
Design Patterns in C++
Summary of C++ features

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

March 13, 2011

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 1 / 125

http://retis.sssup.it/~lipari

Outline

1 Function Overloading

2 Pointers
Pointer to member
References

3 Copy constructor

4 Static
5 Inheritance

Multiple inheritance
Downcasting

6 Operator Overloading
7 Type conversion

8 Templates

9 Exceptions
Cleanup

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 2 / 125

Outline

1 Function Overloading

2 Pointers
Pointer to member
References

3 Copy constructor

4 Static
5 Inheritance

Multiple inheritance
Downcasting

6 Operator Overloading
7 Type conversion

8 Templates

9 Exceptions
Cleanup

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 3 / 125

Function overloading

In C++, the argument list is part of the name of the function
this mysterious sentence means that two functions with the same
name but with different argument list are considered two different
functions and not a mistake

If you look at the internal name used by the compiler for a
function, you will see three parts:

the class name
the function name
the argument list

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 4 / 125

Function overloading

class A {
public:

void f(int a);
void f(int a, int b);
void f(double g);

};
class B {
public:

void f(int a);
};

__A_f_int

__A_f_int_int

__A_f_double

__B_f_int

To the compiler, they are all different functions!

beware of the type...

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 5 / 125

Which one is called?

class A {
public:

void f(int a);
void f(int a, int b);
void f(double g);

};
class B {
public:

void f(int a);
};

A a;
B b;

a.f(5);

b.f(2);

a.f(3.0);
a.f(2,3);
a.f(2.5, 3);

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 6 / 125

Which one is called?

class A {
public:

void f(int a);
void f(int a, int b);
void f(double g);

};
class B {
public:

void f(int a);
};

A a;
B b;

a.f(5);

b.f(2);

a.f(3.0);
a.f(2,3);
a.f(2.5, 3);

__A_f_int

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 6 / 125

Which one is called?

class A {
public:

void f(int a);
void f(int a, int b);
void f(double g);

};
class B {
public:

void f(int a);
};

A a;
B b;

a.f(5);

b.f(2);

a.f(3.0);
a.f(2,3);
a.f(2.5, 3);

__A_f_int

__B_f_int

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 6 / 125

Which one is called?

class A {
public:

void f(int a);
void f(int a, int b);
void f(double g);

};
class B {
public:

void f(int a);
};

A a;
B b;

a.f(5);

b.f(2);

a.f(3.0);
a.f(2,3);
a.f(2.5, 3);

__A_f_int

__B_f_int

__A_f_double

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 6 / 125

Which one is called?

class A {
public:

void f(int a);
void f(int a, int b);
void f(double g);

};
class B {
public:

void f(int a);
};

A a;
B b;

a.f(5);

b.f(2);

a.f(3.0);
a.f(2,3);
a.f(2.5, 3);

__A_f_int

__B_f_int

__A_f_double

__A_f_int_int

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 6 / 125

Which one is called?

class A {
public:

void f(int a);
void f(int a, int b);
void f(double g);

};
class B {
public:

void f(int a);
};

A a;
B b;

a.f(5);

b.f(2);

a.f(3.0);
a.f(2,3);
a.f(2.5, 3);

__A_f_int

__B_f_int

__A_f_double

__A_f_int_int

__A_f_int_int

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 6 / 125

Return values

Notice that return values are not part of the name
the compiler is not able to distinguish two functions that differs only
on return values!

class A {
int floor(double a);
double floor(double a);

};

This causes a compilation error

It is not possible to overload a return value

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 7 / 125

Default arguments in functions

Sometime, functions have long argument lists

Some of these arguments do not change often

We would like to set default values for some argument
This is a little different from overloading, since it is the same
function we are calling!

int f(int a, int b = 0);

f(12); // it is equivalent to f(12,0);

