
Object Oriented Software design
Const, inlines, static members, composition

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

December 6, 2010

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 1 / 52

Outline

1 Exercises

2 More on constness

3 Macros and inlines

4 Composition
Links

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 2 / 52

http://retis.sssup.it/~lipari

Exercise 1

Is the following code correct? Do you see any errors?
Modify the code so that it assigns a random number to size

#include <iostream>
using namespace std;

class Fred {
const int size;

public:
Fred(int sz);
void print();

};

Fred::Fred(int sz) { size = sz; }
void Fred::print() { cout << size << endl; }

int main() {
Fred a(1), b(2), c(3);
a.print(), b.print(), c.print();

}

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 4 / 52

Exercise 2

The following example does not compile. Can you tell why?
Modify it so that it will compile correctly

class X {
int i;

public:
X(int ii);
int f();

};

X::X(int ii) : i(ii) {}
int X::f() { return i; }

int main() {
X x1(10);
const X x2(20);
x1.f();
x2.f();

} ///:~

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 5 / 52

Mutable members

Sometimes you need to create an object that is “logically” constant, but in
which some of its members can actually be changed.
Suppose for example that you want to count how many times a certain
member function is called, and suppose that the member function is const
(a weird example)

class Y {
int i; // only for counting
int a; // real data

public:
Y();
int get() const;
int inc();

};

Y::Y() : i(0), a(0) {}
int Y::get() const {

i++; // Compilation error
return a;

}

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 7 / 52

Casting away const

One solution is to cast away constness

int Y::get() const {
((Y*)this)->i++; // OK: cast away const-ness
return a;

}

The above code:
First it converts this into a point of type Y* (rather than const
Y*)
Then, it increments its member i

It works but it is not clean: it is not evident in the interface that i is
going to be changed

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 8 / 52

mutable

A better approach is to use the mutable keyword

class Y {
mutable int i; // only for counting
int a; // real data

public:
Y();
int get() const;
int inc();

};

Y::Y() : i(0), a(0) {}
int Y::get() const {

i++; // no error (it is mutable)
return a;

}

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 9 / 52

Volatile

volatile in front of a variable means: this data may change
outside the knowledge of the compiler.

This may happen through multi-threading or interrupts, or any
other indirect method
Therefore, the compiler is not allowed to make assumptions about
the data, especially when optimising

If the compiler says, “I read this data into a register earlier, and I
haven’t touched that register,” normally it wouldn’t need to read the
data again.
But if the data is volatile, the compiler cannot make such an
assumption because the data may have been changed by another
process, and it must reread that data rather than optimising the
code to remove what would normally be a redundant read.

The syntax of volatile is the same as the syntax for const

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 10 / 52

Example

./examples/14.cpp-examples/volatile.cpp

As with const, you can use volatile for data members, member
functions, and objects themselves. You can only call volatile
member functions for volatile objects.

The reason that isr() cannot actually be used as an interrupt
service routine is that in a member function, the address of the
current object (this) must be secretly passed, and an ISR
generally wants no arguments at all.

To solve this problem, you can make isr() a static member
function (will see later)

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 11 / 52

On the use of macros

Let’s remind ourselves what is a macro in C/C++

It is a pre-processor directive, used to substitute code inside the
main body of the program

#define PI 3.14
#define SUM(x,y) (x+y)

int a, b, c;
a = SUM(b,c); // translated into a = (b+c);
a = PI*SUM(b+c); // translated into a = 3.14*(b+c);

// etc.

Therefore, it is possible to write simple “functions” without the
overhead of the function call

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 13 / 52

./examples/14.cpp-examples/volatile.cpp

Exercise

Things can get nasty when using macros

What does the following macro do?

#define BAND(x) (((x)>5 && (x)<10) ? (x) : 0)
...
int a = BAND(4);
int b = BAND(7);
int c = 10;
a = BAND(c);

List the value of a, b and c after each instruction

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 14 / 52

Exercise - cont.

Anticipate the output of the following code:

int main() {
for(int i = 4; i < 11; i++) {

int a = i;
cout << "a = " << a << endl << ’\t’;
cout << "BAND(++a)=" << BAND(++a) << endl;
cout << "\t a = " << a << endl;

}
}

Check it: ./examples/14.cpp-examples/macro-output.txt

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 15 / 52

./examples/14.cpp-examples/macro-output.txt

What happened?

