Object Oriented Software Design

Basics of C++

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant'’Anna — Pisa

November 19, 2010

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010

http://retis.sssup.it/~lipari

@ Namespaces

e The standard library for Input/Output
9 Classes and objects

@ Our First class

@ Destructor

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 2/43

From C to C++

@ In this lecture, we will start to see how C++ improves over C

@ Since you have already seen Java, you should have by now
enough elements of Object Oriented Programming

@ Classes, inheritance, composition, etc.
@ Therefore, every step | will try to give you the differences with
Java, if any
@ Also, many things that are possible in C++ will not be possible in
Java, and vice versa

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 3/43

C++ naming conventions

@ C++ files usually ends in .cpp or.cc or.cxx

@ Header files for C++ usually end in .h , .hpp , .hxx , .hh , or even
without any extension

@ To compile a C++ program you have to use the C++ compiler
(different from the C compiler)

@ The GNU/Linux provides you the g++ on the command line
@ g++ is at the same time a compiler and a linker
@ Compile and link:

‘g++ myfile.cpp -0 myfile ‘

@ Only compile:

‘g++ -c myfile.cpp -0 myfile.o ‘

@ Only link:

‘g++ myfile.o -0 myfile ‘

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 4/43

Outline

@ Namespaces

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 5/43

Scope and visibility

@ One of the problems of C was the fact that all global variables are
in the same scope
@ Also, variables in different files!
@ For example, it is not possible to have two variables with the same
name in two different modules
@ This is a problem for modular programming
@ Suppose that the system architect (the big design boss) decides to
split the work across two programming teams, A and B
@ Both teams independently decide to use a global function called
void compute();
@ This causes problems at linking time: it is not possible to have two
distinct functions with the same name in the same (global) scope

@ Another problem is when you decide to include an external library

@ What if the designers of the library decided to use names that are
guite common?

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 6/43

Reducing visibility

@ One possibility is to use the static keyword
¢ static s just the opposite of extern ; a static object is not exported to the linker

module.h

module2.c

I/ variabl e declaration
extern int a;

// function prototype
int f(int);

module.c

#i ncl ude "module.h"

/Il this is exported,
int a=0;

/1l this is not exported,;
static int b = 0;
// try to uncomrent

/1l int b =0;
int f(int i)
{
b=a+i
a = i2;
return b;
}

#i ncl ude <stdio.h>
#i ncl ude "module.h"

Il this is exported!
/1 (but does not conflict)
int b;

int main()

{

int c;

5;
10;

a =
b =
¢ = f(10);

printf("c
printf("a

%d\n", c);
%d\n", a);

G. Lipari (Scuola Superiore Sant'/Anna)

Introduction to C++

November 19, 2010

./examples/12.cpp-examples/module.h
./examples/12.cpp-examples/module.c
./examples/12.cpp-examples/module2.c

@ So, static has two meanings
@ Inside a function, makes a local variable persistent across function
calls
@ In the global scope, hides a global variable to be used only inside
that module
@ it can also be used for functions

@ However, this does not completely solve the naming problem

@ What if we want to use two different functions with the same name
in the same program?

@ Suppose you are writing a variable for mp3 audio processing, and
you implement a set of functions, one of them is called decode()

@ Someone else has implemented a video library that processes
H.264/MPEG-4, and implements a function called decode()

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 8/43

C++ namespaces

@ C++ solves this problem using namespaces
@ A name space is just a way to create and name a scope

@ The idea is that when you build a library, you define a namespace
having a meaningful name (for example the name of the library),
and enclose all your declarations in the namespace

@ The user of the library can then specify which functions to use
using the scope resolution operator

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 9/43

C++ namespaces

@ In the previous example:

/1 audi o. hpp /1 audi o. hpp
namespace audiolib { nanmespace videolib {
voi d decode(); voi d decode();

} }

/1 your nodul e
#i ncl ude "audio.hpp"
#i ncl ude "video.hpp"

audiolib::decode();

videolib::decode();

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010

Scope resolution

@ The:: symbolis called scope resolution, and it is used to decide
which function or variable we want to use

@ itis like directories: with :: you can specify the full name of a
variable (similar to the path)

@ namespaces can be nested:

/1 three different functions!!
int f(int i);
namespace nnn {

int f(int i;

nanespace mmm {

int f(int i)

