
Object Oriented Software Design
Basics of C++

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

November 19, 2010

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 1 / 43

Outline

1 Namespaces

2 The standard library for Input/Output

3 Classes and objects

4 Our First class

5 Destructor

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 2 / 43

http://retis.sssup.it/~lipari

From C to C++

In this lecture, we will start to see how C++ improves over C
Since you have already seen Java, you should have by now
enough elements of Object Oriented Programming

Classes, inheritance, composition, etc.

Therefore, every step I will try to give you the differences with
Java, if any

Also, many things that are possible in C++ will not be possible in
Java, and vice versa

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 3 / 43

C++ naming conventions

C++ files usually ends in .cpp or .cc or .cxx

Header files for C++ usually end in .h , .hpp , .hxx , .hh , or even
without any extension
To compile a C++ program you have to use the C++ compiler
(different from the C compiler)

The GNU/Linux provides you the g++ on the command line
g++ is at the same time a compiler and a linker
Compile and link:

g++ myfile.cpp -o myfile

Only compile:

g++ -c myfile.cpp -o myfile.o

Only link:

g++ myfile.o -o myfile

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 4 / 43

Scope and visibility

One of the problems of C was the fact that all global variables are
in the same scope

Also, variables in different files!
For example, it is not possible to have two variables with the same
name in two different modules

This is a problem for modular programming
Suppose that the system architect (the big design boss) decides to
split the work across two programming teams, A and B
Both teams independently decide to use a global function called
void compute();
This causes problems at linking time: it is not possible to have two
distinct functions with the same name in the same (global) scope

Another problem is when you decide to include an external library
What if the designers of the library decided to use names that are
quite common?

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 6 / 43

Reducing visibility

One possibility is to use the static keyword
static is just the opposite of extern ; a static object is not exported to the linker

module.h

// variable declaration
extern int a;
// function prototype
int f(int);

module.c

#include "module.h"

// this is exported;
int a = 0;

// this is not exported;
static int b = 0;
// try to uncomment
// int b = 0;

int f(int i)
{

b = a + i;
a = i/2;
return b;

}

module2.c

#include <stdio.h>
#include "module.h"

// this is exported!
//(but does not conflict)
int b;

int main()
{

int c;

a = 5;
b = 10;

c = f(10);

printf("c = %d\n", c);
printf("a = %d\n", a);

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 7 / 43

./examples/12.cpp-examples/module.h
./examples/12.cpp-examples/module.c
./examples/12.cpp-examples/module2.c

Static

So, static has two meanings
Inside a function, makes a local variable persistent across function
calls
In the global scope, hides a global variable to be used only inside
that module
it can also be used for functions

However, this does not completely solve the naming problem
What if we want to use two different functions with the same name
in the same program?

Suppose you are writing a variable for mp3 audio processing, and
you implement a set of functions, one of them is called decode()
Someone else has implemented a video library that processes
H.264/MPEG-4, and implements a function called decode()

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 8 / 43

C++ namespaces

C++ solves this problem using namespaces
A name space is just a way to create and name a scope

The idea is that when you build a library, you define a namespace
having a meaningful name (for example the name of the library),
and enclose all your declarations in the namespace
The user of the library can then specify which functions to use
using the scope resolution operator

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 9 / 43

C++ namespaces

In the previous example:

// audio.hpp
namespace audiolib {

...
void decode();
...

}

// audio.hpp
namespace videolib {

...
void decode();
...

}

// your module
#include "audio.hpp"
#include "video.hpp"
...
audiolib::decode();
...
videolib::decode();

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 10 / 43

Scope resolution

The :: symbol is called scope resolution, and it is used to decide
which function or variable we want to use

it is like directories: with :: you can specify the full name of a
variable (similar to the path)

namespaces can be nested:

// three different functions!!
int f(int i);
namespace nnn {
int f(int i);
namespace mmm {

int f(int i);
}

}

// function usage;
f(5);
nnn::f(5);
nnn::mmm::f(5);

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 11 / 43

Simple input and output

Simple output can be done with the iostream standard library
All functions in the standard library are part of the std namespace;

