAVA

2 First JAVA program

3 Object creation and memory

4 Creating a new type

5 Anatomy of a JAVA program

6 Comments and documentation

7 Exercises

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 20 / 55

The underlying platform

• JAVA is a language that is closer to the problem domain than lower
level languages like C (which are closer to the machine domain)

• However, at some point JAVA has to be translate on a machine

• It is important then to understand the mapping between the high
level abstractions of JAVA and the underlying low level platform
details

• In facts, to understand how a JAVA program works, you must
understand how the underlying machine translates and executes
every statement

• In other words, you must be able to be the machine

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 21 / 55

Object creation

What happens when an object is created?

• First of all, memory is reserved for holding the object data

Registers: very small amount of memory
in the processor, controlled by the
compiler, you cannot see it
Cache: small amount of memory,
automatically managed at run-time, you
cannot see it
Stack: in the RAM, contains all local
(automatic) variables inside a function
Heap: in the RAM, contains all new
objects created dynamically by the
programmer (you!)

ALU

Cache

CPU

Registers
Code

Global memory

(automatic memory)
Stack

Heap

Program
memory

Bus RAM

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 22 / 55

Object creation

When JAVA creates an object, it goes in the Heap.
• You can think of the heap as an organized archive,

• everytime you create an object it goes in the archive, and the
bookkeeping system of JAVA gives you a handle to the object (the
reference)

• You can never directly use the object, but only use the reference to
it as a remote control.

• The bookkeeping system of JAVA keeps track of where objects are
in the archive, so that when you want to use the object (through
the reference), it knows where it is

• However, if you lose the reference (for some reason), you lose
control of the object!

• There is no way to control an object without a reference to it

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 23 / 55

Stack

Primitive types are created on the stack, at the beginning of the
execution of a function

• Every time you call a function (method) of a class, the stack is
filled with the parameters and the local variables

• The stack is cleaned up when the function is finished, and all the
variables on the stack are deleted

• When you call new, instead, object are created on the heap and
will not be deleted after the end of the function, but will stay until
an appropriate time

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 24 / 55

Object lifetime

• In most programming languages, the concept of the lifetime of a
variable occupies a significant portion of the programming effort.

• How long does the variable last?
• If you are supposed to destroy it, when should you?

• Confusion over variable lifetimes can lead to a lot of bugs,

• JAVA greatly simplifies the issue by doing all the cleanup work for
you

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 25 / 55

Scope

• In C, C++, and Java, scope is determined by the placement of
curly braces {}. So for example:

{
int x = 12;
// Only x available
{

int q = 96;
// Both x & q available

}
// Only x available
// q "out of scope"

}

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 26 / 55

Scope - II

• Note that you cannot do the following, even though it is legal in C
and C++:

{
int x = 12;
{

int x = 96; // Illegal
}

}

• Thus the C and C++ ability to “hide” a variable in a larger scope is
not allowed, because the Java designers thought that it led to
confusing programs.

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 27 / 55

Object lifetime

• JAVA objects do not have the same lifetimes as primitives. When
you create a Java object using new, it hangs around past the end
of the scope.

{
String n;
{

String s = new String("a string");
n = s;

} // End of scope
System.out.println(n);

}

• the reference s vanishes at the end of the scope, however, the
String object is still occupying memory.

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 28 / 55

Garbage collector

• If JAVA leaves the objects lying around, what keeps them from
filling up memory and halting your program?

• JAVA has a garbage collector (GC), which looks at all the objects
that were created with new and figures out which ones are not
being referenced anymore

• Then, it releases the memory for those objects, so the memory can
be used for new objects

• This means that you never need to worry about reclaiming memory
yourself.

• It eliminates a certain class of programming problem: the so-called
“memory leak,” in which a programmer forgets to release memory.

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 29 / 55

GC drawbacks

• The GC is executed periodically, or when the amount of objects
goes beyond a certain threshold, or with some other rule

• Of course, not deleting objects immediately means that
• objects stay in memory longer than strictly needed, so JAVA

programs tend to use more memory than necessary
• the GC execution can take a lot of computational resources

• Will come back to GC later.

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 30 / 55

Outline

1 Introduction to JAVA

2 First JAVA program

3 Object creation and memory

4 Creating a new type

5 Anatomy of a JAVA program

6 Comments and documentation

7 Exercises

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 31 / 55

Classes

• In procedural languages like C and C++, code is written inside
functions and procedures, and a special function main() is the
program entry point that calls all other functions

• Where goes the code inside JAVA?
• In JAVA, everything is an object of some type, hence the job of the

programmer is principally to:
• Write new types where to define data, and operations (functions)

that operate on the data (see Abstract Data Type lecture)
• Write a special class which contains the special entry point function
main()

• Hence, all the programming activity in JAVA starts with designing
the types, and implement them

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 32 / 55

Classes

In JAVA and in other OO languages, to define a new type we must use
the keywork class

class ATypeName { /* Class body goes here */ }

• This introduces a new type, even if the class body is empty

• The following class define a different type:

class AnotherTypeName { /* Class body goes here */ }

• to do something useful, we must be able to write data and code for
the class

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 33 / 55

Fields and methods

• A class can contain:
• Fields (or data members) which are variables that contain data

