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The shape example

@ Consider a hierarchy of Shape classes

Shape

area()

VAN

Triangle | Rectangle Circle |
diagonal()

@ The Shape class is abstract, it has an abstract method to compute
the area of the shape.

@ Now suppose we have an array of Shapes, and we would like to
compute the area for all of them.
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@ This is the base class

oosd/shapes/Shape.java

package oosd. shapes;

publ i c abstract class Shape {
protected String namne;

public Shape(String s) { nane = s; }

public abstract double area();

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 5/44


./examples/10.java-examples/oosd/shapes/Shape.java

@ And one derived class:

oosd/shapes/Triangle.java

package oosd. shapes;

public class Triangle extends Shape {

private doubl e base = 0, height = 0;

public Triangle() { this("Triangle"); }

public Triangle(String s) { super(s); }

public Triangle(String s, double b, double h) {
this(s);
base = b;
hei ght = h;

}

publ i c double area() {
System out. println("Conmputing the area of Triangle
return base * height / 2;

+ nane);
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A list of Shapes

@ Let’s use the QueuelListlt class we have seen last lecture

Queueli st It <Shape> nyq = new Queueli st |t <Shape>();

/'l upcast, never fails

nmyq. push(new Gircle("red", 5.0));

nmyq. push(new Tri angl e("yell ow', 3.0, 4.0));
nmyq. push(new Rect angl e("blue", 3.0, 4.0));

for (Shape s : nyQ)
Systemout. println(s.area());

@ Everything as expected
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./examples/10.java-examples/oosd/shapes/Triangle.java

A new method

@ Rectangle derives from Shape, and adds a new method
di agonal () to compute the diagonal

oosd/shapes/Rectangle.java

public class Rectangl e extends Shape {
private doubl e base = 0, height = 0;
public Rectangle(String s) { super(s); }
public Rectangle() { this("Rectangle"); }
public Rectangl e(String s, double b, double h) {
this(s);
hei ght = h;
base = b;
}

public double area() {
System out. println("Computing the area of Rectangle
return base * height;

+ nane);

}

publ i ¢ doubl e di agonal () {
System out . printl n("Conputing the diagonal");
return Mt h. sqrt (base*base+hei ght xhei ght) ;
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How to call diagonal?

@ We would like to call diagonal only for Rectangle s because it
does not make sense to call diagonal for Circle s and Triangle s

@ But, we have a problem:

for (Shape s : nyq) {
Systemout. println(s.area()); ///—
Systemout. println(s.diagonal ());
}

Compilation error:
di agonal () is not part of
the interface of Shape
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./examples/10.java-examples/oosd/shapes/Rectangle.java

Downcast

@ We could force s to become a reference to Rectangle , so that
di agonal () is in the interface now.

for (Shape s : nyq) {
Systemout. println(s.area());

System out. printl n(((Rectangle)s).diagonal ());

}

@ This is called downcast , and must be explicit, because a Shape is
not (always) a rectangle
@ Downcast is not safe

@ Unfortunately, if s is pointing to a Triangle , Java run-time raises an
exception ClassCastException
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Solution 1: catch the exception

@ By catching the exception, everything works fine cientexc,java

i mport java.util.x*;
i mport oosd. shapes. *;
i mport oosd. containers. *;

class dientExc {
public static void main(String args[]) {
Queueli st It <Shape> nyq = new Queueli st |t <Shape>();
nyq. push(new Circle("red", 5.0));
nyq. push(new Triangl e("yell ow', 3.0, 4.0));
nyq. push(new Rect angl e("blue", 3.0, 4.0));

for (Shape s: nyq) {
Systemout.println(s.area());

try {
double d = ((Rectangl e)s).di agonal ();
System out. println(d);

} catch(d assCast Exception e) {
Systemout.println("Not a rectangle");
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./examples/10.java-examples/ClientExc.java

Upcasting and downcasting

@ When we insert in the QueuelListlt class, the perform an upcast
@ Upcast is always safe.

@ To understand if there is a Rectangle, we perform a downcast .

