
Object Oriented Software Design
Constructors, Implementation hiding, Inheritance

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

October 28, 2010

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 1 / 51

Outline

1 Creating and destroying objects

2 Method Overloading

3 Finalization

4 Implementation Hiding

5 Class Reuse

6 Final

7 Exercises

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 2 / 51

http://retis.sssup.it/~lipari


Constructor

Every class has a constructor
A special function that is called when the object is created with new
The function must have the same name as the class, and can have
any number of parameters
You can also specify more than one constructor, with different
parameter lists
The constructor without parameters is called default constructor

By default:
If you do not specify any constructor, the compiler will automatically
generates a default constructor
If you do specify a constructor (with any number of parameters), the
default constructor is not generated

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 4 / 51

Constructor example

SimpleConstructor.java

class Rock {
Rock() { // This is the constructor

System.out.println("Creating Rock");
}

}

public class SimpleConstructor {
static Test monitor = new Test();
public static void main(String[] args) {

for(int i = 0; i < 5; i++)
new Rock();

monitor.expect(new String[] {
"Creating Rock",
"Creating Rock",
"Creating Rock",
"Creating Rock",
"Creating Rock",

});
}

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 5 / 51

./examples/05.java-examples/SimpleConstructor.java


Counting the Rocks

Exercise
Add another constructor that takes an integer and a string to name the
Rock.

Exercise

By using a static member, count the number of rocks that have been
created till now by either of the two constructors

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 6 / 51

Initialization

data members inside a class can be initialized:
on-line, when declaring the data member
inside the constructor
inside initialization clauses

the second approach gives much more flexibility, as the
initialization can depend on the arguments

a initialization clause is a block of code that you can insert
anywhere inside the class, and that contains code for initializing
the data members

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 7 / 51



Initialization

You can initialize a data member with a constant, or with the value
of a function:

The function can take as arguments initialized variables

Correct:

class CInit {
int i = f();
int j = g(i);
//...

}

Wrong:

class CInit {
int j = g(i);
int i = f();
//...

}

It is also important to understand the initialization order:
./examples/05.java-examples/OrderOfInitialization.java

Data members are initialized in the same order they are defined;
After that, the constructor is called

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 8 / 51

Static initialization

When static data members are initialized?
Only if necessary, just before a static method is called, or the first
object is created

./examples/05.java-examples/StaticInitialization.java

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 9 / 51

./examples/05.java-examples/OrderOfInitialization.java
./examples/05.java-examples/StaticInitialization.java


Initialization clauses

You use also initialization clauses

class Cups {
static Cup c1;
static Cup c2;
static {

c1 = new Cup(1);
c2 = new Cup(2);

}
...

public class Mugs {
Mug c1;
Mug c2;
{

c1 = new Mug(1);
c2 = new Mug(2);
System.out.println("c1 & c2 initialized");

}
Mugs() {

System.out.println("Mugs()");
}
...

These clauses are executed in the same order they are written in
the file

This syntax is necessary for anonymous inner classes (see later)

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 10 / 51

Overloading

You can define many member functions with the same name
For example, you can have many constructors
The same rule applies to normal member functions

However, functions with the same name must have different
argument list

The list may differ in the number of arguments and/or in their types,
and/or in the order

The function name, along with the argument list, is called method
signature

You can define as many methods as you want in a class, but they
must have all different signatures

./examples/05.java-examples/Overloading.java,

./examples/05.java-examples/OverloadingOrder.java

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 12 / 51

./examples/05.java-examples/Overloading.java
./examples/05.java-examples/OverloadingOrder.java


Promotion and overloading

Pay careful attention to overloading with primitive types
Promotion must be taken into account

The rule is: the compiler will try to use the method whose
parameters are “closer” to the ones you are giving

First, it looks for an exact match of types
Then it tries to promote until it finds a match
If there is no match, the compiler issues an error

You can force this behavior by appropriate casting

./examples/05.java-examples/PrimitiveOverloading.java

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 13 / 51

Overloading and return type

You cannot overload on return types
The return type is not part of the signature

This is because the correct return value cannot be automatically
inferred by the compiler

void fun();
int fun();
...

f();

Which version the com-
piler should call?