The combination of overloading with default arguments can be
confusing

it is a good idea to avoid overusing both of them

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 8 / 125

Outline

1 Function Overloading

2 Pointers
Pointer to member
References

3 Copy constructor

4 Static
5 Inheritance

Multiple inheritance
Downcasting

6 Operator Overloading
7 Type conversion

8 Templates

9 Exceptions
Cleanup

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 9 / 125

Pointers

We can define a pointer to an object

class A { ... };

A myobj;
A *p = &myobj;

Pointer p contains the address of myobj

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 10 / 125

Pointers - II

As in C, in C++ pointers can be used to pass arguments to
functions

void fun(int a, int *p)
{
a = 5;

*p = 7;
}
...
int x = 0, y = 0;
fun(x, &y);

After the function call, x=0 while y = 7

x is passed by value (i.e. it is copied into a)

y is passed by address (i.e. we pass its address, so that it can be
modified inside the function)

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 11 / 125

Another example
pointerarg.cpp

#include <iostream>
using namespace std;

class MyClass {
int a;

public:
MyClass(int i) { a = i; }
void fun(int y) { a = y; }
int get() { return a; }

};

void g(MyClass c) {
c.fun(5);

}

void h(MyClass *p) {
p->fun(5);

}

int main() {
MyClass obj(0);

cout << "Before calling g: obj.get() = " << obj.get() << endl;
g(obj);
cout << "After calling g: obj.get() = " << obj.get() << endl;
h(&obj);
cout << "After calling h: obj.get() = " << obj.get() << endl;

}

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 12 / 125

./examples/01.cpp_summary-examples/pointerarg.cpp

What happened

Function g() takes an object, and makes a copy
c is a copy of obj
g() has no side effects, as it works on the copy

Function h() takes a pointer to the object
it works on the original object obj, changing its internal value

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 13 / 125

More on pointers

It is also possible to define pointers to functions:
The portion of memory where the code of a function resides has an
address; we can define a pointer to this address

void (*funcPtr)(); // pointer to void f();
int (*anotherPtr)(int) // pointer to int f(int a);

void f(){...}

funcPtr = &f(); // now funcPtr points to f()
funcPtr = f; // equivalent syntax

(*funcPtr)(); // call the function

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 14 / 125

Pointers to functions – II

To simplify notation, it is possible to use typedef:

typedef void (*MYFUNC)();
typedef void* (*PTHREADFUN)(void *);

void f() { ... }
void *mythread(void *) { ... }

MYFUNC funcPtr = f;
PTHREADFUN pt = mythread;

It is also possible to define arrays of function pointers:

void f1(int a) {}
void f2(int a) {}
void f3(int a) {}
...
void (*funcTable []) (int) = {f1, f2, f3}
...
for (int i =0; i<3; ++i) (*funcTable[i])(i + 5);

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 15 / 125

Field dereferencing

When we have to use a member inside a function through a
pointer

class Data {
public:
int x;
int y;

};

Data aa; // object
Data *pa = &aa; // pointer to object
pa->x; // select a field
(*pa).y; // " "

Until now, all is normal

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 16 / 125

Outline

1 Function Overloading

2 Pointers
Pointer to member
References

3 Copy constructor

4 Static
5 Inheritance

Multiple inheritance
Downcasting

6 Operator Overloading
7 Type conversion

8 Templates

9 Exceptions
Cleanup

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 17 / 125

Pointer to member

Can I have a pointer to a member of a class?

The problem with it is that the address of a member is only
defined with respect to the address of the object
The C++ pointer-to-member selects a location inside a class

The dilemma here is that a pointer needs an address, but there is
no “address” inside a class, only an “offset”;
selecting a member of a class means offsetting into that class
in other words, a pointer-to-member is a “relative” offset that can be
added to the address of an object

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 18 / 125

Usage

To define and assign a pointer to member you need the class

To dereference a pointer-to-member, you need the address of an
object

class Data {
public:
int x;
int y;

};

int Data::*pm; // pointer to member
pm = &Data::x; // assignment
Data aa; // object
Data *pa = &aa; // pointer to object
pa->*pm = 5; // assignment to aa.x
aa.*pm = 10; // another assignment to aa.x
pm = &Data::y;
aa.*pm = 20; // assignment to aa.y