@ Downcast is not safe at all (raises an exception), and it should be
avoided when necessary.

o to perform downcast Java has to identify the actual object type and
see if the cast can be performed.
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instanceof

@ To avoid the exception (which is clumsy and inefficient), you can
use the keyword instanceof

ClientRTTl.java

i mport oosd. containers. *;

class AientRTTI {
public static void main(String args[]) {
QueuelLi st It <Shape> nyq = new Queueli st |t <Shape>();
nyq. push(new Circle("red", 5.0));
nyq. push(new Triangl e("yellow', 3.0, 4.0));
nyq. push(new Rect angl e("blue", 3.0, 4.0));
Iterator<Shape> it = nyqg.iterator();
while (it.hasNext()) {
Shape s = it.next();
Systemout.println(s.area());
if (s instanceof Rectangle)
System out . printl n(((Rectangle)s).diagonal ());

}

@ instanceof works well with inheritance
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./examples/10.java-examples/ClientRTTI.java

The Class object

@ All information on a specific class are contained in a special object
of type Class.

@ The class Class contains a certain number of methods to analyse
the interface:

o forName(String s) returns a Class Object given the class nhame
@ isInstance(Object 0) returns true if the specified object is an
instance of the class

@ An example in the next slide
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The usage of Class

ClientRTTI2.java

class ientRTTI2 {
public static void main(String args[]) {
Queueli st t<Shape> nmyqg = new Queueli stlt <Shape>();

/'l upcast, never fails
myq. push(new Circle("red", 5.0));
myq. push(new Tri angl e("yel low', 3.0, 4.0));
myqg. push(new Rect angl e("blue", 3.0, 4.0));
Iterator<Shape> it = nyg.iterator();
while (it.hasNext()) {
Shape s = it.next();
Systemout. println("Cbject of class: " + s.getd ass().get Nange
" in package: " + s.getC ass().getPackage(
Systemout.println("Cbject is conpatible with Rectangle: " +
Rect angl e. cl ass. i sl nstance(s));
/'l Rectangle.class is equivalent to
/1 O ass.forNane("Rectangle").islnstance(s)
Systemout.println(s.area());

N A~
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./examples/10.java-examples/ClientRTTI2.java

@ In the previous example, there was another option: put
di agonal () in the interface of the base class Shape

@ The di agonal () function in the Shape class needs to be a void
function, that could also raise an exception (for example
OperationNotimplemented )

@ This approach may generate fat interfaces

@ In this case, we chose to follow the other option

@ However, the downcast option is not always the best one, it
depends on the context

@ This has nothing to do with the specific Java Language: it is a
design problem, not a coding problem

@ We will come back to the problem of downcasting when studying
the Liskov’s substitution principle.
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Inner classes

@ Let’s have a closer look again at the QueuelListlt <E>:
. [ exanpl es/ 10. j ava- exanpl es/ oosd/ cont ai ner s/ QueuelLi st |

@ The QLlterator class is a private inner class of QueueListlt

@ The reason for making it private is that QLIterator is an
implementation of the more general notion of Iterator

@ A different implementation is fine, as long as it conforms with the
interface

@ The user does not need to know the implementation, only the
interface (i.e. how to use it)

@ The user will never directly create a QLIterator object: it asks the
container class to do the creation for him.

@ Advantages:

@ We can change the internal implementation without informing the
user, that can continue to use its code without modifications
@ We have achieved perfect modularity
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./examples/10.java-examples/oosd/containers/QueueListIt.java

Anonymous inner classes

@ Sometimes, interfaces are so simple that creating a private inner
class with its own name seems too much;

@ Java provides a way do define classes on the fly

interface MyInterface {

int nyfun(); (_\
}

~__ A simple interface I
cl ass Myd ass {

|vy| nterface get() {
return new Myl nterface() {
public int myfun() { ...} N
3
}
}

~~—_  An anonymous class |

@ Notice the special syntax: new followed by the name of the
interface, followed by the implementation

@ The class has no name, so you cannot define a constructor
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Anonymous iterator

oosd/containers/QueueListltAn.java

public lIterator<E> iterator() {
return new lterator<e>() {
private Node curr = head;
private Node prev = null;
publ i c bool ean hasNext () {
if (curr == null) return fal se;
el se return true;
}
public E next() {
if (curr == null) return null;
E elem= curr.elem
prev = curr;
curr = curr.next;
return el em

public void remove() {
if (prev == null) return;
/'l rermove el enent
Node p = prev. prev;
Node f = prev. next;
if (p == null) head
el se p.next = f;

1
—

if (f == null) tail = p;
el se f.prev = p;
prev = null;
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./examples/10.java-examples/oosd/containers/QueueListItAn.java

Anonymous classes

@ Itis surely shorter:

@ However, in certain cases it can become cumbersome and

confusing, especially when there is too much code to write
@ If there is too much code to write (as in our example), | prefer to write
a regular inner class

@ | recommend to minimise the use of anonymous classes

@ However, it is important to understand what do they mean when
you meet them in somebody else code
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@ We will need a binary tree to organise the data for the assignment

@ Before we look into trees, however, let's have a look at another
common container, which is widely used in many applications: the
Stack

@ The stack may be useful for storing partial results

@ For example, when we have to multiply the results of two
sub-expressions, we must first compute the sub-expressions;

@ The partial results may be stored into a stack, and retrieved when
needed

@ Example: (3+2)x (6 —4)
@ Compute 3 + 2, and put the result 5 on the stack

@ Compute 6 — 4 and put the result on the stack
@ Extract the last two results from the stack, and multiply them
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@ A stack is a very simple data structure.