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 14 / 51

./examples/05.java-examples/PrimitiveOverloading.java


this

the this keyword is used to refer to the object reference from
within the class

class Apricot {
int data;
void pick() { data = 25; }
void pit() { pick(); }

}

≡

class Apricot {
int data;
void pick() { this.data = 25; }
void pit() { this.pick(); }

}

As you can see, in most of the cases you do not need this ,
because it is implicit
it is used mainly:

when you want to return a reference to the current object
(./examples/05.java-examples/Leaf.java)
when you want to call another constructor
(./examples/05.java-examples/Flower.java)

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 15 / 51

Multiple constructors

When you have multiple constructors, it is likely that they will share
some code

Some of the data members wll need to be initialized anyway,
in some cases, some of these initialization do not depend on the
specific parameters

When the same code is repeated several times, there is always a
danger of introducing some mistake

Consider for example the case in which we have to change some
code in the constructor
if this is code is duplicated in all constructors, we must remember
to correct all constructors, otherwise we introduce a subtle bug!
Hint: try to avoid duplication of code

Remember: the constructor call must be the first thing you do, or
you’ll get a compiler error message.

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 16 / 51

./examples/05.java-examples/Leaf.java
./examples/05.java-examples/Flower.java


Cleaning up

In C++, it is possible to write a destructor function for every class,
that is called when the object memory is destroyed
In Java, there is no destructor function

the reason is that the main need for destruction is to reclaim
memory (as we will see in the C++ language)
Java provides its own automatic way of reclaiming memory through
the garbage collector

However, it is sometimes necessary to perform some additional
task when an object is not used anymore, before it is completely
deleted by the garbage collector

Suppose that you are using your own way to allocate memory, not
on the heap but on a special storage
Since the GC knows nothing about it, it is not going to free that
special memory

To solve this problem, you can write a finalize() method

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 18 / 51

finalize

The finalize() is called by the GC before deleting the object
At the first pass, if the GC finds an object that should be deleted, it
first calls its finalize() method
At the second pass, the GC actually deletes the object

Warning: it is possible that the GC is never executed
for example when your program uses little memory, there is no
need to call the GC

If the GC is never executed, the finalize() is never called!

Thus, there is a huge difference between the finalize() method in
Java and the destructor in C++

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 19 / 51



More on GC and finalize

You can suggest the execution of the GC by calling System.gc()
at some point

You can suggest the finalization of all pending objects by calling
System.runFinalization()
Nevertheless, finalize() is not the right place where to put generic
clean-up code

You should do the clean-up by yourself (e.g. close open files), with
appropriate methods
GC and finalize() are only for releasing memory!

finalize() can also be used for debugging (for example to check if
proper clean-up has been done)

./examples/05.java-examples/TerminationCondition.java

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 20 / 51

Array initialization

It is possible to initialize array of objects using the curly braces
syntax:
public class ArrayInit {
public static void main(String[] args) {

Integer[] a = {
new Integer(1),
new Integer(2),
new Integer(3),

};
Integer[] b = new Integer[] {

new Integer(1),
new Integer(2),
new Integer(3),

};
}

}

The second for is useful for defining functions with variable-length
arguments

for example, the Test.expect() function
Also ./examples/05.java-examples/VarArgs.java

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 21 / 51

./examples/05.java-examples/TerminationCondition.java
./examples/05.java-examples/VarArgs.java


Package

A package is what becomes available when you use the import
keyword to bring in an entire library:

If you want to use a given class in a package, you can import the
package, import the single class or use the full path to the class:

// import the whole package
import java.util.*;
...
// import the single class
import java.util.ArrayList;
...
// use the full path
java.util.ArrayList al = new java.util.ArrayList();

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 23 / 51

Compilation Unit

A source file (ending with .java) is a compilation unit
Inside it, there can be at most on class declared public , that must
have the same name as the file
There can be other non-public classes

these are not available from outside

After compilation, you get a .class file
All class files can be packaged in a .jar file (java archive)

A library is a group of class files, or a jar file
To name the library/package, you can state the following instruction
at the beginning of a .java file

package mypackage;
public class MyClass {
// . . .

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 24 / 51



Your first custom tool library

You can build you own custom tool library
Consider the following class, used to reduce the amount of printing:

public class P {
public static void rint(String s) {

System.out.print(s);
}
public static void rintln(String s) {

System.out.println(s);
}

}

You can put it into a package tools that is located somewhere in
your hard disk

I suggest you use a specific directory structure: for example
oosd/tools

package oosd.tools;

Now, this example uses the package:
./examples/05.java-examples/UseToolsExample.java

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 25 / 51

Package problems

From “Thinking in Java”

It’s worth remembering that anytime you create a
package, you implicitly specify a directory structure when you
give the package a name. The package must live in the
directory indicated by its name, which must be a directory that
is searchable starting from the CLASSPATH. Experimenting
with the package keyword can be a bit frustrating at first,
because unless you adhere to the package-name to
directory-path rule, you’ll get a lot of mysterious run-time
messages about not being able to find a particular class, even
if that class is sitting there in the same directory.