}

}

/1 function usage;
f(5);

nnn::f(5);
nnn::mmm::f(5);

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 11/43

e The standard library for Input/Output

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 12/43

Simple input and output

@ Simple output can be done with the iostream standard library
@ All functions in the standard library are part of the std namespace;

#i ncl ude <iostream>
int main()

std::cout << "Hello World!" << std::endl;

}

G. Lipari (Scuola Superiore Sant'/Anna)

Introduction to C++

November 19, 2010 13/43

Using directive

@ Sometimes it is very annoying to type std:: , so we can use a
using directive:

#i ncl ude <iostream>
usi ng namespace std;

int main()

{
}

cout << "Hello World!" << endl;

@ First, cout is searched in the global scope: if it is not found, the
namespace in the using directives are looked into

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 14 /43

Using directive - Il

@ Be careful with the using directive:

@ If two namespaces contain the same name, there will be a conflict,
so you have to specify which one to use with the scope resolution

#i ncl ude "audio.hpp"

#i ncl ude "video.hpp"

usi ng nanmespace audiolib, videolib;

decode(); // conpilation error! cannot be resol ved

audiolib::decode() /1 ok, now it can be resolved

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 15/43

cout

@ Notice that we include iostream (without extension)
@ Standard library include files have no extension

@ Itis a little bit too early to understand what is cout . Right now, it is
sufficient to know how to use it

@ cout must be followed by << and a variable, or a constant, or an
expression, or a modifier like endl (which means end of line).

@ You can chain as many segments of << as you like

cout << "Now a number: " << 5 << " and now a float: " << 3.5 << end|; ‘

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 16 /43

input with cin

@ Here is how you do input:

#i ncl ude <iostream>
usi ng nanmespace std;

int main()
int a;
cout << "Enter an integer number *;
cin >> a;
cout << "The square of " << a << " is " << a *a << endl;

@ cin is exactly specular to cout
@ You can also use cerr for output on the standard error

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010

@ If you need to manipulate strings, you can use the string class
from the std library

stringex.cpp

#i ncl ude <iostream>
#i ncl ude <string>

usi ng namespace std;

int main()

{
string name = "Giuseppe";
string surname("Lipari");
string tot;

tot = name + "-" + surname;

int i = totfind("-");

cout << tot << endl;

cout << "The dash is at location: " << i << endl;

cout << "First part: " << tot.substr(0, i) << endl;

cout << "Last part: " << tot.substr(i+1, tot.size()) << endl

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 18/43

./examples/12.cpp-examples/stringex.cpp

@ string is aclass
@ In the previous examples we declare three objects of type string
@ Notice that name, surname and tot are objects, not references to
objects!
@ There is no new instruction!
@ These objects are created on the stack (and not on the heap, more
on this later)
@ You see three ways of initialising an object: with an assignment
(name = “Giuseppe”), with a constructor function

(surname(“Lipari”)), and with a default constructor (tot)
@ Actually, also the first one is a constructor, it is called copy
constructor

@ The + operator is used to concatenate strings (like in Java)

@ Unlike Java, string is not a special class: actually, in C++ you can
redefine the operator + for your own classes (more on this later)

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 19/43

Boolean

@ C++ has a boolean primitive type, called bool , and two boolean
constants, true and false

bool flag = false;

if (flag) {
-

@ However, C++ derives from C, where there was no boolean type

@ in C, a numerical value of 0 is assimilated as false, while a numerical
value different of 0 is assimilated as true
@ Therefore, in C it is perfectly legal to write:

int a=0;
it (@ {
-

@ C++ derives from C, so there is an automatic cast between a
numerical value of 0 and false , and a value different of O and true

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010

Boolean

@ Pay attention: the C++ compiler allows this:

if (@a=0){

}

@ The code above is legal: the result of expression a=0 is 0 (hence
false), so the block is never executed
@ in Java instead it is an error (no automatic conversion between 0
and false)
@ Most modern compilers only raise a warning

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 21/43

e Classes and objects

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 22143

Classes in C++

@ A class in C++ is quite similar to a class in Java or in other OO
languages

Class declaration |

cl ass MyClass {
private:
int var
doubl e c;
pr ot ect ed:
int f();
public:
MyClass();
int pub;
int g(int i)
h