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 19 / 125

Syntax for ponter-to-member functions

For member functions, the syntax is very similar:

class Simple2 {
public:

int f(float) const { return 1; }
};

int (Simple2::*fp)(float) const;
int (Simple2::*fp2)(float) const = &Simple2::f;

int main() {
fp = &Simple2::f;

Simple2 obj;
Simple2 *p = &obj;

p->*fp(.5); // calling the function
obj.*fp(.8); // calling it again

}

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 20 / 125

Another example

class Widget {
void f(int) const { cout << "Widget::f()\n"; }
void g(int) const { cout << "Widget::g()\n"; }
void h(int) const { cout << "Widget::h()\n"; }
void i(int) const { cout << "Widget::i()\n"; }
enum { cnt = 4 };
void (Widget::*fptr[cnt])(int) const;

public:
Widget() {

fptr[0] = &Widget::f; // Full spec required
fptr[1] = &Widget::g;
fptr[2] = &Widget::h;
fptr[3] = &Widget::i;

}
void select(int i, int j) {

if(i < 0 || i >= cnt) return;
(this->*fptr[i])(j);

}
int count() { return cnt; }

};

int main() {
Widget w;
for(int i = 0; i < w.count(); i++)

w.select(i, 47);
}

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 21 / 125

Outline

1 Function Overloading

2 Pointers
Pointer to member
References

3 Copy constructor

4 Static
5 Inheritance

Multiple inheritance
Downcasting

6 Operator Overloading
7 Type conversion

8 Templates

9 Exceptions
Cleanup

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 22 / 125

References

In C++ it is possible to define a reference to a variable or to an
object

int x; // variable
int &rx = x; // reference to variable

MyClass obj; // object
MyClass &r = obj; // reference to object

r is a reference to object obj
WARNING!
C++ uses the same symbol & for two different meanings!
Remember:

when used in a declaration/definition, it is a reference
when used in an instruction, it indicates the address of a variable in
memory

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 23 / 125

References vs pointers

There is quite a difference between references and pointers

MyClass obj; // the object
MyClass &r = obj; // a reference
MyClass *p; // a pointer
p = &obj; // p takes the address of obj

obj.fun(); // call method fun()
r.fun(); // call the same method by reference
p->fun(); // call the same method by pointer

MyClass obj2; // another object
p = & obj2; // p now points to obj2
r = obj2; // compilation error! Cannot change a reference!
MyClass &r2; // compilation error! Reference must be initialized

Once you define a reference to an object, the same reference
cannot refer to another object later!

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 24 / 125

Reference vs pointer

In C++, a reference is an alternative name for an object

Pointers

Pointers are like other
variables

Can have a pointer to
void

Can be assigned
arbitrary values

It is possible to do
arithmetic

References

Must be initialised

Cannot have
references to void

Cannot be assigned

Cannot do arithmetic

What are references good for?

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 25 / 125

Reference example
referencearg.cpp

#include <iostream>
using namespace std;

class MyClass {
int a;

public:
MyClass(int i) { a = i; }
void fun(int y) { a = y; }
int get() { return a; }

};

void g(MyClass c) {
c.fun(5);

}

void h(MyClass &c) {
c.fun(5);

}

int main() {
MyClass obj(0);

cout << "Before calling g: obj.get() = " << obj.get() << endl;
g(obj);
cout << "After calling g: obj.get() = " << obj.get() << endl;
h(obj);
cout << "After calling h: obj.get() = " << obj.get() << endl;

}

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 26 / 125

./examples/01.cpp_summary-examples/referencearg.cpp

Differences

Notice the differences:
Method declaration: void h(MyClass &c); instead of void
h(MyClass *p);
Method call: h(obj); instead of h(&obj);
In the first case, we are passing a reference to an object
In the second case, the address of an object

References are much less powerful than pointers
However, they are much safer than pointers