The problem is that BAND(++a) is substituted by:

(((++a)>5 && (++a)<10) ? (++a) : 0)

If ++a is less than or equal to 5, the shortcut does not evaluate the
other two terms, and the output is 0 , while a is only incremented
once (correctly)

However, if ++a is between 6 and 9, the increment is performed 3
times! Not what we expected!

The only way to avoid this problem is to transform band into a
function

But, what is we want the clean and type-safe behaviour of a
function, without the extra overhead?

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 16 / 52

Macros and private members

Another problem with macros in C++ is that they cannot change
the access rules of C++

class A {
int i;

public:
A();

}
#define GET() A::i

It only works inside function members of A, because i is a private
member

To solve this issue C++ designers introduced the inline concept

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 17 / 52

inline functions

When a function is declared as inline, the compiler tries to
substitute its code in place of the call

The main difference is that the compiler will do that, not the
pre-processor, and this changes everything

inline band(int x) {return (x>5 && x<10) ? x : 0;}

int a=5;
cout << band(++a) << endl;

The last instruction will produce a result of 6 (correctly), without
producing a function call

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 18 / 52

Inline members

Members functions that are defined inside the class declaration
are automatically inline

class A {
int i;

public:
A();
int get() { return i; } // inline automatically
void set(int x);

}

void A::set(int y) { i = y; } // not inline

Method get() is also called in-situ

Method set() can be made inline by specifying the inline
keyword and by including it in the .h file

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 19 / 52

inline members

Two different styles of programming:

In situ:

class A {
int i;

public:
int get() { return i; }
void set(int x) { i=x; }

};

Regular inlines:

class A {
int i;

public:
int get();
void set(int x);

};

inline int A::get()
{
return i;

}
inline void A::set(int x)
{
i=x;

}

The second one is slightly more readable, as it does not clog the
interface with code

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 20 / 52

When to inline

First of all, the compiler is not forced to inline
If the function is too long, almost certainly it will not be inlined

Consider that the whole point of using inlines is to be more
efficient:

if the function is too long, and it is called in many places, it will bloat
the code, reducing the efficiency
if the function is too long, the performance gain from avoiding a
function call is minimal (or even negative)

Remember that inline functions must be in the include file, for the
compiler to take advantage of it

Sometimes, it may not be the case to put functions in the header file
if you change them, the user of your library will need to recompile
his/her code

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 21 / 52

Accessor functions

inlines are convenient for simple accessor methods
Accessor methods are methods to set/get the values of internal members

class A {
int i;

public:
void set(int x) { i=x; }
int get() { return i; }

};

One may think: “what’s the point in writing accessor methods? why not
making the member variable just public?”

If you make i public, it becomes part of the interface
it may be difficult to control who and when the variable changes it value
it may be impossible to restrict the set of values
it may be impossible to change its name without rewriting a lot of user code

A public member variable introduces an unnecessary dependence
between your code and the user code

ret

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 22 / 52

Exercise

Modify the previous code so that:
Write a main function (user-code) that calls the get() and set()
methods
A debug string is printed every time the user calls set()
The value in set() is restricted to non-negative values
Count how many times the get() method is called

How many lines of “user code” you needed to change?
Evaluate what would have been needed if i was a public variable
without accessor methods

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 23 / 52

The pre-processor fights back

Of course, there are things that can only be done by using the
pre-processor
One such thing is effective debugging

We want to be able to debug our code by printing traces of
execution, values of variables, etc.
When we are sure that everything is ok, we would like to remove
the debugging code, because it brings unnecessary overhead
However, often we are wrong: we were sure everything was ok, we
removed the debugging code, and then we realised we needed
some more debugging
It would be nice if the debugging code would disappear at once, to
appear again only when needed

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 24 / 52

More pre-processor features

One very useful feature is conditional compilation:

#define DEBUG 1

#ifdef DEBUG
cout << "This is a debugging string" << endl;
#endif
cout << "This is a normal string" << endl;

the first cout instruction is only compiled if the DEBUG symbol is
defined (first line)
Therefore, to not compile it, we only need to comment the first line

A symbol can also be defined on the compiler command line with
the -D option:

g++ -DDEBUG -c myfile.cpp

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 25 / 52

A debug macro

Another interesting feature is the stringizing: by putting a # symbol
in front of an identifier, the identifier is transformed into a string

#define DBGPRINT(x) cout << #x " = " << x << endl

int a = 0;
DBGPRINT(a);
// translated into
// cout << "a" " = " << a << endl;

This can be very useful for debugging.