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 23/43

Classes in C++

@ A class in C++ is quite similar to a class in Java or in other OO
languages

Class declaration |

What follows is all private |

cl ass MyClass {
private:
int var
doubl e c;
pr ot ect ed:
int f();
public:
MyClass();
int pub;
int g(int i)
h

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 23/43

Classes in C++

@ A class in C++ is quite similar to a class in Java or in other OO
languages

Class declaration |

What follows is all private |

cl ass MyClass { _]
private: | These are private variables |
int var; _/—/
doubl e c;
pr ot ect ed:
int f();
public:
MyClass();
int pub;
int g(int i)

8

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 23/43

Classes in C++

@ A class in C++ is quite similar to a class in Java or in other OO
languages

Class declaration |

What follows is all private |

cl ass MyClass { _]
private: | These are private variables |
int var, . ___———— |
doubl e c; | What follows is protected |
protected: . ___——— |
int f();
public:
MyClass();
int pub;
int g(int i)

8

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 23/43

Classes in C++

@ A class in C++ is quite similar to a class in Java or in other OO
languages

Class declaration |

What follows is all private

cl ass MyClass {

private:
int var; <_/—//
doubl e c; I

protected: . —— |

int f(); A protected method
public:

MyClass();

int pub;

int g(int i)

| These are private variables

What follows is protected

8

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 23/43

Classes in C++

@ A class in C++ is quite similar to a class in Java or in other OO
languages

Class declaration |

What follows is all private

cl ass MyClass {

private:
int var, . ___———— |

These are private variables

What follows is protected

doubl e c; I
protected: . —— |

int f(); A protected method
public:

MyCIas;();_\\ What follows is public

int pub;

int g(int i);

8

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 23/43

Classes in C++

@ A class in C++ is quite similar to a class in Java or in other OO
languages

Class declaration |

What follows is all private

cl ass MyClass {
These are private variables

private: | —
int var _//
doubl e c; | What follows is protected
protected: . ___——— |
int f(); A protected method

public:
MyCIas;();_\\ What follows is public

int pub; \
int g(int i, ~——__ Constructor

8

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 23/43

Classes in C++

@ A class in C++ is quite similar to a class in Java or in other OO
languages

Class declaration |

What follows is all private

cl ass MyClass {
These are private variables

private: | —

int var _//

doubl e c; | What follows is protected
protected: . ___——— |

int f(); A protected method
public:

MyCIas;();_\

L What follows is public
int pub; \
int g(int i)

—— Constructor

8

A public variable

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 23/43

Classes in C++

@ A class in C++ is quite similar to a class in Java or in other OO
languages

Class declaration |

What follows is all private

cl ass MyClass {
These are private variables

private: | —

int var _//

doubl e c; | What follows is protected
protected: . ___——— |

int f(); A protected method
public:

MyCIas;();_\

L What follows is public
int pub; \
} int g(int i, x ——_ Constructor

A public variable

A public function

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 23/43

Access control

@ A member can be:

@ private: only member functions of the same class can access it;
other classes or global functions can’t

@ protected: only member functions of the same class or of derived
classes can access it: other classes or global functions can't

@ public: every function can access it

cl ass MyClass {
private: MyClass data;
int a;
public: cout << data.a; /1 ERROR!
int c; cout << data.c; /Il OK c is public;
h

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 24143

Access control

@ Default is private

@ An access control keyword defines access until the next access

control keyword

cl ass MyClass {
int a;
doubl e b;
public:
int c;
voi d f();
i nt getA();
private:
i nt modify(doubl e b);
h

T ————— | private (default)

T ———— | public

| — private again

S

November 19, 2010

25/43

G. Lipari (Scuola Superiore Sant'/Anna)

Introduction to C++

Access control and scope

int xx;
class A {\
int xx; ™ global variable I
publ i c: \
} void f0; ™ member variable |
voi d A:f()
{ | access local xx |
XX = 5; /
XX = 3 access global xx |
XX = XX + 2;
}

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 26/43

@ Some people think that private is synonym of secret
@ they complain that the private part is visible in the header file

@ private means not accessible from other classes and does not
mean secret

@ The compiler needs to know the size of the object, in order to
allocate memory to it

@ In an hypothetical C++, if we hide the private part, the compiler
cannot know the size of the object