(primitive variables) or references to objects
• Methods (or member functions) which are mostly operations on the

object fields

• fields are used to specify the domain of interest

• methods are used to specify the operations on the object

• We will now analyse the syntax. Later we will look at simple
design strategies

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 34 / 55

Data fields

The syntax for specifying a data field is the following (brackets denote
optional elements)

[access] [scope] type name [= initial_value];

• access can be public, protected or private (default is public for the
package, will see later what it means)

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 35 / 55

Data fields

The syntax for specifying a data field is the following (brackets denote
optional elements)

[access] [scope] type name [= initial_value];

• access can be public, protected or private (default is public for the
package, will see later what it means)

• If public, the field is part of the interface and can be accessed
directly

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 35 / 55

Data fields

The syntax for specifying a data field is the following (brackets denote
optional elements)

[access] [scope] type name [= initial_value];

• access can be public, protected or private (default is public for the
package, will see later what it means)

• If public, the field is part of the interface and can be accessed
directly

• If private, the field is part of the implementation and can be
accessed only by other member functions of the same class

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 35 / 55

Data fields

The syntax for specifying a data field is the following (brackets denote
optional elements)

[access] [scope] type name [= initial_value];

• access can be public, protected or private (default is public for the
package, will see later what it means)

• If public, the field is part of the interface and can be accessed
directly

• If private, the field is part of the implementation and can be
accessed only by other member functions of the same class

• If protected, the field is part of the implementation and can be
accessed only by other member functions of the same class or of
derived classes

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 35 / 55

Scope and Type

• scope can be omitted or be the keyword static
• In the first case, there is a separate and distinct copy of the field in

every object of that type
• In the second case, there is only one copy of the field, the same for

all object of the same class

• type is the field type
• Can be a primitive type or the name of another class

• name is the name of the field

• The initial value is optional (default is null for references, 0 for
numeric primitive types, false for boolean)

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 36 / 55

Member access

class DataOnly {
String n;
int i;
float f;
boolean b;

}
...
DataOnly d = new DataOnly();
d.i = 47;
d.f = 1.1f;
d.b = false;
d.n = "object name";
System.out.println(d.n);

by default these fields are
public

Since they are public, you
can access them directly in
the code

• Members can be accessed with the dot notation, i.e. the name of
the reference followed by a dot and the name of the member (field
of method)

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 37 / 55

Methods

Methods are operations on the object.
• their syntax is similar to functions in C

returnType methodName(/* Argument list */) {
/* Method body */

}

• The return type is the type of the value that “pops out” of the
method after you call it

• The argument list gives the types and names for the information
you want to pass into the method

• The method name and argument list together uniquely identify the
method

Methods in JAVA can be created only as part of a class
• A method can be called only for an object (except for static

methods), like this:

objectName.methodName(arg1, arg2, arg3);

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 38 / 55

Arguments

• The argument list specifies what information you pass into the
method

• For every argument, you must specify the type

it returns an integer

int storage(String s) {
return s.length() * 2;

}

Remember that s is a ref-
erence to an object of type
string!

This function returns the
number of bytes taken by the
string

Exercise

Try to mentally execute the code of the function when it is called on
a certain string. Then write a program with a class the contains the
method and call it from the main function.

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 39 / 55

Return types

• The return keyword means two things:
• “leave the method, I’m done”
• if the method produces a value, that value is placed right after the

return statement

• You can return any type you want, if you don’t want to return
anything at all, you do so by indicating that the method returns
void

boolean flag() { return true; }
float naturalLogBase() { return 2.718f; }
void nothing() { return; }
void nothing2() {}

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 40 / 55

Outline

1 Introduction to JAVA

2 First JAVA program

3 Object creation and memory

4 Creating a new type

5 Anatomy of a JAVA program

6 Comments and documentation

7 Exercises

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 41 / 55

Compiling

To compile a JAVA program, you can use the JAVA compiler javac

• Code is written in text files with extension .java (e.g.
./examples/03.java-examples/HelloDate.java)

• The compiler takes a .java file and produces a .class file
• javac HelloDate.java produces HelloDate.class
• The .class file contains the bytecode

• To execute the program, we must invoke the JAVA virtual machine,
passing the name of the class file to interpret (without the .class)

• java HelloDate

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 42 / 55

./examples/03.java-examples/HelloDate.java

Name visibility

• Name clashing problem:
• If you use a name in one module of the program,
• and another programmer uses the same name in another module,
• how do you distinguish one name from another and prevent the two

names from “clashing?”

