Object Oriented Software Design

Inner classes, RTTI, Tree implementation

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna — Pisa

October 29, 2010

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 1/44

e Run-Time Type ldentification
9 Anonymous inner classes

e Binary Trees

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 2/44

http://retis.sssup.it/~lipari

The shape example

@ Consider a hierarchy of Shape classes

Shape

area()

VAN

Triangle | Rectangle Circle |
diagonal()

@ The Shape class is abstract, it has an abstract method to compute
the area of the shape.

@ Now suppose we have an array of Shapes, and we would like to
compute the area for all of them.

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 4/44

@ This is the base class

oosd/shapes/Shape.java

package oosd. shapes;

publ i c abstract class Shape {
protected String namne;

public Shape(String s) { nane = s; }

public abstract double area();

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 5/44

./examples/10.java-examples/oosd/shapes/Shape.java

@ And one derived class:

oosd/shapes/Triangle.java

package oosd. shapes;

public class Triangle extends Shape {

private doubl e base = 0, height = 0;

public Triangle() { this("Triangle"); }

public Triangle(String s) { super(s); }

public Triangle(String s, double b, double h) {
this(s);
base = b;
hei ght = h;

}

publ i c double area() {
System out. println("Conmputing the area of Triangle
return base * height / 2;

+ nane);

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 6/44

A list of Shapes

@ Let’s use the QueuelListlt class we have seen last lecture

Queueli st It <Shape> nyq = new Queueli st |t <Shape>();

/'l upcast, never fails

nmyq. push(new Gircle("red", 5.0));

nmyq. push(new Tri angl e("yell ow', 3.0, 4.0));
nmyq. push(new Rect angl e("blue", 3.0, 4.0));

for (Shape s : nyQ)
Systemout. println(s.area());

@ Everything as expected

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 7144

./examples/10.java-examples/oosd/shapes/Triangle.java

A new method

@ Rectangle derives from Shape, and adds a new method
di agonal () to compute the diagonal

oosd/shapes/Rectangle.java

public class Rectangl e extends Shape {
private doubl e base = 0, height = 0;
public Rectangle(String s) { super(s); }
public Rectangle() { this("Rectangle"); }
public Rectangl e(String s, double b, double h) {
this(s);
hei ght = h;
base = b;
}

public double area() {
System out. println("Computing the area of Rectangle
return base * height;

+ nane);

}

publ i ¢ doubl e di agonal () {
System out . printl n("Conputing the diagonal");
return Mt h. sqrt (base*base+hei ght xhei ght) ;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 8/44

How to call diagonal?

@ We would like to call diagonal only for Rectangle s because it
does not make sense to call diagonal for Circle s and Triangle s

@ But, we have a problem:

for (Shape s : nyq) {
Systemout. println(s.area()); ///—
Systemout. println(s.diagonal ());
}

Compilation error:
di agonal () is not part of
the interface of Shape

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 9/44

./examples/10.java-examples/oosd/shapes/Rectangle.java

Downcast

@ We could force s to become a reference to Rectangle , so that
di agonal () is in the interface now.

for (Shape s : nyq) {
Systemout. println(s.area());

System out. printl n(((Rectangle)s).diagonal ());

}

@ This is called downcast , and must be explicit, because a Shape is
not (always) a rectangle
@ Downcast is not safe

@ Unfortunately, if s is pointing to a Triangle , Java run-time raises an
exception ClassCastException

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 10/ 44

Solution 1: catch the exception

@ By catching the exception, everything works fine cientexc,java

i mport java.util.x*;
i mport oosd. shapes. *;
i mport oosd. containers. *;

class dientExc {
public static void main(String args[]) {
Queueli st It <Shape> nyq = new Queueli st |t <Shape>();
nyq. push(new Circle("red", 5.0));
nyq. push(new Triangl e("yell ow', 3.0, 4.0));
nyq. push(new Rect angl e("blue", 3.0, 4.0));

for (Shape s: nyq) {
Systemout.println(s.area());

try {
double d = ((Rectangl e)s).di agonal ();
System out. println(d);

} catch(d assCast Exception e) {
Systemout.println("Not a rectangle");

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 11/44

./examples/10.java-examples/ClientExc.java

Upcasting and downcasting

@ When we insert in the QueuelListlt class, the perform an upcast
@ Upcast is always safe.