#include <iostream>

int main()
{

std::cout << "Hello World!" << std::endl;
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 13 / 43

Using directive

Sometimes it is very annoying to type std:: , so we can use a
using directive:

#include <iostream>

using namespace std;

int main()
{

cout << "Hello World!" << endl;
}

First, cout is searched in the global scope: if it is not found, the
namespace in the using directives are looked into

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 14 / 43

Using directive - II

Be careful with the using directive:
If two namespaces contain the same name, there will be a conflict,
so you have to specify which one to use with the scope resolution

#include "audio.hpp"
#include "video.hpp"
using namespace audiolib, videolib;
...
decode(); // compilation error! cannot be resolved

audiolib::decode() // ok, now it can be resolved

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 15 / 43

cout

Notice that we include iostream (without extension)
Standard library include files have no extension

It is a little bit too early to understand what is cout . Right now, it is
sufficient to know how to use it

cout must be followed by << and a variable, or a constant, or an
expression, or a modifier like endl (which means end of line).

You can chain as many segments of << as you like

cout << "Now a number: " << 5 << " and now a float: " << 3.5 << endl;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 16 / 43

input with cin

Here is how you do input:

#include <iostream>
using namespace std;

int main()
{

int a;
cout << "Enter an integer number ";
cin >> a;
cout << "The square of " << a << " is " << a * a << endl;

}

cin is exactly specular to cout

You can also use cerr for output on the standard error

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 17 / 43

Strings

If you need to manipulate strings, you can use the string class
from the std library

stringex.cpp

#include <iostream>
#include <string>

using namespace std;

int main()
{

string name = "Giuseppe";
string surname("Lipari");
string tot;

tot = name + "-" + surname;
int i = tot.find("-");
cout << tot << endl;
cout << "The dash is at location: " << i << endl;
cout << "First part: " << tot.substr(0, i) << endl;
cout << "Last part: " << tot.substr(i+1, tot.size()) << endl ;

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 18 / 43

./examples/12.cpp-examples/stringex.cpp

Notes

string is a class
In the previous examples we declare three objects of type string
Notice that name, surname and tot are objects, not references to
objects!

There is no new instruction!

These objects are created on the stack (and not on the heap, more
on this later)

You see three ways of initialising an object: with an assignment
(name = “Giuseppe”), with a constructor function
(surname(“Lipari”)), and with a default constructor (tot)

Actually, also the first one is a constructor, it is called copy
constructor

The + operator is used to concatenate strings (like in Java)
Unlike Java, string is not a special class: actually, in C++ you can
redefine the operator + for your own classes (more on this later)

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 19 / 43

Boolean

C++ has a boolean primitive type, called bool , and two boolean
constants, true and false

bool flag = false;
...

if (flag) {
...

}

However, C++ derives from C, where there was no boolean type
in C, a numerical value of 0 is assimilated as false, while a numerical
value different of 0 is assimilated as true
Therefore, in C it is perfectly legal to write:

int a = 0;
...
if (a) {

...
}

C++ derives from C, so there is an automatic cast between a
numerical value of 0 and false , and a value different of 0 and true

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 20 / 43

Boolean

Pay attention: the C++ compiler allows this:

if (a = 0) {
...

}

The code above is legal: the result of expression a=0 is 0 (hence
false), so the block is never executed

in Java instead it is an error (no automatic conversion between 0
and false)
Most modern compilers only raise a warning

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 21 / 43

Classes in C++

A class in C++ is quite similar to a class in Java or in other OO
languages

class MyClass {
private:
int var;
double c;

protected:
int f();

public:
MyClass();
int pub;
int g(int i);

};

Class declaration

What follows is all private

These are private variables

What follows is protected

A protected method

What follows is public

Constructor

A public variable

A public function

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 23 / 43

Access control

A member can be:
private: only member functions of the same class can access it;
other classes or global functions can’t
protected: only member functions of the same class or of derived
classes can access it: other classes or global functions can’t
public: every function can access it

class MyClass {
private:

int a;
public:

int c;
};

MyClass data;

cout << data.a; // ERROR!
cout << data.c; // OK: c is public;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 24 / 43

