Object Oriented Software Design

Containers

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant'’Anna — Pisa

October 22, 2010

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010

http://retis.sssup.it/~lipari

@ Containers

9 Generics

9 Iterators

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010 2/38

Outline

@ Containers

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010 3/38

Collections

@ A collection (sometimes called a container) is an object that
groups multiple objects on a single unit

@ The array is a very simple example of collection

@ In the previous lecture, we have seen the ArrayList collection

@ Collections are an essential component of every programming
language

@ We will always deal with groups of objects organised in some
meaningful way

A telephone directory

A playing cards’ hand

A library of books, or a bookshelf

all objects in a magazine

etc.

¢ © © 6 ©

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010

Example of container

@ Suppose that you define you own class MyClass , and you want to
put several objects of this class in a dynamically variable array
@ Unfortunately, Java arrays have fixed length

@ you define the length of the array at the time of creation, and then
you cannot modify it anymore

class Myd ass {
void operation() {...}

}
MyClass [] array = new Mycl ass[10];
for (int i=0; i<array.length; i++)

array[i].operation();
/'l cannot insert new elenents in array

@ The only way is to create another array with the required size,
copy all existing elements of the old array in the new one, and
return the new array

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010

MyCl ass[] insertAtEnd(MCl ass array[], Mydass elem {
M/Class [] tenmp = new Myd ass[array. | ength+1];
for (int i=0; i<array.length; i++)
tenp[i]=array[i];
temp[array.length] = elem
return tenp;

@ The code above works well, but it can be improved a lot
@ Why not encapsulating the above code in a class?

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010 6/38

A FIFO Queue

@ Suppose we want to implement a simple FIFO queue

@ The queue must implement the following interface:
@ push inserts an element in the back of the queue
@ pop will extract one element from the front of the queue
@ Our queue will contains elements of MyClass

MyClass.java

public class M/d ass {
private int i;
static private int counter = 0;

public Mydass() {
i = counter++;

}

public MOass(int i) {
this.i =1i;

}

public int get() { returni; }

public String toString() { return "" +i; }

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010

./examples/09.java-examples/MyClass.java

The FIFOQueue class

@ Let’s start with the private part

FIFOQueuel.java

public class FlI FOQueuel {
private int capacity = 2;
private MyQ ass array[] = new MyC ass[capacity];
private int num= O;

private voi d nakeSpace() {
capacity = 2;
M/Cl ass tenp[] = new MyCl ass[capacity];
for (int i=0; i<nuny i++)
tenp[i] = array[i];

array = tenp;

}

@ capaci ty is the size of the underlying array
@ numis the number of elements in the queue

@ makeSpace() is useful when we need to enlarge the array to
insert new elements

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010

./examples/09.java-examples/FIFOQueue1.java

The FIFOQueue class

@ Now the public interface

FIFOQueuel.java

FI FOQueuel() {}

public void push(M/d ass elem {
i f (nunr=capacity) makeSpace();
array[num-+] = elem

}

public MyCQ ass pop() throws EnptyQueueException {
if (nunk=0) throw new EnptyQueueException();
M/Cl ass ret = array[O0];
for (int i=1; i<num i++) array[i-1] = array[i];
num - ;
return ret;

}

public int getNum() { return num }

public int getCapacity() { return capacity; }
public MyClass getElen(int i) throws |IndexCutOf BoundsException

if (i<0 || i>=num throw new | ndexCQut Of BoundsException();
return arrayl[i];

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010 9/38

./examples/09.java-examples/FIFOQueue1.java

Using FIFOQueue

FIFOQueuel.java

public static void main(String args[]) {
FI FOQueuel nyq = new FlI FOQueuel();

for (int i=0; i<5; i++)
myq. push(new MyCl ass());

try {

Systemout.println("Index at 7" + nyq.getEl en(7));
} catch (I ndexQut Of BoundsException e) {

Systemout. println("Exception: getEl em() index out of bound"
}

Systemout.println("Capacity: " + nmyqg.getCapacity());
Systemout.printIn("Num " + nyq.getNum());

try {
while (nyqg.getNun() > 0)
Systemout.printin("Elem " + nmyq.pop().get());
nyq. pop();
} catch (EnptyQueueException e) {
System out. println("Exception: pop() on an enpty queue");
}

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010 10/ 38

./examples/09.java-examples/FIFOQueue1.java

Beyond MyClass

@ Observation: none of the methods of FIFOQueue uses anything
of the MyClass interface