@ To understand if there is a Rectangle, we perform a downcast .

@ Downcast is not safe at all (raises an exception), and it should be
avoided when necessary.

o to perform downcast Java has to identify the actual object type and
see if the cast can be performed.

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 12/ 44

instanceof

@ To avoid the exception (which is clumsy and inefficient), you can
use the keyword instanceof

ClientRTTl.java

i mport oosd. containers. *;

class AientRTTI {
public static void main(String args[]) {
QueuelLi st It <Shape> nyq = new Queueli st |t <Shape>();
nyq. push(new Circle("red", 5.0));
nyq. push(new Triangl e("yellow', 3.0, 4.0));
nyq. push(new Rect angl e("blue", 3.0, 4.0));
Iterator<Shape> it = nyqg.iterator();
while (it.hasNext()) {
Shape s = it.next();
Systemout.println(s.area());
if (s instanceof Rectangle)
System out . printl n(((Rectangle)s).diagonal ());

}

@ instanceof works well with inheritance

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010

./examples/10.java-examples/ClientRTTI.java

The Class object

@ All information on a specific class are contained in a special object
of type Class.

@ The class Class contains a certain number of methods to analyse
the interface:

o forName(String s) returns a Class Object given the class nhame
@ isInstance(Object 0) returns true if the specified object is an
instance of the class

@ An example in the next slide

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 14/ 44

The usage of Class

ClientRTTI2.java

class ientRTTI2 {
public static void main(String args[]) {
Queueli st t<Shape> nmyqg = new Queueli stlt <Shape>();

/'l upcast, never fails
myq. push(new Circle("red", 5.0));
myq. push(new Tri angl e("yel low', 3.0, 4.0));
myqg. push(new Rect angl e("blue", 3.0, 4.0));
Iterator<Shape> it = nyg.iterator();
while (it.hasNext()) {
Shape s = it.next();
Systemout. println("Cbject of class: " + s.getd ass().get Nange
" in package: " + s.getC ass().getPackage(
Systemout.println("Cbject is conpatible with Rectangle: " +
Rect angl e. cl ass. i sl nstance(s));
/'l Rectangle.class is equivalent to
/1 O ass.forNane("Rectangle").islnstance(s)
Systemout.println(s.area());

N A~

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 15/44

N N

./examples/10.java-examples/ClientRTTI2.java

@ In the previous example, there was another option: put
di agonal () in the interface of the base class Shape

@ The di agonal () function in the Shape class needs to be a void
function, that could also raise an exception (for example
OperationNotimplemented)

@ This approach may generate fat interfaces

@ In this case, we chose to follow the other option

@ However, the downcast option is not always the best one, it
depends on the context

@ This has nothing to do with the specific Java Language: it is a
design problem, not a coding problem

@ We will come back to the problem of downcasting when studying
the Liskov’s substitution principle.

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 16/ 44

Inner classes

@ Let’s have a closer look again at the QueuelListlt <E>:
. [exanpl es/ 10. j ava- exanpl es/ oosd/ cont ai ner s/ QueuelLi st |

@ The QLlterator class is a private inner class of QueueListlt

@ The reason for making it private is that QLIterator is an
implementation of the more general notion of Iterator

@ A different implementation is fine, as long as it conforms with the
interface

@ The user does not need to know the implementation, only the
interface (i.e. how to use it)

@ The user will never directly create a QLIterator object: it asks the
container class to do the creation for him.