We can also trace instructions:

#define TRACE(s) cerr << #s << endl, s

TRACE(f(i)); // prints "f(i)" and executes it

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 26 / 52

Token pasting

We can create identifiers by concatenating them into a new
identifier

#define FIELD(a) string a##_string; int a##_size
class Record {

FIELD(one);
FIELD(two);
FIELD(three);
// ...

};

Guess what is the output?

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 27 / 52

Combining debug and conditional compilation

#ifdef DEBUG
#define DBGPRINT(x) cout << #x " = " << x << endl
#define TRACE(s) cerr << #s << endl, s
#else
#define DBGPRINT(x)
#define TRACE(s)
#endif

As an exercise, use the above definitions to add debugging strings
in this code

Then try to compile with debug and without debugging information

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 28 / 52

Composite objects

Composition is an essential technique of object oriented
programming
A C++ class can have member variables that are

objects of other classes,
pointers to objects of other classes
references to objects of other classes

All the above cases are actually different, so let’s analyse them
carefully, one by one

Can you tell the difference with Java?

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 30 / 52

Example: car and wheels

car/wheel.hpp

#include <string>

class Wheel {
std::string name;

public:
Wheel(const std::string &n);
Wheel(const Wheel &w);
std::string getName() const;

};

inline std::string Wheel::getName() const
{

return name;
}

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 31 / 52

Wheels

car/wheel.cpp

#include <iostream>
#include "wheel.hpp"
#include "debug.hpp"

using namespace std;

Wheel::Wheel(const string &n) : name(n)
{

DBGPRINT("Wheel constructor");
DBGVAR(name);

}

Wheel::Wheel(const Wheel &w) : name(w.name)
{

DBGPRINT("Wheel copy constructor");
}

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 32 / 52

./examples/14.cpp-examples/car/wheel.hpp
./examples/14.cpp-examples/car/wheel.cpp

Car

car/car.hpp

#include "wheel.hpp"

class Car {
std::string name;
Wheel leftFrontWheel;
Wheel rightFrontWheel;
Wheel leftRearWheel;
Wheel rightRearWheel;

public:
Car(const std::string &n);
Car(const Car &c);
std::string getName() const;

};

inline std::string Car::getName() const
{

return name;
}

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 33 / 52

Car
car/car.cpp

#include <iostream>
#include "car.hpp"
#include "debug.hpp"

using namespace std;

Car::Car(const string &n)
: name(n),
leftFrontWheel("LF"),
rightFrontWheel("RF"),
leftRearWheel("LR"),
rightRearWheel("RR")

{
DBGPRINT("Car constructor");
DBGVAR(name);
DBGPRINT("--------------------");

}

Car::Car(const Car &c)
: name(c.name),
leftFrontWheel(c.leftFrontWheel),
rightFrontWheel(c.rightFrontWheel),
leftRearWheel(c.leftRearWheel),
rightRearWheel(c.rightRearWheel)

{
DBGPRINT("Car copy constructor");
DBGVAR(name);
DBGPRINT("--------------------");

}

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 34 / 52

./examples/14.cpp-examples/car/car.hpp
./examples/14.cpp-examples/car/car.cpp

The client
car/carmain.cpp

#include "car.hpp"
#include <iostream>

using namespace std;

Car f(Car xx, Car yy)
{

cout << xx.getName() << endl;
cout << yy.getName() << endl;
return xx;

}

const Car &g(const Car &xx)
{

cout << xx.getName() << endl;
return xx;

}

int main()
{

Car c1("Fiat Punto");
Car c2("Audi A4");
Car c3("Citroen C3");

Car c4 = f(c1, c2);
{

Car c5 = c3;
Car c6 = g(c4);

}
}

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 35 / 52

Exercise

Defining four variables seems redundant code
Try to substitute the 4 variables with an array
How to initialise the array?
See solution in