@ Actually, the class FIFOQueue could be reused on objects of any
type,

@ the code would be very similar, except for the type declaration in
the methods

@ But how to reuse it?
@ We cannot pass an object different from MyClass to the push

@ In the old versions of Java (until 1.4), the solution was to make the
class contain Objects

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010 11/38

The FIFOQueue class

@ Let’s start with the private part

FIFOQueue2.java

public class FlI FOQueue2 {
private int capacity =
private Object array[]
private int num= O;

2;
= new Obj ect [capacity];

private voi d nakeSpace() {
capacity *= 2;
oj ect tenmp[] = new Obj ect[capacity];
for (int i=0; i<nuny i++)
tenp[i] = array[i];

array = tenp;

@ Now we have an array of Objects

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010

./examples/09.java-examples/FIFOQueue2.java

The FIFOQueue class

@ Now the public interface

FIFOQueue2.java

FI FOQueue2() {}

public void push(oject elem {
i f (nunr=capacity) makeSpace();
array[num-+] = elem

public Object pop() throws EnptyQueueException {
if (nunk=0) throw new EnptyQueueException();
oj ect ret = array[0];
for (int i=1; i<num i++) array[i-1] = array[i];
num - ;
return ret;
}
public int getNum() { return num }

public int getCapacity() { return capacity; }
public Object getElen(int i) throws |IndexCutCOf BoundsException {

if (i<0 || i>=num throw new | ndexCQut Of BoundsException();
return arrayl[i];

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010 13/38

./examples/09.java-examples/FIFOQueue2.java

Using FIFOQueue

FIFOQueue2.java

public static void main(String args[]) {
FI FOQueue2 nyq = new FlI FOQueue2();

for (int i=0; i<5; i++)
myq. push(new MyCl ass());
try {

Systemout.println("Index at 7" + nyq.getEl en(7));
} catch (I ndexQut Of BoundsException e) {

}

Systemout.println("Capacity: " + nmyqg.getCapacity());
Systemout.printIn("Num " + nyq.getNum());

try {
while (nyqg.getNun() > 0)

myq. pop() ;
} catch (EnptyQueueException e) {

System out. println("Exception: pop() on an enpty queue");
}

Systemout. println("Exception: getEl em() index out of bound"

Systemout.printin("Elem " + ((Myd ass)nmyq.pop()).get()

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010

14/38

./examples/09.java-examples/FIFOQueue2.java

Another problem

@ Now the code is more general,

@ However when we extract objects (with the pop()), we obtain a
reference to an Object
@ We have to cast the reference to a MyClass reference, otherwise
we cannot call the get () method
@ This is annoying, and it works only if the programmer knows what'’s
inside the FIFOQueue.

@ Another problem is that there is no check in the push() , we can
insert all kinds of objects

@ In particular, we can insert objects of different types (for example
Strings, other arrays, etc.)

@ This may be the cause of nasty bugs! See
. I exanpl es/ 09. j ava- exanpl es/ FI FOQueue2Denp. j ava

@ In many cases, we want to ensure (at compile time, possibly) that
all inserted objects are of the right type

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010 15/38

./examples/09.java-examples/FIFOQueue2Demo.java

Solution in old Java

@ The preferred solution to such problems in old Java was to wrap
the class inside a different class with a specific interface

cl ass Fl FOSpeci al {
private FlI FOQueue2 nyfifo;
public void push(M/C ass elen {
nyfifo.push(elem;

}

public Myd ass pop() throws EnptyQueueException {
return (Myd ass)nyfifo.pop();

}

}

@ This is safe, but it requires the programmer to write annoying extra
code

@ Generics in Java allow to express these situation without the need
to write extra code

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010 16 /38

Outline

9 Generics

Lipari (Scuola Superiore Sant’ Introduction to Java October 22, 2010 17/38

Generic syntax

@ Let’s see how to implement the FIFOQueque class by using
generics

FIFOQueue.java

public class FlI FOQueue<T> {
private int capacity =
private Object array[]
private int num= O;

2;
= new Obj ect [capacity];

private voi d makeSpace() {
capacity = 2;
oj ect tenmp[] = new Obj ect[capacity];
for (int i=0; i<nun i++)
tenp[i] = array[i];

array = tenp;

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010

./examples/09.java-examples/FIFOQueue.java

@ The T inside angular parenthesis is a type parameter
@ It says that this class is parametrised by the type T
@ You can also use the class without parameters (this is called raw

type)
@ However, the most common and clean use is to assign T a type

when the class is used
@ Relationship between types
@ FIFOQueue <Integer > is a different type than
FIFOQueue <MyClass >
@ There is no relationship between the two types
@ Notice that the array is still an array of Object
@ unlike C++, it is not possible to declare an array of T, we will see
later why