@ A stack can hold a set of uniform data, like an array (for example,
integers)

@ Data is ordered according to the LIFO (Last-In-First-Out) strategy

Two main operations are defined on the
data structure:

@ Push: a new data in inserted in the N g
top of the stack % g
@ Pop: data is extracted from the top

stack

Usually, we can also read the element at the top of the stack with a
peek operation
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Stack usage

@ In the following program, we use the standard Java
implementation of Stack

StackDemo.java

i mport java.util.x*;

cl ass StackDeno {
public static void main(String args[]) {
St ack<l nt eger> nystack = new St ack<I nteger>();

for (int i=0; i<10; i++)
nyst ack. push(new I nteger(i));

whil e (!nystack. empty())

Systemout.print(" " + nystack.pop());
Systemout.println("");
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./examples/10.java-examples/StackDemo.java

Tree

@ A tree is a data structure defined as follows:

@ A tree may contain one or more nodes

@ A node in atree represents an element containing data.

@ A node may have zero or more child nodes. The children nodes
are called also descendants. Each node may have a parent node

@ A tree consists of one root node, plus zero or more children
sub-trees
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@ Ais the root of the tree
@ Bis root of one sub tree of A

B
NGO
: 7N
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@ In a binary tree, a node can have at most 2 children
@ Left and right

@ A leaf node is a node without children
@ A root node is a node without parents
@ There is only one root node
@ Each node in the tree is itself a sub-tree
@ A leaf node is a sub-tree with one single node
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How to implement a tree

@ One basic data structure is the Node, as in the List data structure

@ In the List structure, a Node had two links, next and pr ev (see
.l exanpl es/ 10. | ava- exanpl es/ oosd/ cont ai ner s/ QueueLi stlt.

@ A possible implementation for a Tree Node is the following:

cl ass Node<E> {
E elem
Node | eft;
Node ri ght;

}

@ Optionally, it could contain a link to the parent node

@ If one of the links is equal to nul | then the corresponding
sub-tree is null
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./examples/10.java-examples/oosd/containers/QueueListIt.java

Interface for a Tree

@ We must be able to:

o Create single-node trees
@ Link a sub-tree to single-node tree (to the left or to the right)
@ Get the left (right) sub-tree

@ Also, we would like to print the contents of the tree
@ To do this, we need to establish an order of printing
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Visiting a tree

@ There are two ways of listing the contents of a tree
@ Depth-first
@ Pre-order: first the root node is visited, then the left sub-tree, then
the right sub-tree
@ Post-order: first the left sub-tree is visited, then the right sub-tree,
then the root node

@ In-order: first the left sub-tree is visited, then the root node, then the
right sub-tree

@ Breadth first

@ First the root node is visited; then all the children; then all the
children of the children; and so on
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/A\ @ Breadthfirst: ABECDFG
5 c @ Pre-order ABCDEFG
@ Post-order: CDBEFGEA
/\ /\ @ In-order: CBDAFEG
C D F G
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Implementation of a Binary Tree

@ Let’s start with the node

BTree.java

public class BTree<E> {
private class Node {

E elem

Node | ;

Node r;

voi d addLeft (Node n) {

| = n;

}

voi d addRi ght (Node n) {
r =n;

}

Node(E elen) { this.elem= elem }
}

private Node root = null;

private BTree(Node n) {
root = n;
}
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./examples/10.java-examples/BTree.java

Adding nodes

BTree.java

public BTree(E elem {
root = new Node(el en);
}

public BTree<E> addLeft (BTree<E> t) {
root . addLeft (t.root);
return this;

}

publ i c BTree<E> addRi ght (BTree<E> t) {
root.addRi ght (t.root);
return this;

}

public BTree<E> |inkToLeft (BTree<E> t) {
t.root.addLeft(root);
return this;