Access control

Default is private

An access control keyword defines access until the next access
control keyword

class MyClass {
int a;
double b;

public:
int c;

void f();
int getA();

private:
int modify(double b);

};

private (default)

public

private again

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 25 / 43

Access control and scope

int xx;

class A {
int xx;

public:
void f();

};

void A::f()
{

xx = 5;
::xx = 3;

xx = ::xx + 2;
}

global variable

member variable

access local xx

access global xx

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 26 / 43

Private

Some people think that private is synonym of secret
they complain that the private part is visible in the header file

private means not accessible from other classes and does not
mean secret

The compiler needs to know the size of the object, in order to
allocate memory to it

In an hypothetical C++, if we hide the private part, the compiler
cannot know the size of the object

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 27 / 43

Friends

Sometimes, two classes interact so much that we would like to let
them share access to their private variables

In that case, we have to declare them to be friend

class A {
friend class B;
int y;
void f();

public:
int g();

};

class B {
int x;

public:
void f(A &a);

};

B is friend of A

void B::f(A &a)
{

x = a.y;
a.f();

}

B can access private
members of A

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 28 / 43

Friend functions

Even a global function or a single member function can be friend
of a class

class A {
friend B::f();
friend h();
int y;
void f();

public:
int g();

};

friend member function

friend global function

It is better to use the friend keyword only when it is really
necessary

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 29 / 43

Nested classes

It is possible to declare a class inside another class

Access control keywords apply

class A {
class B {

int a;
public:

int b;
}
B obj;

public:
void f();

};

Class B is private to class A: it
is not part of the interface of A,
but only of its implementation.

However, A is not allowed to
access the private part of B!!
(A::f() cannot access
B::a).

To accomplish this, we have to
declare A as friend of B

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 30 / 43

Declaration and definition

In C++ (as in C), you can separate declaration and definition

Usually, you declare the class in a .hpp file, and put the definition
(i.e. the implementation of the methods) in the .cpp file.

timer.hpp

class Timer {
int counter;
int level;
bool tr;

public:
Timer(int i);
int getValue();
int getLevel();
bool increment();
void reset();
bool trigger();

};

Notice that the default
specification is private

if you want something to
be public, you have to
specify explicitly

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 32 / 43

./examples/12.cpp-examples/timer.hpp

Implementation of Timer

timer.cpp

#include "timer.hpp"

Timer::Timer(int i)
: counter(0), level(i), tr(false)

{
}

int Timer::getValue()
{

return counter;
}

int Timer::getLevel()
{

return level;
}

void Timer::reset()
{

counter = 0;
tr = false;

}

Include the class declaration

Constructor: note the scope reso-
lution

Class initialisation list

Method definition (we do not need
to repeat that this method is pub-
lic!)

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 33 / 43

Usage of the Timer
timermain.cpp

#include <iostream>
#include "timer.hpp"

using namespace std;

int f(int a)
{

Timer t(10);
while (!t.increment()) {

a++;
}
return a;

}

int main()
{

Timer ti(5);
cout << "Before starting ti value is: " << ti.getValue() << en dl;
cout << " ti level is: " << ti.getLevel() << endl;
for (ti.reset(); !ti.trigger(); ti.increment()) {

int a = f(ti.getValue());
cout << "ti value: " << ti.getValue() << endl;
cout << "a is: " << a << endl;

}

cout << "End!" << endl;
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 34 / 43

./examples/12.cpp-examples/timer.cpp
./examples/12.cpp-examples/timermain.cpp

How to compile and link

The previous program consists of three files: timer.hpp ,
timer.cpp and timermain.cpp

To compile and execute everything:

g++ timer.cpp timermain.cpp -o timermain

When the number of files is large, this can be annoying
You can use an IDE, or a makefile:

.SUFFIXES:

.SUFFIXES: .o .cpp

.cpp.o:
g++ -c $<

timermain: timer.o timermain.o
g++ -o $@ $^

This rule automatically compiles
every .cpp file into an .o file

This rule links the object files
timer.o and timermain.o into
the executable file timermain