It’s so much true!

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 26 / 51

./examples/05.java-examples/UseToolsExample.java


Public, private, protected

Let’s recall the access specifiers
public means that the member can be accessed by every other
class. The member is part of the interface

./examples/05.java-examples/dessert/Cookie.java,

./examples/05.java-examples/Dinner.java

private : the member is only accessible by members of the same
class. The member is part of the implementation

It is possible to hide the constructor in this way:
./examples/05.java-examples/IceCream.java
Can you explain why this may be useful?

protected : the member is accessible from the class members, and
from all the members of derived classes. Again, the member is part
of the implementation

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 27 / 51

Package access

If you do not specify any access specifier (public private ,
protected ), then the default is package public

it means that the member (or class) can be accessed by all classes
of the same package
but not from outside the package, for them the member is private

A class can be public , or package public

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 28 / 51

./examples/05.java-examples/dessert/Cookie.java
./examples/05.java-examples/Dinner.java
./examples/05.java-examples/IceCream.java


Reusing classes

The old way of reusing code was to copy and paste from one file
to another

Can you tell me why this is bad?

To be able to efficiently re-use code, we should never change
existing code

if the code is tested and works well
if it has a clear interface
and if we use it according to the interface
everything should work fine

Reusing code is difficult!

Even more difficult is to write reusable code

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 30 / 51

Composition and inheritance

There are two ways of reusing code:
Composition : you define an object of the class that you want to
reuse in your code, and call its interface
Inheritance : you extend existing classes, modifying their behavior,
or adding additional behaviors

The first one we have already seen. We will analyze it better as
we encounter it during the rest of this lecture

Inheritance is a new thing, let’s start understanding how to do that

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 31 / 51



Inheritance

With inheritance, it is possible to specialize a class

Inheritance models the
is-a relationship

the base class is the
general
the derived class is
the specialized

We say that: Derived
is-a Base

however, Base is not a
Derived

Base

operation()

Derived

specialOperation()

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 32 / 51

Inheritance Syntax

To implement that in Java:

class Base { ... }

class Derived extends Base { ... }

An example:
./examples/05.java-examples/Detergent.java

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 33 / 51

./examples/05.java-examples/Detergent.java


Example

There are many things to notice:

Cleanser is the base class,
Detergent is the derived class

In the derived class, we can
use super to refer to the base
class members

In Derived.scrub(), we
call super.scrub() to
execute the function
Cleanser.scrub()

Cleanser

String s

void append(String s) 

void dilute() 

void apply() 

void scrub() 

String toString() 

Detergent

void scrub() 

void foam() 

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 34 / 51

main

As you can see in the previous example, the main function is
defined for both classes

This is perfectly legal in Java, and it is used to test classes in
isolation
When you execute the JVM, you must specify a class name, and
that class must contain the main function

Therefore, the previous example can be executes as
java Cleanser (and the Cleanser.main() is executed)
java Detergent (and the Detergent.main() is executed)

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 35 / 51



toString

consider the following code:

MyClass s = new MyClass();
...
String s = "this is " + s;

Java tries to convert s into a string, so that it can be appended to
s

to do this, Java looks for the toString() method in MyClass
if there is not such a method, the standard method of class Object
is used that returns a string containing the class name and the
address in memory of the object
otherwise the method is overloaded by MyClass (as with
scrub()).

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 36 / 51

Initialization

How does the object of a derived class get constructed?
First, the constructor of the base class is called: then constructor of
the derived class is executed
From a layout point of view, you can imagine the derived object as
containing a special subobject of the base class that needs to be
initialize

If the base class has a default constructor, the Java compiler
automatically inserts a call to it (super() ) in the derived class
constructor

However, it is often necessary to directly call the constructor of the
base class

This can be done by calling the base class constructor through the
super keyword

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 37 / 51



Example of initialization

Here is an example:
./examples/05.java-examples/Cartoon.java

The UML class diagram
Notice that we can hide members,
we are not interested to them right
now

In this case, the constructor is
implicitly called by Java

Exercise: modify the code to put a
non-default constructor with
arguments in Art

Warning: the call to the base-class
constructor must be the first thing
you do in the derived-class
constructor.