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 27143

@ Sometimes, two classes interact so much that we would like to let

them share access to their private variables

@ In that case, we have to declare them to be friend

class A {
friend class B;
int vy
voi d f();
public:
int g0
h

-~

class B {

int x
public:

void f(A &a);
h

voi d B:f(A &a)

{
X = ay;
a.f();

k B is friend of A

B can access private
members of A

28/43

G. Lipari (Scuola Superiore Sant'/Anna)

Introduction to C++

November 19, 2010

Friend functions

@ Even a global function or a single member function can be friend

of a class
class A {
friend B:f(); friend member function |
friend h(;
int vy;
voi d f();
public:
int g0 ™ friend global function |
h

@ It is better to use the friend keyword only when it is really
necessary

November 19, 2010 29/43

Introduction to C++

G. Lipari (Scuola Superiore Sant'/Anna)

Nested classes

@ Itis possible to declare a class inside another class
@ Access control keywords apply

@ Class Biis private to class A: it

ctass AL, { is not part of the interface of A,
int a but only of its implementation.
publ 1 &- b: @ However, Ais not allowed to
b access the private part of B!
pubﬁ g:b“ (A=f() cannot access
voi d f(); B:a).
i @ To accomplish this, we have to

declare A as friend of B

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 30/43

@ Our First class

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 31/43

Declaration and definition

@ In C++ (as in C), you can separate declaration and definition

@ Usually, you declare the class in a .hpp file, and put the definition
(i.e. the implementation of the methods) in the .cpp file.

timer.hpp

cl ass Timer {
i nt counter;
int level;
bool tr;
public:
Timer(int i);
int getValue();
i nt getLevel();
bool increment();
voi d reset();
bool trigger();

Notice that the default
specification is private

if you want something to
be public, you have to
specify explicitly

G. Lipari (Scuola Superiore Sant'/Anna)

Introduction to C++

November 19, 2010 32/43

./examples/12.cpp-examples/timer.hpp

Implementation of Timer

timer.cpp Include the class declaration |

#i ncl ude "timer.hpp"

Timer:Timer(int i)
. counter(0), level(i), tr(fal se)
{
}
i nt Timer:getValue()
{
return counter;
}
int Timer:getLevel()
{
return level;
}
voi d Timer:reset()
{
counter = O;
tr = fal se;
}

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 33/43

./examples/12.cpp-examples/timer.cpp

Implementation of Timer

timer.cpp

#i ncl ude "timer.hpp"

Timer:Timer(int i)
. counter(0), level(i), tr(
{
}
i nt Timer:getValue()
{
return counter;
}
int Timer:getLevel()
{
return level;
}
voi d Timer:reset()
{
counter = O;
tr = fal se;
}

|

fal se)

Include the class declaration

Constructor: note the scope reso-
lution

G. Lipari (Scuola Superiore Sant'/Anna)

Introduction to C++

November 19, 2010

33/43

./examples/12.cpp-examples/timer.cpp

Implementation of Timer

timer.cpp

#i ncl ude "timer.hpp"

Timer:Timer(int i)
. counter(0), level(i), tr(
{
}
i nt Timer:getValue()
{
return counter;
}
int Timer:getLevel()
{
return level;
}
voi d Timer:reset()
{
counter = O;
tr = fal se;
}

|

false) |

Include the class declaration

Constructor: note the scope reso-
lution

Class initialisation list |

G. Lipari (Scuola Superiore Sant'/Anna)

Introduction to C++

November 19, 2010

33/43

./examples/12.cpp-examples/timer.cpp

Implementation of Timer

Include the class declaration

timer.cpp
#i ncl ude "timer.hpp"
Timer:Timer(int i)
. counter(0), level(i), tr(
{
}
i nt Timer:getValue()
{
return counter;
}
int Timer:getLevel()
{
return level;
}
voi d Timer:reset()
{
counter = O;
tr = fal se;
}

|

Constructor: note the scope reso-
lution

false) |

P

Class initialisation list |
Method definition (we do not need
to repeat that this method is pub-
lic!)

