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Collections

@ A collection (sometimes called a container) is an object that
groups multiple objects on a single unit

@ The array is a very simple example of collection

@ In the previous lecture, we have seen the ArrayList collection

@ Collections are an essential component of every programming
language

@ We will always deal with groups of objects organised in some
meaningful way

A telephone directory

A playing cards’ hand

A library of books, or a bookshelf

all objects in a magazine

etc.

¢ © © 6 ©

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010



Example of container

@ Suppose that you define you own class MyClass , and you want to
put several objects of this class in a dynamically variable array
@ Unfortunately, Java arrays have fixed length

@ you define the length of the array at the time of creation, and then
you cannot modify it anymore

class Myd ass {
void operation() {...}

}
MyClass [] array = new Mycl ass[ 10];
for (int i=0; i<array.length; i++)

array[i].operation();
/'l cannot insert new elenents in array

@ The only way is to create another array with the required size,
copy all existing elements of the old array in the new one, and
return the new array
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MyCl ass[] insertAtEnd(MCl ass array[], Mydass elem {
M/Class [] tenmp = new Myd ass[array. | ength+1];
for (int i=0; i<array.length; i++)
tenp[i]=array[i];
temp[array.length] = elem
return tenp;

@ The code above works well, but it can be improved a lot
@ Why not encapsulating the above code in a class?
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A FIFO Queue

@ Suppose we want to implement a simple FIFO queue

@ The queue must implement the following interface:
@ push inserts an element in the back of the queue
@ pop will extract one element from the front of the queue
@ Our queue will contains elements of MyClass

MyClass.java

public class M/d ass {
private int i;
static private int counter = 0;

public Mydass() {
i = counter++;

}

public MOass(int i) {
this.i =1i;

}

public int get() { returni; }

public String toString() { return "" +i; }
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./examples/09.java-examples/MyClass.java

The FIFOQueue class

@ Let’s start with the private part

FIFOQueuel.java

public class FlI FOQueuel {
private int capacity = 2;
private MyQ ass array[] = new MyC ass[capacity];
private int num= O;

private voi d nakeSpace() {
capacity = 2;
M/Cl ass tenp[] = new MyCl ass[ capacity];
for (int i=0; i<nuny i++)
tenp[i] = array[i];

array = tenp;

}

@ capaci ty is the size of the underlying array
@ numis the number of elements in the queue

@ makeSpace() is useful when we need to enlarge the array to
insert new elements

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010


./examples/09.java-examples/FIFOQueue1.java

The FIFOQueue class

@ Now the public interface

FIFOQueuel.java

FI FOQueuel() {}

public void push(M/d ass elem {
i f (nunr=capacity) makeSpace();
array[ num-+] = elem

}

public MyCQ ass pop() throws EnptyQueueException {
if (nunk=0) throw new EnptyQueueException();
M/Cl ass ret = array[O0];
for (int i=1; i<num i++) array[i-1] = array[i];
num - ;
return ret;

}

public int getNum() { return num }

public int getCapacity() { return capacity; }
public MyClass getElen(int i) throws |IndexCutOf BoundsException

if (i<0 || i>=num throw new | ndexCQut Of BoundsException();
return arrayl[i];
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./examples/09.java-examples/FIFOQueue1.java

Using FIFOQueue

FIFOQueuel.java

public static void main(String args[]) {
FI FOQueuel nyq = new FlI FOQueuel();

for (int i=0; i<5; i++)
myq. push(new MyCl ass());

try {

Systemout.println("Index at 7" + nyq.getEl en(7));
} catch (I ndexQut Of BoundsException e) {

Systemout. println("Exception: getEl em() index out of bound"
}

Systemout.println("Capacity: " + nmyqg.getCapacity());
Systemout.printIn("Num " + nyq.getNum());

try {
while (nyqg.getNun() > 0)
Systemout.printin("Elem " + nmyq.pop().get());
nyq. pop();
} catch (EnptyQueueException e) {
System out. println("Exception: pop() on an enpty queue");
}
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./examples/09.java-examples/FIFOQueue1.java

Beyond MyClass

@ Observation: none of the methods of FIFOQueue uses anything
of the MyClass interface

@ Actually, the class FIFOQueue could be reused on objects of any
type,

@ the code would be very similar, except for the type declaration in
the methods

@ But how to reuse it?
@ We cannot pass an object different from MyClass to the push