@ Advantages:

@ We can change the internal implementation without informing the
user, that can continue to use its code without modifications
@ We have achieved perfect modularity

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 18/ 44

./examples/10.java-examples/oosd/containers/QueueListIt.java

Anonymous inner classes

@ Sometimes, interfaces are so simple that creating a private inner
class with its own name seems too much;

@ Java provides a way do define classes on the fly

interface MyInterface {

int nyfun(); (_\
}

~__ A simple interface I
cl ass Myd ass {

|vy| nterface get() {
return new Myl nterface() {
public int myfun() { ...} N
3
}
}

~~—_ An anonymous class |

@ Notice the special syntax: new followed by the name of the
interface, followed by the implementation

@ The class has no name, so you cannot define a constructor

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 19/44

Anonymous iterator

oosd/containers/QueueListltAn.java

public lIterator<E> iterator() {
return new lterator<e>() {
private Node curr = head;
private Node prev = null;
publ i c bool ean hasNext () {
if (curr == null) return fal se;
el se return true;
}
public E next() {
if (curr == null) return null;
E elem= curr.elem
prev = curr;
curr = curr.next;
return el em

public void remove() {
if (prev == null) return;
/'l rermove el enent
Node p = prev. prev;
Node f = prev. next;
if (p == null) head
el se p.next = f;

1
—

if (f == null) tail = p;
el se f.prev = p;
prev = null;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 20/ 44

./examples/10.java-examples/oosd/containers/QueueListItAn.java

Anonymous classes

@ Itis surely shorter:

@ However, in certain cases it can become cumbersome and

confusing, especially when there is too much code to write
@ If there is too much code to write (as in our example), | prefer to write
a regular inner class

@ | recommend to minimise the use of anonymous classes

@ However, it is important to understand what do they mean when
you meet them in somebody else code

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 21/44

@ We will need a binary tree to organise the data for the assignment

@ Before we look into trees, however, let's have a look at another
common container, which is widely used in many applications: the
Stack

@ The stack may be useful for storing partial results

@ For example, when we have to multiply the results of two
sub-expressions, we must first compute the sub-expressions;

@ The partial results may be stored into a stack, and retrieved when
needed

@ Example: (3+2)x (6 —4)
@ Compute 3 + 2, and put the result 5 on the stack

@ Compute 6 — 4 and put the result on the stack
@ Extract the last two results from the stack, and multiply them

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 23 /44

@ A stack is a very simple data structure.

@ A stack can hold a set of uniform data, like an array (for example,
integers)

@ Data is ordered according to the LIFO (Last-In-First-Out) strategy

Two main operations are defined on the
data structure:

@ Push: a new data in inserted in the N g
top of the stack % g
@ Pop: data is extracted from the top

stack

Usually, we can also read the element at the top of the stack with a
peek operation

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java

October 29, 2010 24/ 44

Stack usage

@ In the following program, we use the standard Java
implementation of Stack

StackDemo.java

i mport java.util.x*;

cl ass StackDeno {
public static void main(String args[]) {
St ack<l nt eger> nystack = new St ack<I nteger>();

for (int i=0; i<10; i++)
nyst ack. push(new I nteger(i));

whil e (!nystack. empty())

Systemout.print(" " + nystack.pop());
Systemout.println("");

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java

October 29, 2010

./examples/10.java-examples/StackDemo.java

Tree

@ A tree is a data structure defined as follows:

@ A tree may contain one or more nodes

@ A node in atree represents an element containing data.

@ A node may have zero or more child nodes. The children nodes
are called also descendants. Each node may have a parent node

@ A tree consists of one root node, plus zero or more children
sub-trees

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 26/ 44

@ Ais the root of the tree
@ Bis root of one sub tree of A

B
NGO
: 7N

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 27144

@ In a binary tree, a node can have at most 2 children
@ Left and right

@ A leaf node is a node without children
@ A root node is a node without parents
@ There is only one root node
@ Each node in the tree is itself a sub-tree
@ A leaf node is a sub-tree with one single node

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 28/ 44

How to implement a tree

@ One basic data structure is the Node, as in the List data structure

@ In the List structure, a Node had two links, next and pr ev (see
.l exanpl es/ 10. | ava- exanpl es/ oosd/ cont ai ner s/ QueueLi stlt.