October 22, 2010 19/38

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java

Public interface

@ Now the public interface

FIFOQueue.java

FI FOQueue() {}

public void push(T elem {
i f (nunr=capacity) makeSpace();
array[num-+] = elem

}

public T pop() throws EnptyQueueException {
if (nunk=0) throw new EnptyQueueException();
Tret = (T)array[0];
for (int i=1; i<num i++) array[i-1] = array[i];
num - ;
return ret;

}

public int getNum() { return num }

public int getCapacity() { return capacity; }
public T getElem(int i) throws |ndexCQutOf BoundsException {

if (i<0 || i>=num throw new | ndexCQut Of BoundsException();
return (T)array[i];

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010 20/38

./examples/09.java-examples/FIFOQueue.java

Using FIFOQueue

FIFOQueue.java

public static void main(String args[]) {
FI FOQueue<MyCl ass> nyq = new Fl FOQueue<MyCd ass>();
FI FOQueue<String> stq = new FI FOQueue<String>();

for (int i=0; i<5; i++) nyq.push(new Myd ass());
for (int i=0; i<5; i++) stq.push("string number " + i);

try {
while (nyg.getNun() > 0 && stq.getNun{) > 0)
Systemout.printIn("Elem " + nyg.pop().get() + " string|
myq. pop() ;
} catch (EnptyQueueException e) {
System out. println("Exception: pop() on an enpty queue");

}

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010 21/38

./examples/09.java-examples/FIFOQueue.java

A more efficient FIFOQueue

@ The previous implementation of the FIFOQueue is inefficient

@ when we pop() an element, we have to go through the whole array
and move all references one step back

@ If the array contains n elements, this requires n assignment
operations

@ Also, when we push() inside an array that is already full, we have
to copy all references in a new array, and again this requires n
operations

@ Let's now see a different implementation based on the concept of
dynamic list

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010 22/38

An efficient queue

We define a class Node to contain each element

EfficientQueue.java

public class Efficient Qeue<T> {
cl ass Node {
T el em
Node next = null;
Node prev = null;
Node(T elem) { this.elem=elem }
}

private Node head = null, tail = null;

We implemented Node as an inner class

@ Itis possible to define classes inside other classes

@ This class is not part of the interface, but only of the
implementation: therefore it is not declared as public (it is package
public)

@ It can be used inside the class without further specification

@ It can be referred by other classes inside the package as
EfficientQueue.Node

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010 23/38

./examples/09.java-examples/EfficientQueue.java

Inner classes

@ Of course, it is also possible to define public classes inside other
classes, they will be part of the class interface

@ The inner class can also be declared private, if you do not want to
put it in the interface of the class

@ You can use the type parameter T inside Node

@ A method of node can use all the members of class
EfficientQueue inside its methods (we do not use this feature in
this specific case)

@ Basically, every object of the inner class has an hidden reference to
the object of the outer class that created it
@ For example, a method of Node could access member head

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010 2438

Insertion of a new element

@ To insert a new element, we first create the corresponding Node,
and then we link the node to the correct place (the tail of the

gueue)

EfficientQueue.java

public void push(T elem {
Node n = new Node(el en);
n.prev = tail;

if (tail '=null) tail.next = n;
el se head = n;
tail = n;

October 22, 2010 25/38

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java

./examples/09.java-examples/EfficientQueue.java

Extraction of an element

@ To extract an element, we unlink the node from the head, and
adjust all references

EfficientQueue.java

public T pop() throws EnptyQueueException {
if (head == null) throw new EnptyQueueException();
Node n = head;
head = n. next;
if (head != null) head.prev = null;
else tail = null;
return n.elem

@ The usage is pretty similar to the one of FIFOQueue

@ A simple exercise: add an internal counter numof elements, and a
method get Si ze() that returns the number of elements

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010 26/38

./examples/09.java-examples/EfficientQueue.java

Inheritance

@ What if we want to insert elements of different type that have a
common base class?
@ For example, we may want to insert Instrument s inside our
FIFOQueue
@ Everything works as expected

InstrumentQueue.java

Ef fici ent Queue<l nstrunent> nyq =
new Ef fici ent Queue<| nstrument >();

nyg. push(new Whodwi nd());

nyg. push(new Violin());

try {
whi | e(true) myqg. pop().play(Note.C;

} catch (EnptyQueueException e) {
Systemout.printin("l played all instrunments");