@ In the old versions of Java (until 1.4), the solution was to make the
class contain Objects
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The FIFOQueue class

@ Let’s start with the private part

FIFOQueue2.java

public class FlI FOQueue2 {
private int capacity =
private Object array[]
private int num= O;

2;
= new Obj ect [ capacity];

private voi d nakeSpace() {
capacity *= 2;
oj ect tenmp[] = new Obj ect[capacity];
for (int i=0; i<nuny i++)
tenp[i] = array[i];

array = tenp;

@ Now we have an array of Objects
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./examples/09.java-examples/FIFOQueue2.java

The FIFOQueue class

@ Now the public interface

FIFOQueue2.java

FI FOQueue2() {}

public void push(oject elem {
i f (nunr=capacity) makeSpace();
array[ num-+] = elem

public Object pop() throws EnptyQueueException {
if (nunk=0) throw new EnptyQueueException();
oj ect ret = array[0];
for (int i=1; i<num i++) array[i-1] = array[i];
num - ;
return ret;
}
public int getNum() { return num }

public int getCapacity() { return capacity; }
public Object getElen(int i) throws |IndexCutCOf BoundsException {

if (i<0 || i>=num throw new | ndexCQut Of BoundsException();
return arrayl[i];
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./examples/09.java-examples/FIFOQueue2.java

Using FIFOQueue

FIFOQueue2.java

public static void main(String args[]) {
FI FOQueue2 nyq = new FlI FOQueue2();

for (int i=0; i<5; i++)
myq. push(new MyCl ass());
try {

Systemout.println("Index at 7" + nyq.getEl en(7));
} catch (I ndexQut Of BoundsException e) {

}

Systemout.println("Capacity: " + nmyqg.getCapacity());
Systemout.printIn("Num " + nyq.getNum());

try {
while (nyqg.getNun() > 0)

myq. pop() ;
} catch (EnptyQueueException e) {

System out. println("Exception: pop() on an enpty queue");
}

Systemout. println("Exception: getEl em() index out of bound"

Systemout.printin("Elem " + ((Myd ass)nmyq.pop()).get()
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./examples/09.java-examples/FIFOQueue2.java

Another problem

@ Now the code is more general,

@ However when we extract objects (with the pop() ), we obtain a
reference to an Object
@ We have to cast the reference to a MyClass reference, otherwise
we cannot call the get () method
@ This is annoying, and it works only if the programmer knows what'’s
inside the FIFOQueue.

@ Another problem is that there is no check in the push() , we can
insert all kinds of objects

@ In particular, we can insert objects of different types (for example
Strings, other arrays, etc.)

@ This may be the cause of nasty bugs! See
. I exanpl es/ 09. j ava- exanpl es/ FI FOQueue2Denp. j ava

@ In many cases, we want to ensure (at compile time, possibly) that
all inserted objects are of the right type
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./examples/09.java-examples/FIFOQueue2Demo.java

Solution in old Java

@ The preferred solution to such problems in old Java was to wrap
the class inside a different class with a specific interface

cl ass Fl FOSpeci al {
private FlI FOQueue2 nyfifo;
public void push(M/C ass elen {
nyfifo.push(elem;

}

public Myd ass pop() throws EnptyQueueException {
return (Myd ass)nyfifo.pop();

}

}

@ This is safe, but it requires the programmer to write annoying extra
code

@ Generics in Java allow to express these situation without the need
to write extra code
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Generic syntax

@ Let’s see how to implement the FIFOQueque class by using
generics

FIFOQueue.java

public class FlI FOQueue<T> {
private int capacity =
private Object array[]
private int num= O;

2;
= new Obj ect [ capacity];

private voi d makeSpace() {
capacity = 2;
oj ect tenmp[] = new Obj ect[capacity];
for (int i=0; i<nun i++)
tenp[i] = array[i];

array = tenp;
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./examples/09.java-examples/FIFOQueue.java

@ The T inside angular parenthesis is a type parameter
@ It says that this class is parametrised by the type T
@ You can also use the class without parameters (this is called raw

type)
@ However, the most common and clean use is to assign T a type

when the class is used
@ Relationship between types
@ FIFOQueue <Integer > is a different type than
FIFOQueue <MyClass >
@ There is no relationship between the two types
@ Notice that the array is still an array of Object
@ unlike C++, it is not possible to declare an array of T, we will see
later why
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Public interface