@ A possible implementation for a Tree Node is the following:

cl ass Node<E> {
E elem
Node | eft;
Node ri ght;

}

@ Optionally, it could contain a link to the parent node

@ If one of the links is equal to nul | then the corresponding
sub-tree is null

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 29/ 44

./examples/10.java-examples/oosd/containers/QueueListIt.java

Interface for a Tree

@ We must be able to:

o Create single-node trees
@ Link a sub-tree to single-node tree (to the left or to the right)
@ Get the left (right) sub-tree

@ Also, we would like to print the contents of the tree
@ To do this, we need to establish an order of printing

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 30/44

Visiting a tree

@ There are two ways of listing the contents of a tree
@ Depth-first
@ Pre-order: first the root node is visited, then the left sub-tree, then
the right sub-tree
@ Post-order: first the left sub-tree is visited, then the right sub-tree,
then the root node

@ In-order: first the left sub-tree is visited, then the root node, then the
right sub-tree

@ Breadth first

@ First the root node is visited; then all the children; then all the
children of the children; and so on

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 31/44

/A\ @ Breadthfirst: ABECDFG
5 c @ Pre-order ABCDEFG
@ Post-order: CDBEFGEA
/\ /\ @ In-order: CBDAFEG
C D F G

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 32/44

Implementation of a Binary Tree

@ Let’s start with the node

BTree.java

public class BTree<E> {
private class Node {

E elem

Node | ;

Node r;

voi d addLeft (Node n) {

| = n;

}

voi d addRi ght (Node n) {
r =n;

}

Node(E elen) { this.elem= elem }
}

private Node root = null;

private BTree(Node n) {
root = n;
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 33/44

./examples/10.java-examples/BTree.java

Adding nodes

BTree.java

public BTree(E elem {
root = new Node(el en);
}

public BTree<E> addLeft (BTree<E> t) {
root . addLeft (t.root);
return this;

}

publ i c BTree<E> addRi ght (BTree<E> t) {
root.addRi ght (t.root);
return this;

}

public BTree<E> |inkToLeft (BTree<E> t) {
t.root.addLeft(root);
return this;

}

public BTree<E> |inkToRi ght (BTree t) {
t.root.addRi ght (root);
return this;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 34 /44

BTree continued
BTree.java
publ i c BTree<E> getLeftSubtree() {
if (root == null) return null;
el se return new BTree(root.l);
}
public BTree<E> get R ght Subtree() {
if (root == null) return null;
el se return new BTree(root.r);
}
voi d printPostOder() {
if (root == null) return;
el se {
get Left Subtree(). print Post Order();
get Ri ght Subtree() . print Post O der ();
System out. print(root.elen);
Systemout.print(" ");
}
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 35/44

./examples/10.java-examples/BTree.java
./examples/10.java-examples/BTree.java

BTree continued

BTree.java

void printPreOder() {
if (root == null) return;
el se {
System out. print(root.elen);
Systemout.print(" ");
get Left Subtree().printPreCGder();
get R ght Subtree(). printPreOder();

}

void printlnOder() {
if (root == null) return;
el se {
get Left Subtree().printlnOder();
System out. print(root.elen);
Systemout.print(" ");
get Ri ght Subtree().printlnOder();

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 36/44

BTree.java

public static void main(String args[]) {
BTree<String> mytree = new BTree<String>("+*");

BTree<String> || = new BTree<String>("+");