The programmer cannot accidentally misuse references, whereas it
is easy to misuse pointers

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 27 / 125

Outline

1 Function Overloading

2 Pointers
Pointer to member
References

3 Copy constructor

4 Static
5 Inheritance

Multiple inheritance
Downcasting

6 Operator Overloading
7 Type conversion

8 Templates

9 Exceptions
Cleanup

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 28 / 125

Copying objects

In the previous example, function g() is taking a object by value

void g(MyClass c) {...}
...
g(obj);

The original object is copied into parameter c

The copy is done by invoking the copy constructor

MyClass(const MyClass &r);

If the user does not define it, the compiler will define a default one
for us automatically

The default copy constructor just performs a bitwise copy of all
members
Remember: this is not a deep copy!

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 29 / 125

Example

copy1.cpp

c.fun(5);
}

void h(MyClass &c) {
c.fun(5);
//c.get();

}

int main() {
MyClass obj(2);

cout << "Before calling g: obj.get() = " << obj.get() << endl;
g(obj);

Now look at the output
The copy constructor is automatically called when we call g()
It is not called when we call h()

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 30 / 125

./examples/01.cpp_summary-examples/copy1.cpp

Usage

The copy constructor is called every time we initialise a new object
to be equal to an existing object

MyClass ob1(2); // call constructor
MyClass ob2(ob1); // call copy constructor
MyClass ob3 = ob2; // call copy constructor

We can prevent a copy by making the copy constructor private:

class MyClass {
MyClass(const MyClass &r); // can’t be copied!

public:
...

};

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 31 / 125

const references

Let’s analyse the argument of the copy constructor

MyClass(const MyClass &r);

The const means:
This function accepts a reference
however, the object will not be modified: it is constant
the compiler checks that the object is not modified by checking the
constness of the methods
As a matter of fact, the copy constructor does not modify the
original object: it only reads its internal values in order to copy them
into the new object
If the programmer by mistake tries to modify a field of the original
object, the compiler will give an error

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 32 / 125

Outline

1 Function Overloading

2 Pointers
Pointer to member
References

3 Copy constructor

4 Static
5 Inheritance

Multiple inheritance
Downcasting

6 Operator Overloading
7 Type conversion

8 Templates

9 Exceptions
Cleanup

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 33 / 125

Meaning of static

In C/C++ static has several meanings
for global variables, it means that the variable is not exported in the
global symbol table to the linker, and cannot be used in other
compilation units
for local variables, it means that the variable is not allocated on the
stack: therefore, its value is maintained through different function
instances
for class data members, it means that there is only one instance of
the member across all objects
a static function member can only act on static data members of the
class

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 34 / 125

Static data members

Static data members need to be initialized when the program
starts, before the main is invoked

they can be seen as global initialized variables (and this is how they
are implemented)

This is an example

// include file A.hpp
class A {
static int i;

public:
A();
int get();

};

// src file A.cpp
#include "A.hpp"

int A::i = 0;

A::A() {...}
int A::get() {...}

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 35 / 125

The static initialization fiasco

When static members are complex objects, that depend on each
other, we have to be careful with the order of initialization

initialization is performed just after the loading, and before the main
starts.
Within a specific translation unit, the order of initialization of static
objects is guaranteed to be the order in which the object definitions
appear in that translation unit. The order of destruction is
guaranteed to be the reverse of the order of initialization.
However, there is no guarantee concerning the order of initialization
of static objects across translation units, and the language provides
no way to specify this order. (undefined in C++ standard)
If a static object of class A depends on a static object of class B, we
have to make sure that the second object is initialized before the
first one

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 36 / 125

Solutions

The Nifty counter (or Schwartz counter) technique
Used in the standard library, quite complex as it requires an extra
class that takes care of the initialization

The Construction on first use technique
Much simpler, use the initialization inside function

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 37 / 125

Construction on first use

It takes advantage of the following C/C++ property
Static objects inside functions are only initialized on the first call