@ Now the public interface

FIFOQueue.java

FI FOQueue() {}

public void push(T elem {
i f (nunr=capacity) makeSpace();
array[ num-+] = elem

}

public T pop() throws EnptyQueueException {
if (nunk=0) throw new EnptyQueueException();
Tret = (T)array[0];
for (int i=1; i<num i++) array[i-1] = array[i];
num - ;
return ret;

}

public int getNum() { return num }

public int getCapacity() { return capacity; }
public T getElem(int i) throws |ndexCQutOf BoundsException {

if (i<0 || i>=num throw new | ndexCQut Of BoundsException();
return (T)array[i];
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./examples/09.java-examples/FIFOQueue.java

Using FIFOQueue

FIFOQueue.java

public static void main(String args[]) {
FI FOQueue<MyCl ass> nyq = new Fl FOQueue<MyCd ass>();
FI FOQueue<String> stq = new FI FOQueue<String>();

for (int i=0; i<5; i++) nyq.push(new Myd ass());
for (int i=0; i<5; i++) stq.push("string number " + i);

try {
while (nyg.getNun() > 0 && stq.getNun{) > 0)
Systemout.printIn("Elem " + nyg.pop().get() + " string|
myq. pop() ;
} catch (EnptyQueueException e) {
System out. println("Exception: pop() on an enpty queue");

}
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./examples/09.java-examples/FIFOQueue.java

A more efficient FIFOQueue

@ The previous implementation of the FIFOQueue is inefficient

@ when we pop() an element, we have to go through the whole array
and move all references one step back

@ If the array contains n elements, this requires n assignment
operations

@ Also, when we push() inside an array that is already full, we have
to copy all references in a new array, and again this requires n
operations

@ Let's now see a different implementation based on the concept of
dynamic list
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An efficient queue

We define a class Node to contain each element

EfficientQueue.java

public class Efficient Qeue<T> {
cl ass Node {
T el em
Node next = null;
Node prev = null;
Node(T elem) { this.elem=elem }
}

private Node head = null, tail = null;

We implemented Node as an inner class

@ Itis possible to define classes inside other classes

@ This class is not part of the interface, but only of the
implementation: therefore it is not declared as public (it is package
public)

@ It can be used inside the class without further specification

@ It can be referred by other classes inside the package as
EfficientQueue.Node
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./examples/09.java-examples/EfficientQueue.java

Inner classes

@ Of course, it is also possible to define public classes inside other
classes, they will be part of the class interface

@ The inner class can also be declared private, if you do not want to
put it in the interface of the class

@ You can use the type parameter T inside Node

@ A method of node can use all the members of class
EfficientQueue inside its methods (we do not use this feature in
this specific case)

@ Basically, every object of the inner class has an hidden reference to
the object of the outer class that created it
@ For example, a method of Node could access member head

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010 2438



Insertion of a new element

@ To insert a new element, we first create the corresponding Node,
and then we link the node to the correct place (the tail of the

gueue)

EfficientQueue.java

public void push(T elem {
Node n = new Node(el en);
n.prev = tail;

if (tail '=null) tail.next = n;
el se head = n;
tail = n;
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./examples/09.java-examples/EfficientQueue.java

Extraction of an element

@ To extract an element, we unlink the node from the head, and
adjust all references

EfficientQueue.java

public T pop() throws EnptyQueueException {
if (head == null) throw new EnptyQueueException();
Node n = head;
head = n. next;
if (head != null) head.prev = null;
else tail = null;
return n.elem

@ The usage is pretty similar to the one of FIFOQueue

@ A simple exercise: add an internal counter numof elements, and a
method get Si ze() that returns the number of elements
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./examples/09.java-examples/EfficientQueue.java

Inheritance

@ What if we want to insert elements of different type that have a
common base class?
@ For example, we may want to insert Instrument s inside our
FIFOQueue
@ Everything works as expected

InstrumentQueue.java

Ef fici ent Queue<l nstrunent> nyq =
new Ef fici ent Queue<| nstrument >();

nyg. push(new Whodwi nd());

nyg. push(new Violin());

try {
whi | e(true) myqg. pop().play(Note.C;

} catch (EnptyQueueException e) {
Systemout.printin("l played all instrunments");