}

public BTree<E> |inkToRi ght (BTree t) {
t.root.addRi ght (root);
return this;
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BTree continued
BTree.java
publ i c BTree<E> getLeftSubtree() {
if (root == null) return null;
el se return new BTree(root.l);
}
public BTree<E> get R ght Subtree() {
if (root == null) return null;
el se return new BTree(root.r);
}
voi d printPostOder() {
if (root == null) return;
el se {
get Left Subtree(). print Post Order();
get Ri ght Subtree() . print Post O der ();
System out. print(root.elen);
Systemout.print(" ");
}
}
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./examples/10.java-examples/BTree.java
./examples/10.java-examples/BTree.java

BTree continued

BTree.java

void printPreOder() {
if (root == null) return;
el se {
System out. print(root.elen);
Systemout.print(" ");
get Left Subtree().printPreCGder();
get R ght Subtree(). printPreOder();

}

void printlnOder() {
if (root == null) return;
el se {
get Left Subtree().printlnOder();
System out. print(root.elen);
Systemout.print(" ");
get Ri ght Subtree().printlnOder();
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BTree.java

public static void main(String args[]) {
BTree<String> mytree = new BTree<String>("+*");

BTree<String> || = new BTree<String>("+");

BTree<String> rr = new BTree<String>("-");

rr.addLeft (new BTree<String>("2")).
addRi ght (new BTree<String>("3")).
| i nkToLeft (nytree);

I'l.addLeft (new BTree<String>("6")).
addRi ght (new BTree<String>("4")).
Il i nkToRi ght (nytree);

System out. println("Post Order: ");
mytree. print Post Order();
Systemout.println("\nPre Order: ");
mytree. printPreQder();
Systemout.printin("\nln Oder: ");
mytree. printinQOder();
Systemout.println("\n");
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A tree lterator

@ In reality, we would like to make the visiting operation more
abstract

@ In fact, while visiting we may want to perform other operations than
printing
@ For example, evaluating and expression (!)
@ Therefore, we need to generalise the algorithm for visiting the tree,
and make it independent of the specific operation

@ To do so, we have to modify the structure of the algorithm

@ In the previous program, we have used a simple recursive algorithm

@ Now we need to implement an iterative algorithm, through an
iterator

@ The implementation is slightly complex, so pay attention!
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BTreelt.java

public class BTreelt<E> {
private class Node {
E elem
Node | ;
Node r;
Node p;

voi d addLeft (Node n) {
| = n;
n.p = this;
}
voi d addRi ght (Node n) {
r =n;
n.p = this;
}
Node(E elen) { this.elem= elem }

@ We now use also the parent link p, because we will need to go up
in the hierarchy
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./examples/10.java-examples/BTreeIt.java

Iterator

BTreelt.java

private class PostOrderlterator inplenents Iterator<E> {
Node next;
Node | ast ;

PostOrderlterator() {
next = root;
last = nulI;
noveToLef t Most Leaf () ;

}
private void noveTolLeft MostLeaf () {
do {
/1 go down | eft
while (next.l !'= null) next = next.l;

/'l maybe there is a node with no |left but sone right...
/1l then go down rigth
if (next.r !'= null) next = next.r;

} while (next.l !'=null || next.r !'= null);

/1l exit when both left and right are nul
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The next method

BTreelt.java

public E next() throws NoSuchEl ement Exception {
if (next == null) throw new NoSuchEl enment Exception();
E key = next.elem
/1 1 already visited left and right,
/1 so | have to go up (and maybe right)

| ast = next;
next = next.p;
if (next !'=null && last == next.l) {

next = next.r;
noveTolLef t Most Leaf () ;

}
return key;
}
}
[#% ccoccococcoocoocococcoocoocooccocoocoooo * [
[ * | NTERFACE */
[#% ccoccococcoocoocococcooccoocooccocoocoooo * [

public BTreelt(E elem {
root = new Node(el em;
}

public BTreelt<E> addLeft(BTreelt<E> t) ({
root.addLeft (t.root);
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The tree class

@ Just the same, except for the method to return the iterator:

Iterator<E> postOrderlterator() {
return new Post Orderlterator();

@ Notice that we do not need the pri nt XXX() functions, because
we can use the iterator
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BTreelt usage

BTreelt.java

addRi ght (new BTreel t<String>("*").
addLeft (new BTreelt<String>("2")).
addRi ght (new BTreelt<String>("2"))
).

I i nkToRi ght (nmytree);

System out. println("Post Oder: ");
[terator<String> it = nytree.postOderlterator();
while (it.hasNext()) Systemout.println(it.next());
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Exercises

@ Write the pre-order and the in-order iterators for class BTreelt
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