G. Lipari (Scuola Superiore Sant'/Anna)

Introduction to C++

November 19, 2010

33/43

./examples/12.cpp-examples/timer.cpp

Usage of the Timer

timermain.cpp

#i ncl ude <iostream>
#i ncl ude “"timer.hpp"

usi ng namespace std;

int f(int a)
{
Timer t(10);
whi | e ('tincrement()) {
a++;
}

return a;

int main()

Timer ti(5);
cout << "Before starting ti value is: " << ti.getValue() << en di;
cout << " ti level is: " << ti.getLevel() << endl;
for (tireset(); 'titrigger(); ti.increment()) {
int a = f(ti.getvalue());
cout << "ti value: " << ti.getValue() << endl;
cout << "a is: " << a << endl;

}

cout << "End!" << endl;

Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 34/43

./examples/12.cpp-examples/timermain.cpp

How to compile and link

@ The previous program consists of three files: timer.hpp
timer.copp and timermain.cpp

@ To compile and execute everything:

g++ timer.cpp timermain.cpp -0 timermain ‘

@ When the number of files is large, this can be annoying
@ You can use an IDE, or a makefile:

This rule automatically compilesl

/ every .cpp file into an .o file

.SUFFIXES:
.SUFFIXES: .0 .cpp

.cpp.o:
g++ -c $<

timermain: timer.o timermain.o
g+t+ -0 $@$"

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 35/43

How to compile and link

@ The previous program consists of three files: timer.hpp
timer.copp and timermain.cpp
@ To compile and execute everything:

g++ timer.cpp timermain.cpp -0 timermain

@ When the number of files is large, this can be annoying
@ You can use an IDE, or a makefile:

This rule automatically compiles
/ every .cpp file into an .o file
.SUFFIXES:
.SUFFIXES: .0 .cpp This rule links the object files
timer.o and timermain.o into
.cpp.o: the executable file timermain
g++ -c $<
timermain: timer.o timermain.o P
g++ -0 $@$"

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 35/43

How to compile and link

@ The previous program consists of three files: timer.hpp
timer.copp and timermain.cpp
@ To compile and execute everything:

g++ timer.cpp timermain.cpp -0 timermain

@ When the number of files is large, this can be annoying
@ You can use an IDE, or a makefile:

This rule automatically compiles
/ every .cpp file into an .o file
.SUFFIXES:
.SUFFIXES: .0 .cpp This rule links the object files
timer.o and timermain.o into
.cpp.o: the executable file timermain
g++ -c $<
This file is processed by the make
timermain: timer.o timermain.o o command
g++ -0 $@%"

. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 35/43

How to compile and link

@ The previous program consists of three files: timer.hpp
timer.copp and timermain.cpp
@ To compile and execute everything:

g++ timer.cpp timermain.cpp -0 timermain

@ When the number of files is large, this can be annoying
@ You can use an IDE, or a makefile:

This rule automatically compiles
/ every .cpp file into an .o file
.SUFFIXES:
.SUFFIXES: .0 .cpp This rule links the object files
timer.o and timermain.o into
.cpp.o: the executable file timermain
g++ -c $<
This file is processed by the make
timermain: timer.o timermain.o o command
g++ -0 $@%"
Visit the makefile into the exam-
ple directory

. Lipari (Scuola Superiore Sant’Anna) Introduction to C++ November 19, 2010 35/43

Comments

@ In C++, objects are treated in the same way as primitive type
variables
@ Objects can be defined on the stack, hence their scope extends
only to the block where they are defined
@ Objectt in function f() is valid only during the execution of f() ,
and its constructor and destructor are called every time the function
is invoked and terminates, respectively
@ This is quite different from Java:
@ in Java, when creating an object with new its lifetime extends until
the garbage collector does not destroy it
@ In Java there is only one way of creating objects, they go on the
heap
@ In C++ there are two ways of creating objects: on the stack and on
the heap

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 36/43

Outline

a Destructor

G. Lipari (Scuola Superiore Sant'/Anna) ction to C++ November 19, 2010 37143

@ Before looking at how objects are created, let’s introduce the
destructor
@ It is the reverse of the constructor
@ the constructor is called at creation time and it is used to initialise

the object
@ the destructor is called at termination time and it is used for
clean-up
Default Constructor: must have the
destructor.hpp / same name of the class
class A {
int i
public:
AQ, 1T
A(int a); //
~AQ);, /1
h