./examples/14.cpp-examples/car2/wheel.hpp ,

./examples/14.cpp-examples/car2/wheel.cpp ,

./examples/14.cpp-examples/car2/car.hpp and

./examples/14.cpp-examples/car2/car.cpp

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 36 / 52

./examples/14.cpp-examples/car/carmain.cpp
./examples/14.cpp-examples/car2/wheel.hpp
./examples/14.cpp-examples/car2/wheel.cpp
./examples/14.cpp-examples/car2/car.hpp
./examples/14.cpp-examples/car2/car.cpp

Static members

In the solution to the previous example we used static members
A static data member has only one copy for all objects of the class
A static data member needs to be initialised

This is done in the .cpp file

// wheel.hpp
class Wheel {

static int count;
std::string name;
int serial;

public:
static const std::string positions[];
...

};

// wheel.cpp
int Wheel::count = 0;
const string Wheel::positions[] = {"LF", "RF", "LR", "RR" };

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 37 / 52

Static data members

In the previous example, variable count is used to count the
number of Wheels that have been created until now

It is initialised anytime a new Wheel is created, either by the default
class constructor, or by the copy constructor
Its value is assigned to serial, that acts like a serial number
Therefore, that can be minimum MAX_INT wheels with a different
serial number

Exercise:
Introduce a serial number for cars
Write get methods for getting the serial number for wheels and
cars

positions is a static array of constant strings
it’s initialised once and never changed
similar to enum, but for objects

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 38 / 52

Static methods

A static method is a method of the class that can only access static data
members

For example, a method to read the actual value of the variable count in
Wheel

class Wheel {
static int count;
...

public:
...
static int getCount();

};

int Wheel::getCount()
{

return count;
}

How to call the function:

int howmany = Wheel::getCount();

Notice that we do not need an object of type Wheel to call the method
Static methods are not called on objects

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 39 / 52

String formatting

Sometimes it is useful to create strings containing different kind of
data

unlike in Java, the operator+() for strings does not convert arbitrary
objects (std::string is not embedded in the C++ language)

To do this in C++, we need to use another class of the standard
template library

#include <sstream>
...
inline std::string Wheel::getName() const
{

std::stringstream ss;
ss << name << "-" << serial;
return ss.str();

}

stringstream works like an ordinary output stream (e.g. cout)
However, instead of writing to the terminal, the output is sent into a
string buffer
Later, the string buffer can be retrieved with method str()

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 40 / 52

Backlink

Now, we want to associate every wheel with the car on which it is
mounted
There are two ways of doing this:

By using a pointer to a Car
By using a reference to a Car

The pointer is used when the association is dynamic (i.e. it may
change over time)

For example, the wheel is mounted on a different car

The reference is used when the association is permanent (i.e. it
never change during the lifetime of the object)

Let’s use the reference first

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 42 / 52

Double include

Now we have a problem
A car includes a wheel: this means that the file car.hpp needs to
include the file wheel.hpp before the definition of the class Car
A wheel references a car: this means that the file wheel.hpp
needs to include car.hpp before defining class Wheel
If we do both things, the pre-processor will go into an infinite loop!

To avoid this circular reference we can use the forward declaration

We also need include guards

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 43 / 52

Forward declaration

In file wheel.hpp we declare that there is a class Car that will be
fully declared later

// wheel.hpp
class Car;

class Wheel {
Car &car;
static int count;
std::string name;
int serial;

public:
...

};

It works because in the file ./examples/14.cpp-examples/car3/wheel.hpp we
do not use anything of class Car, except a reference to it

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 44 / 52

Include guards

However, we have another problem: wheel.cpp need to include both
wheel.hpp and car.hpp
car.hpp includes wheel.hpp
Therefore, wheel.hpp is include two times in wheel.cpp
In C++, it is not possible to declare a class two times, even if the two
declarations are the same
To avoid this, we use a pre-processor trick:

// wheel.hpp
#ifndef __WHEEL_HPP__
#define __WHEEL_HPP__
...
class Car;
class Wheel {...};
...
#endif

The first time symbol __WHEEL_HPP__ is not defined, so the file is
expanded correctly in the first inclusion
For the second inclusion, the symbol has already been defined, so the
second time the file is not expanded