Cartoon

Drawing

Art

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 38 / 51

More on initialization

It is important to point that classes are loaded in memory at the
point of their first use

Every class is in a separate .class file
Java loads them only at the point where they are actually used
Also initialization takes place at the point of the first use (this is
especially valid for static members

An example:

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 39 / 51

./examples/05.java-examples/Cartoon.java


Combining Inheritance and Composition

A more complex example:
./examples/05.java-examples/PlaceSetting.java

Spoon KnifeForkDinnerPlate

Plate CustomUtensil

PlaceSetting

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 40 / 51

Protected

The keyword protected allows a member to be accessed by
subclasses

protected also implies package public: a protected member can be
accessed by other classes in the same package

Java is very confusing about this package feature!

An example: ./examples/05.java-examples/Orc.java

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 41 / 51

./examples/05.java-examples/PlaceSetting.java
./examples/05.java-examples/Orc.java


Upcasting

Upcasting means that you can use an object of the derived class
as it were an object of the base class, and everything works fine

Example: ./examples/05.java-examples/Wind.java

In the example, function static void tune(Instrument i)
takes a reference to an Instrument
However, it is called later as Instrument.tune(flute), i.e.
passing a reference to a Wind object

Hint: when should you use inheritance?
ask yourself: do I need to upcast (i.e. treat the derived class as the
base class)?

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 42 / 51

The final keyword

Java has one keyword final with many slightly different meanings
In general, you can read final as “it cannot be changed”

However, the exact meaning depends on its usage

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 44 / 51

./examples/05.java-examples/Wind.java


Final data members

When applied to primitive data members, final means constant
a data member that is static and final has only one single storage
that cannot be changed
the compiler is allowed to optimize calculations with static final
objects that are initialized at compile time

When applied to references, final means that the reference is
constant (it always refers to the same object), but the object is
allowed to change its internal values

Java has no ways of making an object to be constant (unlike C++)

Example:
./examples/05.java-examples/FinalData.java

Another example: blank finals
./examples/05.java-examples/BlankFinal.java

Remember: You are forced to perform assignments to finals either
with an expression at the point of definition of the field or in every
constructor.

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 45 / 51

Final arguments

When an argument is final, it means that you cannot change it
inside the function

Again, for references it means that the reference is final, but you
can change the values inside the object

This feature is completely unuseful
Remember: this is different from const in C++!

In C++ you cannot modify a const object

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 46 / 51

./examples/05.java-examples/FinalData.java
./examples/05.java-examples/BlankFinal.java


Final methods

A final method cannot be overridden in derived classes
All private methods in a class are implicitly final
A final method can be optimized as in-line code

Unfortunately, derived class can define methods with the same
signature as private methods in the base class

this is legal, because the private method is not part of the interface,
therefore it is not seen outside
and hence, another method with the same signature can be defined
in the derived classes, without causing any conflict
This is badly confusing! (but this is Java)
See ./examples/05.java-examples/Beetle.java

Notice that this is not overriding, cause overriding only occurs
between methods that are part of the interface

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 47 / 51

Final classes

A final class cannot be extended
No derived classes for it

All methods in a final class are implicitly final

It seems sensible to make classes final for whatever reason

However, pay attention to this: sometimes the performance you
gain with final are completely negligible with respect to the
usefulness of extending an existing class

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 48 / 51

./examples/05.java-examples/Beetle.java


Exercises

Exercise

Take one of the examples with base-derived class, and declare the con-
structor of the base class private. Then create an object of the derived
class. Can you explain what will happen? Check your hypothesis by
compiling and running the example.

Exercise

Take one of the examples with base-derived class, and declare a func-
tion protected. Then create a function with the same signature in the
derived class, but declare it public. What happens? Check your hypoth-
esis by compiling and running the example.

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 50 / 51

Exercises

Exercise
Write a program with one base class A and two derived classes B
and C. Put a object counter in A that counts how many objects of
any of the three classes have been created, and a method to get
this number.

Then, do the same in every derived class. In B, put a counter to
count how many object of B have been created, and in C a
counter of objects of C. Write appropriate get members.

Also, write a method dispose() in the three classes, which must
be called by the user before destroying the objects, that decreases
the appropriate counters.

Finally, write a test for this program, and check out its correctness.

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 28, 2010 51 / 51


	Creating and destroying objects
	Method Overloading
	Finalization
	Implementation Hiding
	Class Reuse
	Final
	Exercises