}

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010

./examples/09.java-examples/InstrumentQueue.java

Visiting the container

@ Before continuing, let's add another functionality to our queue. It is
now time to call it QueuelList

@ We want to be able to visit all elements of the list one by one

@ For example, we would like to print all elements inside the queue

@ We need some way to get the first element, and then move to the
following ones, in sequence

@ The first approach is:

@ a have a method that initialise the visit,
@ and a method to get the next unread element
@ a method to check if there are unread elements

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010 28/38

QueuelList code

Queuelist.java

public void start() { curr = head; }

publ i c bool ean hasNext () {
if (curr == null) return false;
el se return true;

}
public T getNext() throws NoNextEl enent Exception {
if (curr == null) throw new NoNext El enent Exception();
Tret = curr.elem
curr = curr.next;
return ret;
}

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010 29/38

./examples/09.java-examples/QueueList.java

How to use QueuelList

@ This is how to use the new interface:

QueuelList.java

Queueli st <Myd ass> nyq = new QueuelLi st <Myd ass>();

nyg. push(new Myd ass(
nyg. push(new Myd ass(
nyg. push(new Myd ass(
nyg. push(new Myd ass(

~—— — —

)
)
)
)

nmyq.start();
try {
whil e (myqg. hasNext ())

System out. println(nyg.getNext().get());
} cat ch(NoNext El enent Exception e) {
Systemout.println("enpty!");
}

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010

./examples/09.java-examples/QueueList.java

@ The new interface works well when we have to explore the queue
with one single index
@ However, suppose we need two indexes at the same time (for
example, when we have two nested loops on the same list)
@ And what if we need three indexes?
@ Also, we may want to go back and forth in the sequence
@ A more general solution is to separate the index from the class
@ In this way, the sequence is separated from the way we visit it
@ The index in this case is called iterator

October 22, 2010 31/38

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java

Outline

9 Iterators

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010 32/38

lterator interface

@ What is the interface of an iterator?
@ We must be able to retrieve the element corresponding to the
iterator, and move the iterator forward
@ We must be able to understand when the iterator has reached the
end of the sequence
@ Optionally, we must be able to remove an element from the list

@ The following interfaces are in the collection framework of Java:

public interface Iterator<kE> {
bool ean hasNext () ;
E next();
voi d renove(); //optional

}

public interface Iterabl e<E> {
Iterator<E> iterator();
}

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010 33/38

Implementation in QueuelListit

@ We first show to class private section:

Queuelistlt.java

inmport java.util.x*;

public class QueueListlt<E> inplenments |terable<E> {
private class Node {
E elem
Node next = null;
Node prev = null;
Node(E elem) { this.elem= elem }
}

private Node head = null, tail = null;

@ Notice that our class now implements Iterable , so we have to
provide method i t er at or () that creates a new iterator that
refers to the beginning of the sequence

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010 34/38

./examples/09.java-examples/QueueListIt.java

Iterator Implementation

@ The iterator is a private inner class

Queuelistlt.java

private class Q.lterator inplenments Iterator<E> {
private Node curr = null;
private Node prev = null;

Q.lterator() { curr = head; }
public bool ean hasNext () {

if (curr == null) return fal se;
el se return true;

}
public E next() {
if (curr == null) return null;
E elem= curr.elem
prev = curr;
curr = curr.next;
return elem
}

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010

./examples/09.java-examples/QueueListIt.java

Removing an element

@ This is the remove method, enforced by the Iterator interface

QueuelListlt.java

public void renove() {
if (prev == null) return;
/1 renove el ement
Node p = prev.prev;
Node f = prev. next;

if (p==null) head = f;
el se p.next = f;

if (f == null) tail = p;
else f.prev = p;
prev = null;

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010

./examples/09.java-examples/QueueListIt.java

The Queuelistlt class

@ The only method that needs to be added isi t er at or ()

public Iterator<E> iterator() { return new Qtlterator(); }

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010 37/38

The for-each statement

@ From Java 5 we have one new statement that can be used only
with collections (i.e. classes that implement the Iterable interface

@ Here is an example in QueuelListit

Queuelistlt.java

Queueli stlt<MyC ass> nyqg = new Queueli stlt<Myd ass>();

for (int i=0; i<6; i++)
myq. push(new MyCl ass());

Systemout.println("El ements:");

for (M\dass ¢ : nyQ)
Systemout.println(c);

Iterator<MyClass> i = nyg.iterator();
while (i.hasNext())
if (i.next().get() %2 == 0)
i.renove();

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to Java October 22, 2010

./examples/09.java-examples/QueueListIt.java

	Containers
	Generics
	Iterators