• JAVA solves the issue by using Internet domain names to specify
the “location” of objects in the libraries

• the retis library of utility objects will be at
it.sssup.retis.utility.*

• The domain name is in reverse order, and the directories are
separated by dots

• Each file contains at least one class
• the name of the file must be the same as the name of the class

(except for the extension .java)
• For example, class HelloDate must be in file HelloDate.java

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 43 / 55

The import keyword

• To use a class MyClass, you have the following possibilities:
• If the class is in the same file where it is used, you can just use it

(e.g. create objects of that class)
• If the class is in another file in the same directory (Package), again

you can just use it
• If the class is in another place, you have to import the class with the

import keyword

• Example of import:

import java.util.Date; // imports class Date
import java.util.*; // imports all classes from

// java.util package

• Notice that package java.lang is implicitely included

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 44 / 55

Documentation for JDK

• The Java Development Kit (JDK) from Sun comes with a full set of
libraries

• Documentation for these libraries can be found at
http://download.oracle.com/javase/6/docs/api/

• For example, here is the documentation for Date:
http://download.oracle.com/javase/6/docs/api/java/util/Date.html

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 45 / 55

http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/java/util/Date.html

Static keyword

• Objects have identity
• Every time you create an object of one class, one instance of a

complete object is created with its own member fields

class MyClass {
int x;
int y;

}
...
MyClass obj1 = new MyClass;
MyClass obj2 = new MyClass;

obj1.x = 5;
obj2.x = 7;

These two are different vari-
ables, as they belong to dif-
ferent objects

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 46 / 55

Static

• If you specify a member as static, it means that there will be only
one copy of that member shared by all objects of that class

StaticExample.java

class MyClass {
int x = 0;
int y = 0;
static int w = 0;

}

class StaticExample {
public static void main(String args[]) {

MyClass obj1 = new MyClass();
MyClass obj2 = new MyClass();

obj1.x = 5;
obj2.x = 7;
obj1.w = 10;

System.out.println("MyClass.w = " +
MyClass.w);

These are regular
members

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 47 / 55

./examples/03.java-examples/StaticExample.java

Static

• If you specify a member as static, it means that there will be only
one copy of that member shared by all objects of that class

StaticExample.java

class MyClass {
int x = 0;
int y = 0;
static int w = 0;

}

class StaticExample {
public static void main(String args[]) {

MyClass obj1 = new MyClass();
MyClass obj2 = new MyClass();

obj1.x = 5;
obj2.x = 7;
obj1.w = 10;

System.out.println("MyClass.w = " +
MyClass.w);

These are regular
members

This member is shared
between all objects of
MyClass

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 47 / 55

./examples/03.java-examples/StaticExample.java

Static methods

• A static member exists even without creating an object of the class

• In the previous example, you can use member w before creating
obj1 and obj2.

• A method declared static can only access static members
• The static method is not tied to a specific instance of the class

(object), so it can only act on static variables

• Why static members and methods?
• One of the most popular uses is to count how many objects of a

specific class have been created
• every time an object is created, the counter is incremented (will see

later)

• Another use is to implement functions that have nothing to do with
one specific object

• Another use is to control object creation more finely

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 48 / 55

Example of static method

StaticFun.java

class MyClass {
private int x = 0;
private static int counter = 0;

public static int incr() {
return counter++;

}
public MyClass() {

x = incr();
}
public int getX() { return x; }

}

class StaticFun {
public static void main(String args[]) {

MyClass obj1 = new MyClass();
MyClass obj2 = new MyClass();

System.out.println("obj1.getX() = " +
obj1.getX());

System.out.println("obj2.getX() = " +
obj2.getX());

}
}

A static method

Constructor

“Getter” method

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 49 / 55

./examples/03.java-examples/StaticFun.java

Outline

1 Introduction to JAVA

2 First JAVA program

3 Object creation and memory

4 Creating a new type

5 Anatomy of a JAVA program

6 Comments and documentation

7 Exercises

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 50 / 55

Comments

• There are two types of comments in JAVA
• The first is the traditional C-style comment that was inherited by

C++
• they start with /* and end with */
• Often, if spread across many lines, a * is put at the beginning of each

line

• The second is one-line comments starting with //, again inherited
from C++

// this is a one-line comment

/* this is a multiple-line
very long comment */

/* this one is nicely

* indented, and can be nicer to

* see on screen */

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 51 / 55

Comments for documentation

• To document the classes interface, you can use special
comments:

• They start with /** and end with */
• Or, they start with ///

• These comments can be extracted by javadoc, an utility that
generates html files

/** A class comment */
public class DocTest {

/** A variable comment */
public int i;
/** A method comment */
public void f() {}

}

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 52 / 55

Documentation

• Inside special comments, it is possible to use HTML (to a limited
extent)

• Also, special keywords for cross referencing

This is a complete example by Bruce Eckel:
./examples/03.java-examples/HelloDateDoc.java

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 53 / 55

./examples/03.java-examples/HelloDateDoc.java

Outline

1 Introduction to JAVA

2 First JAVA program

3 Object creation and memory

4 Creating a new type

5 Anatomy of a JAVA program

6 Comments and documentation

7 Exercises

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 54 / 55

Exercises

Exercise

Write a program that prints three arguments taken from the command
line. To do this, you’ll need to index into the command-line array of
Strings.

Exercise

Write and compile a program that tries to use a non-initialized reference.
See what happens when you execute it.

G. Lipari (Scuola Superiore Sant’Anna) OOSD October 28, 2010 55 / 55

	Introduction to Java
	First Java program
	Object creation and memory
	Creating a new type
	Anatomy of a Java program
	Comments and documentation
	Exercises