Therefore, the idea is to declare the static objects inside global
functions that return references to the objects themselves

access to the static objects happens only through those global
functions (see Singleton)

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 38 / 125

Outline

1 Function Overloading

2 Pointers
Pointer to member
References

3 Copy constructor

4 Static
5 Inheritance

Multiple inheritance
Downcasting

6 Operator Overloading
7 Type conversion

8 Templates

9 Exceptions
Cleanup

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 39 / 125

Code reuse

In C++ (like in all OO programming), one of the goals is to re-use
existing code
There are two ways of accomplishing this goal: composition and
inheritance

Composition consists defining the object to reuse inside the new
object
Composition can also expressed by relating different objects with
pointers each other
Inheritance consists in enhancing an existing class with new more
specific code

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 40 / 125

Inheritance

class A {
int i;

protected:
int j;

public:
A() : i(0),j(0) {};
~A() {};
int get() const {return i;}
int f() const {return j;}

};

class B : public A {
int i;

public:
B() : A(), i(0) {};
~B() {};
void set(int a) {j = a; i+= j}
int g() const {return i;}

};

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 41 / 125

Use of Inheritance

Now we can use B as a special version of A

int main()
{

B b;
cout << b.get() << endl; // calls A::get();
b.set(10);
cout << b.g() << endl;
b.g();
A *a = &b; // Automatic type conversion (upcasting)
a->f();
B *p = new A;

}

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 42 / 125

Overloading and hiding

There is no overloading across classes

class A {
...

public:
int f(int, double);

}

class B : public A {
...

public:
void f(double);

}

int main()
{

B b;
b.f(2,3.0); // ERROR!

}

A::f() has been hidden
by B::f()

to get A::f() into scope,
the using directive is
necessary

using A::f(int,
double);

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 43 / 125

Virtual functions

Let’s introduce virtual functions with an example

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 44 / 125

Implementation

class Shape {
protected:

double x,y;
public:

Shape(double x1, double y2);
virtual void draw() = 0;

};

class Circle : public Shape {
double r;

public:
Circle(double x1, double y1,

double r);
virtual void draw();

};

class Rect : public Shape {
double a, b;

public:
Rect(double x1, double y1,

double a1, double b1);
virtual void draw();

};

class Triangle : public Shape {
double a, b;

public:
Triangle(double x1, double y1,

double a1, double b1);
virtual void draw();

};

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 45 / 125

We would like to collect shapes

Let’s make a vector of shapes

vector<Shapes *> shapes;

shapes.push_back(new Circle(2,3,10));
shapes.push_back(new Rect(10,10,5,4));
shapes.push_back(new Triangle(0,0,3,2));

// now we want to draw all the shapes ...

for (int i=0; i<3; ++i) shapes[i]->draw();

We would like that the right draw function is called

However, the problem is that Shapes::draw() is called

The solution is to make draw virtual

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 46 / 125

Virtual functions

class Shape {
protected:

double x,y;
public:

Shape(double xx, double yy);
void move(double x, double y);
virtual void draw();
virtual void resize(double scale);
virtual void rotate(double degree);

};

class Circle : public Shape {
double r;

public:
Circle(double x, double y,

double r);
void draw();
void resize(double scale);
void rotate(double degree);

};

move() is a regular
function

draw(), resize()
and rotate() are
virtual

see shapes/

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 47 / 125

Virtual table

When you put the virtual keyword before a function declaration,
the compiler builds a vtable for each class

Circle – vptr

Rect – vptr

Triangle – vptr

void draw()

void resize()

void rotate()

void draw()

void resize()

void rotate()

void draw()

void resize()

void rotate()

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 48 / 125

Calling a virtual function

When the compiler sees a call to a virtual function, it performs a
late binding, or dynamic binding

each object of a class derived from Shape has a vptr as first
element.