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 38/43

./examples/12.cpp-examples/destructor.hpp

@ Before looking at how objects are created, let’s introduce the
destructor
@ It is the reverse of the constructor
@ the constructor is called at creation time and it is used to initialise

the object
@ the destructor is called at termination time and it is used for
clean-up
e
class Al Another constructor: this has a pa
publ : gt " " rameter P
AQ; T —/
A(int a); //
~AQ);, /1
I8

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 38/43

./examples/12.cpp-examples/destructor.hpp

@ Before looking at how objects are created, let’s introduce the
destructor

@ It is the reverse of the constructor
@ the constructor is called at creation time and it is used to initialise

the object
@ the destructor is called at termination time and it is used for
clean-up
Default Constructor: must have the
destructor.npp / same name of the class
class A { Anoth tructor: this h
int i nother constructor: this has a pa-
publ i c: L rameter
AOQ. 1T
A(int a); // | Destructor: the same name of the
~AQ; /1 class, with a tilde in front
h

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++

November 19, 2010 38/43

./examples/12.cpp-examples/destructor.hpp

@ Before looking at how objects are created, let’s introduce the
destructor
@ It is the reverse of the constructor
@ the constructor is called at creation time and it is used to initialise

the object
@ the destructor is called at termination time and it is used for
clean-up
Default Constructor: must have the
destructor.hpp / same name of the class
class A { Anoth tructor: this h
int i nother constructor: this has a pa-
publ i c: " rameter
AOQ. 1T
A(int a) // | Destructor: the same name of the
“AQ. | /' class, with a tilde in front
i There can be only one destructor,
cannot have parameters

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 38/43

./examples/12.cpp-examples/destructor.hpp

Example

destructor.hpp
class A {
int i
public:
AQ; 11
A(int a) //
~AQ; 11
3

destructor.cpp

#i ncl ude "destructor.hpp”
#i ncl ude <iostream>
usi ng nanespace std;

AzA() : i(0)
{
cout << "default constructor of A" << endl;
}
A:A(int a) :i(a)
{
cout << "constructor of A(" << i << ")" << endl;
}
Az~A()
{
cout << "Destructor of A (i=" << i << ")" << endl;
}

Lipari (Scuola Superiore Sal

November 19, 2010

39/43

./examples/12.cpp-examples/destructor.hpp
./examples/12.cpp-examples/destructor.cpp

Example - Il

desmain.cpp Output:
#i ncl ude "destructor.hpp” constructor of A(2)
#i ncl ude <iostream> now inside main
usi ng nanespace std; constructor of A(5)
now inside g
#def i ne WH(x) cout << "now inside " \ defaul t constructor of A
<< #x << endl now inside f
Destructor of A (i=0)
void f() now inside g
Destructor of A (i=5)
A a; now inside main
WH(f); Destructor of A (i=2)
}
void g()
A b(5);
WH(g);
f(;
WH(g);
}
int main()
{
A ¢(2);
WH(main);
90:
WH(main);

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010

./examples/12.cpp-examples/desmain.cpp

Pointers to object and new

@ This is how you can define a pointer to an object

A g
A *p = &a;

@ How you can see, it is not different from regular variables

@ a is an object defined on the stack or in global memory; to create
an object on the heap:

A xp = new A();

@ The previous code:
@ Allocates the right amount of memory on the heap for an object of
type A
@ Calls the constructor for initialising the object
@ returns a pointer to the allocated memory, and assigns it to p

@ Similar to Java, except that in C++ new returns a pointer

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010 41/43

Freeing the memory with delete

@ In Java the memory is freed by the garbage collector
@ In C++ there is not such a thing:
@ Itis the responsibility of the programmer to free the memory

@ The memory can be freed with delete

A xp = new A();

delete p;

@ delete must be followed by a pointer

o It calls the destructor for the object
@ then deallocates the memory

G. Lipari (Scuola Superiore Sant'/Anna) Introduction to C++ November 19, 2010

Example with pointers

desmain2.cpp

Output:

#i ncl ude “destructor.hpp”
#i ncl ude <iostream>
usi ng nanespace std;

<< #x << endl
voi d f()
{

A *pa = new A();
WH(f);
del ete pa;

}
voi d g()
{

A *pb = new A(5);
WH(g);

10

WH(g):

int main()

A xpc = new A(2);
WH(main);

q0;

WH(main);

del ete pc;

la Superiore Sant

#define WH(x) cout << "now inside "

constructor of A(2)

now inside main
constructor of A(5)

now inside g

defaul t constructor of A
now inside f

Destructor of A (i=0)

now inside g

now inside main
Destructor of A (i=2)

@ mmm, maybe something is missing?