}
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./examples/09.java-examples/InstrumentQueue.java

Visiting the container

@ Before continuing, let's add another functionality to our queue. It is
now time to call it QueuelList

@ We want to be able to visit all elements of the list one by one

@ For example, we would like to print all elements inside the queue

@ We need some way to get the first element, and then move to the
following ones, in sequence

@ The first approach is:

@ a have a method that initialise the visit,
@ and a method to get the next unread element
@ a method to check if there are unread elements
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QueuelList code

Queuelist.java

public void start() { curr = head; }

publ i c bool ean hasNext () {
if (curr == null) return false;
el se return true;

}
public T getNext() throws NoNextEl enent Exception {
if (curr == null) throw new NoNext El enent Exception();
Tret = curr.elem
curr = curr.next;
return ret;
}
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./examples/09.java-examples/QueueList.java

How to use QueuelList

@ This is how to use the new interface:

QueuelList.java

Queueli st <Myd ass> nyq = new QueuelLi st <Myd ass>();

nyg. push(new Myd ass(
nyg. push(new Myd ass(
nyg. push(new Myd ass(
nyg. push(new Myd ass(

~—— — —

)
)
)
)

nmyq.start();
try {
whil e (myqg. hasNext ())

System out. println(nyg.getNext().get());
} cat ch( NoNext El enent Exception e) {
Systemout.println("enpty!");
}
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./examples/09.java-examples/QueueList.java

@ The new interface works well when we have to explore the queue
with one single index
@ However, suppose we need two indexes at the same time (for
example, when we have two nested loops on the same list)
@ And what if we need three indexes?
@ Also, we may want to go back and forth in the sequence
@ A more general solution is to separate the index from the class
@ In this way, the sequence is separated from the way we visit it
@ The index in this case is called iterator
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lterator interface

@ What is the interface of an iterator?
@ We must be able to retrieve the element corresponding to the
iterator, and move the iterator forward
@ We must be able to understand when the iterator has reached the
end of the sequence
@ Optionally, we must be able to remove an element from the list

@ The following interfaces are in the collection framework of Java:

public interface Iterator<kE> {
bool ean hasNext () ;
E next();
voi d renove(); //optional

}

public interface Iterabl e<E> {
Iterator<E> iterator();
}
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Implementation in QueuelListit

@ We first show to class private section:

Queuelistlt.java

inmport java.util.x*;

public class QueueListlt<E> inplenments |terable<E> {
private class Node {
E elem
Node next = null;
Node prev = null;
Node(E elem) { this.elem= elem }
}

private Node head = null, tail = null;

@ Notice that our class now implements Iterable , so we have to
provide method i t er at or () that creates a new iterator that
refers to the beginning of the sequence
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./examples/09.java-examples/QueueListIt.java

Iterator Implementation

@ The iterator is a private inner class

Queuelistlt.java

private class Q.lterator inplenments Iterator<E> {
private Node curr = null;
private Node prev = null;

Q.lterator() { curr = head; }
public bool ean hasNext () {

if (curr == null) return fal se;
el se return true;

}
public E next() {
if (curr == null) return null;
E elem= curr.elem
prev = curr;
curr = curr.next;
return elem
}

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010


./examples/09.java-examples/QueueListIt.java

Removing an element

@ This is the remove method, enforced by the Iterator interface

QueuelListlt.java

public void renove() {
if (prev == null) return;
/1 renove el ement
Node p = prev.prev;
Node f = prev. next;

if (p==null) head = f;
el se p.next = f;

if (f == null) tail = p;
else f.prev = p;
prev = null;
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./examples/09.java-examples/QueueListIt.java

The Queuelistlt class

@ The only method that needs to be added isi t er at or ()

public Iterator<E> iterator() { return new Qtlterator(); }
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The for-each statement

@ From Java 5 we have one new statement that can be used only
with collections (i.e. classes that implement the Iterable interface

@ Here is an example in QueuelListit

Queuelistlt.java

Queueli stlt<MyC ass> nyqg = new Queueli stlt<Myd ass>();

for (int i=0; i<6; i++)
myq. push(new MyCl ass());

Systemout.println("El ements:");

for (M\dass ¢ : nyQ)
Systemout.println(c);

Iterator<MyClass> i = nyg.iterator();
while (i.hasNext())
if (i.next().get() %2 == 0)
i.renove();
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