It is like a hidden member variable

The virtual function call is translated into
get the vptr (first element of object)
move to the right position into the vtable (depending on which
virtual function we are calling)
call the function

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 49 / 125

Dynamic binding vs static binding

Which function are called in the following code?

class A {
public:

void f() { cout << "A::f()" << endl; g(); }
virtual void g() { cout << "A::g()" << endl; }

};
class B : public A {
public:

void f() { cout << "B::f()" << endl; g(); }
virtual void g() { cout << "B::g()" << endl; }

};
...

A *p = new B;
p->g();
p->f();

B b;
A &r = b;
r.g();
r.f();

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 50 / 125

Overloading and overriding

When you override a virtual function, you cannot change the
return value

Simply because the compiler will not know which function to
actually call

There is only one exception to the previous rule:

if the base class virtual method returns a pointer or a reference to
an object of the base class . . .

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 51 / 125

Overloading and overriding

When you override a virtual function, you cannot change the
return value

Simply because the compiler will not know which function to
actually call

There is only one exception to the previous rule:

if the base class virtual method returns a pointer or a reference to
an object of the base class . . .
. . . the derived class can change the return value to a pointer or
reference of the derived class

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 51 / 125

Overload and override

Examples

Correct

class A {
public:

virtual A& f();
int g();

};

class B: public A {
public:

virtual B& f();
double g();

};

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 52 / 125

Overload and override

Examples

Correct

class A {
public:

virtual A& f();
int g();

};

class B: public A {
public:

virtual B& f();
double g();

};

Wrong

class A {
public:

virtual A& f();
};

class C: public A {
public:

virtual int f();
};

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 52 / 125

Overloading and overriding

When you override a virtual function, you cannot change the
return value

Simply because the compiler will not know which function to
actually call

There is only one exception to the previous rule:

if the base class virtual method returns a pointer or a reference to
an object of the base class . . .

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 53 / 125

Overloading and overriding

When you override a virtual function, you cannot change the
return value

Simply because the compiler will not know which function to
actually call

There is only one exception to the previous rule:

if the base class virtual method returns a pointer or a reference to
an object of the base class . . .
. . . the derived class can change the return value to a pointer or
reference of the derived class

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 53 / 125

Overload and override

Examples

Correct

class A {
public:

virtual A& f();
int g();

};

class B: public A {
public:

virtual B& f();
double g();

};

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 54 / 125

Overload and override

Examples

Correct

class A {
public:

virtual A& f();
int g();

};

class B: public A {
public:

virtual B& f();
double g();

};

Wrong

class A {
public:

virtual A& f();
};

class C: public A {
public:

virtual int f();
};

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 54 / 125

Destructors

What happens if we try to destruct an object through a pointer to
the base class?

class A {
public:

A();
~A();

};

class B : public A {
public:

B();
~B();

};

int main() {
A *p;
p = new B;
// ...
delete p;

}

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 55 / 125

Virtual destructor

This is a big mistake!
The destructor of the base class is called, which “destroys” only
part of the object
You will soon end up with a segmentation fault (or illegal access), or
memory corruption

To solve the problem, we have to declare a virtual destructor
If the destructors are virtual, they are called in the correct order
See

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 56 / 125

Restrictions

Never call a virtual function inside a destructor!
Can you explain why?

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 57 / 125

Restrictions

Never call a virtual function inside a destructor!
Can you explain why?

You can not call a virtual function inside a constructor
in fact, in the constructor, the object is only half-built, so you could
end up making a wrong thing
during construction, the object is not yet ready! The constructor
should only build the object

Same thing for the destructor
during destruction, the object is half destroyed, so you will probably
call the wrong function

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 57 / 125

Restrictions

Example

class Base {
string name;

public:
Base(const string &n) : name(n) {}
virtual string getName() { return name; }
virtual ~Base() { cout << getName() << endl;}

};

class Derived : public Base {
string name2;

public:
Derived(const string &n) : Base(n), name(n + "2") {}
virtual string getName() {return name2;}
virtual ~Derived() {}

};

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 58 / 125

Pure virtual functions

A virtual function is pure if no implementation is provided

Example:

class Abs {
public:
virtual int fun() = 0;
virtual ~Abs();

};
class Derived public Abs {
public:
Derived();
virtual int fun();
virtual ~Derived();

};

This is a pure virtual function. No
object of Abs can be instantiated.