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 45 / 52

./examples/14.cpp-examples/car3/wheel.hpp

The complete Wheel implementation
car3/wheel.hpp

#ifndef __WHEEL_HPP__
#define __WHEEL_HPP__

#include <string>
#include <sstream>

class Car;

class Wheel {
Car &car;
static int count;
std::string name;
int serial;

public:
static const std::string positions[];
Wheel(Car &c, const std::string &n);
Wheel(const Wheel &w);
std::string getName() const;

};

inline std::string Wheel::getName() const
{

std::stringstream ss;
ss << name << "-" << serial;
return ss.str();

}

#endif

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 46 / 52

The complete Wheel implementation

car3/wheel.cpp

#include <iostream>
#include "wheel.hpp"
#include "car.hpp"
#include "debug.hpp"

using namespace std;

int Wheel::count = 0;
const string Wheel::positions[] = {"LF", "RF", "LR", "RR" };

Wheel::Wheel(Car &c, const string &n) : car(c), name(n), serial(count++)
{

DBGPRINT("Wheel constructor");
}

Wheel::Wheel(const Wheel &w) : car(w.car), name(w.name), serial(count++)
{

DBGPRINT("Wheel copy constructor");
DBGPRINT(" -- " << getName());

}

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 47 / 52

./examples/14.cpp-examples/car3/wheel.hpp
./examples/14.cpp-examples/car3/wheel.cpp

vector

Instead of using an array for storing the wheels for a car, this time we
will use a new object from the standard template library: vector

#include <vector>
...
class Car {

std::vector<Wheel> wheels;
...

}

vector is a generic container which extends the array in several ways
it has dynamic size

new objects can be inserted at any time using methods push_back()
or insert()
objects can be removed by using pop_back() or erase()
objects can be accessed using the standard array operator [], or
through other methods

vector is a template
similar to generics in Java

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 48 / 52

Car

Let’s see how vector is used in Car car3/car.hpp

#ifndef __CAR_HPP__
#define __CAR_HPP__

#include <vector>
#include "wheel.hpp"

class Car {
std::string name;
std::vector<Wheel> wheels;

public:
Car(const std::string &n);
Car(const Car &c);
std::string getName() const;

};

#endif

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 49 / 52

./examples/14.cpp-examples/car3/car.hpp

Car
car3/car.cpp

#include <iostream>
#include "car.hpp"
#include "debug.hpp"

using namespace std;

Car::Car(const string &n)
: name(n),
wheels{Wheel(*this, Wheel::positions[0]),

Wheel(*this, Wheel::positions[1]),
Wheel(*this, Wheel::positions[2]),
Wheel(*this, Wheel::positions[3])}

{
DBGPRINT("Car constructor");
DBGPRINT(getName());

}

Car::Car(const Car &c)
: name(c.name), wheels(c.wheels)

{
DBGPRINT("Car copy constructor");
DBGPRINT(getName());

}

string Car::getName() const
{

std::stringstream ss;
ss << name;
for (int i=0; i<4; i++)

ss << "/" << wheels[i].getName();
return ss.str();

}

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 50 / 52

Initialisation

In the initialisation of Car we see a strange construct

Car::Car(const string &n)
: name(n),

wheels{Wheel(*this, Wheel::positions[0]),
Wheel(*this, Wheel::positions[1]),
Wheel(*this, Wheel::positions[2]),
Wheel(*this, Wheel::positions[3])}

{...}

The vector is initialised by using curly braces {}, and by listing all
objects that are contained in it

This is actually part of the future C++ standard (c++0x), which will
be release some time in the next years

To use it in the current g++ compiler, use the flag -std=c++0x

More about vector later

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 51 / 52

./examples/14.cpp-examples/car3/car.cpp

Link with pointer

As an exercise, let’s modify classes Wheel and Car

1 Write a new class Tire that is dynamically associated with the
wheel

Use the counter/serial number technique to number the tires
The tire should have a pointer to the wheel it is mounted on
When you create the wheel you also create the tire
When you destroy the wheel you also destroy the tire

2 Write a method of class Wheel called Tire change(int pos,
Tire *t); that takes a pointer to a new tire, and returns the old
one

3 Write a method void run() of a car that first checks if all the
tires are correctly mounted on wheels

4 Write a main that first creates two cars, then swaps all their tires

G. Lipari (Scuola Superiore Sant’Anna) OOSD December 6, 2010 52 / 52

	Exercises
	More on constness
	Macros and inlines
	Composition
	Links