BTree<String> rr = new BTree<String>("-");

rr.addLeft (new BTree<String>("2")).
addRi ght (new BTree<String>("3")).
| i nkToLeft (nytree);

I'l.addLeft (new BTree<String>("6")).
addRi ght (new BTree<String>("4")).
Il i nkToRi ght (nytree);

System out. println("Post Order: ");
mytree. print Post Order();
Systemout.println("\nPre Order: ");
mytree. printPreQder();
Systemout.printin("\nln Oder: ");
mytree. printinQOder();
Systemout.println("\n");

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010

./examples/10.java-examples/BTree.java
./examples/10.java-examples/BTree.java

A tree lterator

@ In reality, we would like to make the visiting operation more
abstract

@ In fact, while visiting we may want to perform other operations than
printing
@ For example, evaluating and expression (!)
@ Therefore, we need to generalise the algorithm for visiting the tree,
and make it independent of the specific operation

@ To do so, we have to modify the structure of the algorithm

@ In the previous program, we have used a simple recursive algorithm

@ Now we need to implement an iterative algorithm, through an
iterator

@ The implementation is slightly complex, so pay attention!

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 38/44

BTreelt.java

public class BTreelt<E> {
private class Node {
E elem
Node | ;
Node r;
Node p;

voi d addLeft (Node n) {
| = n;
n.p = this;
}
voi d addRi ght (Node n) {
r =n;
n.p = this;
}
Node(E elen) { this.elem= elem }

@ We now use also the parent link p, because we will need to go up
in the hierarchy

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 39/44

./examples/10.java-examples/BTreeIt.java

Iterator

BTreelt.java

private class PostOrderlterator inplenents Iterator<E> {
Node next;
Node | ast ;

PostOrderlterator() {
next = root;
last = nulI;
noveToLef t Most Leaf () ;

}
private void noveTolLeft MostLeaf () {
do {
/1 go down | eft
while (next.l !'= null) next = next.l;

/'l maybe there is a node with no |left but sone right...
/1l then go down rigth
if (next.r !'= null) next = next.r;

} while (next.l !'=null || next.r !'= null);

/1l exit when both left and right are nul

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 40/ 44

The next method

BTreelt.java

public E next() throws NoSuchEl ement Exception {
if (next == null) throw new NoSuchEl enment Exception();
E key = next.elem
/1 1 already visited left and right,
/1 so | have to go up (and maybe right)

| ast = next;
next = next.p;
if (next !'=null && last == next.l) {

next = next.r;
noveTolLef t Most Leaf () ;

}
return key;
}
}
[#% ccoccococcoocoocococcoocoocooccocoocoooo * [
[* | NTERFACE */
[#% ccoccococcoocoocococcooccoocooccocoocoooo * [

public BTreelt(E elem {
root = new Node(el em;
}

public BTreelt<E> addLeft(BTreelt<E> t) ({
root.addLeft (t.root);

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 41/ 44

./examples/10.java-examples/BTreeIt.java
./examples/10.java-examples/BTreeIt.java

The tree class

@ Just the same, except for the method to return the iterator:

Iterator<E> postOrderlterator() {
return new Post Orderlterator();

@ Notice that we do not need the pri nt XXX() functions, because
we can use the iterator

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 42 | 44

BTreelt usage

BTreelt.java

addRi ght (new BTreel t<String>("*").
addLeft (new BTreelt<String>("2")).
addRi ght (new BTreelt<String>("2"))
).

I i nkToRi ght (nmytree);

System out. println("Post Oder: ");
[terator<String> it = nytree.postOderlterator();
while (it.hasNext()) Systemout.println(it.next());

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010

./examples/10.java-examples/BTreeIt.java

Exercises

@ Write the pre-order and the in-order iterators for class BTreelt

G. Lipari (Scuola Superiore Sant’Anna) Introduction to Java October 29, 2010 44 | 44

	Run-Time Type Identification
	Anonymous inner classes
	Binary Trees