./examples/12.cpp-examples/desmain2.cpp

Example with pointers

desmain2.cpp

Output:

#i ncl ude “destructor.hpp”
#i ncl ude <iostream>
usi ng nanespace std;

<< #x << endl
voi d f()
{

A *pa = new A();
WH(f);
del ete pa;

}
voi d g()
{

A *pb = new A(5);
WH(g);

10

WH(g):

int main()

A xpc = new A(2);
WH(main);

q0;

WH(main);

del ete pc;

la Superiore Sant

#define WH(x) cout << "now inside "

constructor of A(2)

now inside main
constructor of A(5)

now inside g

defaul t constructor of A
now inside f

Destructor of A (i=0)

now inside g

now inside main
Destructor of A (i=2)

@ mmm, maybe something is missing?
@ This is called “memory leak”

./examples/12.cpp-examples/desmain2.cpp

Example with pointers

desmain2.cpp

Output:

#i ncl ude “destructor.hpp”
#i ncl ude <iostream>
usi ng nanespace std;

<< #x << endl
voi d f()
{

A *pa = new A();
WH(f);
del ete pa;

}
voi d g()
{

A *pb = new A(5);
WH(g);

10

WH(g):

int main()

A xpc = new A(2);
WH(main);

q0;

WH(main);

del ete pc;

ipari (Scuola Superiore Sant’Anna)

#define WH(x) cout << "now inside "

\

constructor of A(2)

now inside main
constructor of A(5)

now inside g

defaul t constructor of A
now inside f

Destructor of A (i=0)

now inside g

now inside main
Destructor of A (i=2)

troduction to C++

@ mmm, maybe something is missing?

@ This is called “memory leak”

@ The memory pointed by pb is lost!
Cannot be deallocated anymore

November 19, 20

./examples/12.cpp-examples/desmain2.cpp

Example with pointers

desmain2.cpp

Output:

#i ncl ude “destructor.hpp”
#i ncl ude <iostream>
usi ng nanespace std;

<< #x << endl
voi d f()
{

A *pa = new A();
WH(f);
del ete pa;

}
voi d g()
{

A *pb = new A(5);
WH(g);

10

WH(g):

int main()

A xpc = new A(2);
WH(main);

q0;

WH(main);

del ete pc;

ipari (Scuola Superiore Sant’Anna)

#define WH(x) cout << "now inside "

\

constructor of A(2)

now inside main
constructor of A(5)

now inside g

defaul t constructor of A
now inside f

Destructor of A (i=0)

now inside g

now inside main
Destructor of A (i=2)

troduction to C++

@ mmm, maybe something is missing?
@ This is called “memory leak”
@ The memory pointed by pb is lost!
Cannot be deallocated anymore
o Why?

November 19, 20

./examples/12.cpp-examples/desmain2.cpp

Example with pointers

desmain2.cpp

Output:

#i ncl ude “destructor.hpp”
#i ncl ude <iostream>
usi ng nanespace std;

<< #x << endl
voi d f()
{

A *pa = new A();
WH(f);
del ete pa;

}
voi d g()
{

A *pb = new A(5);
WH(g);

10

WH(g):

int main()

A xpc = new A(2);
WH(main);

q0;

WH(main);

del ete pc;

ipari (Scuola Superiore Sant’Anna)

#define WH(x) cout << "now inside "

\

constructor of A(2)

now inside main
constructor of A(5)

now inside g

defaul t constructor of A
now inside f

Destructor of A (i=0)

now inside g

now inside main
Destructor of A (i=2)

troduction to C++

@ mmm, maybe something is missing?
@ This is called “memory leak”
@ The memory pointed by pb is lost!
Cannot be deallocated anymore
o Why?
@ Remember: there is not garbage
collector to save us!

November 19, 20

./examples/12.cpp-examples/desmain2.cpp

	Namespaces
	The standard library for Input/Output
	Classes and objects
	Our First class
	Destructor