One of the derived classes must fi-
nalize the function to be able to in-
stantiate the object.

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 59 / 125

Interface classes

If a class only provides pure virtual functions, it is an interface
class

an interface class is useful when we want to specify that a certain
class conforms to an interface
Unlike Java, there is no special keyword to indicate an interface
class
more examples in section multiple inheritance

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 60 / 125

Outline

1 Function Overloading

2 Pointers
Pointer to member
References

3 Copy constructor

4 Static
5 Inheritance

Multiple inheritance
Downcasting

6 Operator Overloading
7 Type conversion

8 Templates

9 Exceptions
Cleanup

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 61 / 125

Multiple inheritance

A class can be derived from 2 or more base classes

C inherits the members of A and B

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 62 / 125

Multiple inheritance

Syntax

class A {
public:

void f();
};

class B {
public:

void f();
};

class C : public A, public B
{

...
};

If both A and B define two
functions with the same
name, there is an
ambiguity

it can be solved with the
scope operator

C c1;

c1.A::f();
c1.B::f();

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 63 / 125

Why multiple inheritance?

Is multiple inheritance really needed?
There are contrasts in the OO research community
Many OO languages do not support multiple inheritance
Some languages support the concept of “Interface” (e.g. Java)

Multiple inheritance can bring several problems both to the
programmers and to language designers

Therefore, the much simpler interface inheritance is used (that
mimics Java interfaces)

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 64 / 125

Interface inheritance

It is called interface inheritance when an onjecy derives from a
base class and from an interface class

A simple example

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 65 / 125

Interface and implementation inheritance

In interface inheritance
The base class is abstract (only contains the interface)
For each method there is only one final implementation in the
derived classes
It is possible to always understand which function is called

Implementation inheritance is the one normally used by C++
the base class provides some implementation
when inheriting from a base class, the derived class inherits its
implementation (and not only the interface)

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 66 / 125

The diamond problem

What happens if class D
inherits from two classes, B
and C which both inherith from
A?

This may be a problem in
object oriented programming
with multiple inheritance!

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 67 / 125

The diamond problem

What happens if class D
inherits from two classes, B
and C which both inherith from
A?

This may be a problem in
object oriented programming
with multiple inheritance!

Problem:
If a method in D calls a method defined in A (and does not override
the method),

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 67 / 125

The diamond problem

What happens if class D
inherits from two classes, B
and C which both inherith from
A?

This may be a problem in
object oriented programming
with multiple inheritance!

Problem:
If a method in D calls a method defined in A (and does not override
the method),
and B and C have overridden that method differently,

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 67 / 125

The diamond problem

What happens if class D
inherits from two classes, B
and C which both inherith from
A?

This may be a problem in
object oriented programming
with multiple inheritance!

Problem:
If a method in D calls a method defined in A (and does not override
the method),
and B and C have overridden that method differently,
from which class does D inherit the method: B, or C?

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 67 / 125

The diamond problem

What happens if class D
inherits from two classes, B
and C which both inherith from
A?

This may be a problem in
object oriented programming
with multiple inheritance!

Problem:
If a method in D calls a method defined in A (and does not override
the method),
and B and C have overridden that method differently,
from which class does D inherit the method: B, or C?
In C++ this is solved by using keyword “virtual” when inheriting from
a class

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 67 / 125

Virtual base class

If you do not use virtual inheritance

class A {...};
class B : public A {...};
class C : public A {...};
class D : public B, public C
{

...
};

With public inheritance the
base class is duplicated

To use one of the methods of
A, we have to specify which
“path” we want to follow with
the scope operator

Cannot upcast!

see duplicate.cpp
G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 68 / 125

Virtual base class

class A {...};
class B : virtual public A {...};
class C : virtual public A {...};
class D : public B, public C {...};

With virtual public inheritance
the base class is inherited only
once

see vbase.cpp for an
example

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 69 / 125

Initializing virtual base

The strangest thing in the previous code is the initializer for Top in
the Bottom constructor.