This file is processed by the make
command

Visit the makefile into the exam-
ple directory

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 35 / 43

Comments

In C++, objects are treated in the same way as primitive type
variables

Objects can be defined on the stack, hence their scope extends
only to the block where they are defined
Object t in function f() is valid only during the execution of f() ,
and its constructor and destructor are called every time the function
is invoked and terminates, respectively

This is quite different from Java:
in Java, when creating an object with new its lifetime extends until
the garbage collector does not destroy it
In Java there is only one way of creating objects, they go on the
heap
In C++ there are two ways of creating objects: on the stack and on
the heap

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 36 / 43

Destructor

Before looking at how objects are created, let’s introduce the
destructor
It is the reverse of the constructor

the constructor is called at creation time and it is used to initialise
the object
the destructor is called at termination time and it is used for
clean-up

destructor.hpp

class A {
int i;

public:
A(); //
A(int a); //
~A(); //

};

Default Constructor: must have the
same name of the class

Another constructor: this has a pa-
rameter

Destructor: the same name of the
class, with a tilde in front

There can be only one destructor,
cannot have parameters

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 38 / 43

Example
destructor.hpp

class A {
int i;

public:
A(); //
A(int a); //
~A(); //

};

destructor.cpp

#include "destructor.hpp"
#include <iostream>
using namespace std;

A::A() : i(0)
{

cout << "default constructor of A" << endl;
}

A::A(int a) : i(a)
{

cout << "constructor of A(" << i << ")" << endl;
}

A::~A()
{

cout << "Destructor of A (i=" << i << ")" << endl;
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 39 / 43

./examples/12.cpp-examples/destructor.hpp
./examples/12.cpp-examples/destructor.hpp
./examples/12.cpp-examples/destructor.cpp

Example - II
desmain.cpp

#include "destructor.hpp"
#include <iostream>
using namespace std;

#define WH(x) cout << "now inside " \
<< #x << endl

void f()
{

A a;
WH(f);

}

void g()
{

A b(5);
WH(g);
f();
WH(g);

}

int main()
{

A c(2);
WH(main);
g();
WH(main);

}

Output:

constructor of A(2)
now inside main
constructor of A(5)
now inside g
default constructor of A
now inside f
Destructor of A (i=0)
now inside g
Destructor of A (i=5)
now inside main
Destructor of A (i=2)

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 40 / 43

Pointers to object and new

This is how you can define a pointer to an object

A a;
A * p = &a;

How you can see, it is not different from regular variables

a is an object defined on the stack or in global memory; to create
an object on the heap:

A * p = new A();

The previous code:
Allocates the right amount of memory on the heap for an object of
type A
Calls the constructor for initialising the object
returns a pointer to the allocated memory, and assigns it to p

Similar to Java, except that in C++ new returns a pointer

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 41 / 43

./examples/12.cpp-examples/desmain.cpp

Freeing the memory with delete

In Java the memory is freed by the garbage collector
In C++ there is not such a thing:

It is the responsibility of the programmer to free the memory

The memory can be freed with delete

A * p = new A();
...
delete p;

delete must be followed by a pointer
It calls the destructor for the object
then deallocates the memory

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 42 / 43

Example with pointers
desmain2.cpp

#include "destructor.hpp"
#include <iostream>
using namespace std;

#define WH(x) cout << "now inside " \
<< #x << endl

void f()
{

A * pa = new A();
WH(f);
delete pa;

}

void g()
{

A * pb = new A(5);
WH(g);
f();
WH(g);

}

int main()
{

A * pc = new A(2);
WH(main);
g();
WH(main);
delete pc;

}

Output:

constructor of A(2)
now inside main
constructor of A(5)
now inside g
default constructor of A
now inside f
Destructor of A (i=0)
now inside g
now inside main
Destructor of A (i=2)

mmm, maybe something is missing?
This is called “memory leak”
The memory pointed by pb is lost!
Cannot be deallocated anymore

Why?

Remember: there is not garbage
collector to save us!

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 43 / 43

./examples/12.cpp-examples/desmain2.cpp

	Namespaces
	The standard library for Input/Output
	Classes and objects
	Our First class
	Destructor