Normally one doesn’t worry about initializing subobjects beyond
direct base classes, since all classes take care of initializing their
own bases.
There are, however, multiple paths from Bottom to Top,

who is responsible for performing the initialization?

For this reason, the most derived class must initialize a virtual
base.

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 70 / 125

Initializing virtual base

The strangest thing in the previous code is the initializer for Top in
the Bottom constructor.

Normally one doesn’t worry about initializing subobjects beyond
direct base classes, since all classes take care of initializing their
own bases.
There are, however, multiple paths from Bottom to Top,

who is responsible for performing the initialization?

For this reason, the most derived class must initialize a virtual
base.
But what about the expressions in the Left and Right constructors
that also initialize Top?

they are ignored when a Bottom object is created
The compiler takes care of all this for you

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 70 / 125

Outline

1 Function Overloading

2 Pointers
Pointer to member
References

3 Copy constructor

4 Static
5 Inheritance

Multiple inheritance
Downcasting

6 Operator Overloading
7 Type conversion

8 Templates

9 Exceptions
Cleanup

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 71 / 125

When inheritance is used

Inheritance should be used when we have a isA relation between
objects

you can say that a circle is a kind of shape
you can say that a rect is a shape

What if the derived class contains some special function that is
useful only for that class?

Suppose that we need to compute the diagonal of a rectangle

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 72 / 125

isA vs. isLikeA

If we put function diagonal() only in Rect, we cannot call it with a
pointer to shape

in fact, diagonal() is not part of the interface of shape

If we put function diagonal() in Shape, it is inherited by Triangle
and Circle

diagonal() does not make sense for a Circle
we should raise an error when diagonal is called on a Circle

What to do?

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 73 / 125

The fat interface

one solution is to put the function in the Shape interface
it will return an error for the other classes like Triangle and Circle

another solution is to put it only in Rect and then make a
downcasting when necessary

see diagonal/ for the two solutions

This is a problem of inheritance! Anyway, the second one it
probably better

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 74 / 125

Downcasting

One way to downcast is to use the dynamic_cast construct

class Shape { ... };

class Circle : public Shape { ... };

void f(Shape *s)
{

Circle *c;

c = dynamic_cast<Circle *>(s);
if (c == 0) {
// s does not point to a circle

}
else {
// s (and c) points to a circle

}
}

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 75 / 125

Dynamic cast

The dynamic_cast() is solved at run-time, by looking inside the
structure of the object

This feature is called run-time type identification (RTTI)

In some compiler, it can be disabled at compile time

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 76 / 125

Outline

1 Function Overloading

2 Pointers
Pointer to member
References

3 Copy constructor

4 Static
5 Inheritance

Multiple inheritance
Downcasting

6 Operator Overloading
7 Type conversion

8 Templates

9 Exceptions
Cleanup

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 77 / 125

Operator oveloading

After all, an operator is like a function
binary operator: takes two arguments
unary operator: takes one argument

The syntax is the following:
Complex &operator+=(const Complex &c);

Of course, if we apply operators to predefined types, the compiler
does not insert a function call

int a = 0;
a += 4;

Complex b = 0;
b += 5; // function call

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 78 / 125

To be member or not to be...

In general, operators that modify the object (like ++, +=, --, etc...)
should be member

Operators that do not modify the object (like +, -, etc,) should not
be member, but friend functions

Let’s write operator+ for complex (see complex/)
Not all operators can be overloaded

we cannot "invent" new operators,
we can only overload existing ones
we cannot change number of arguments
we cannot change precedence
. (dot) cannot be overloaded

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 79 / 125

Strange operators

You can overload
new and delete

used to build custom memory allocate strategies
operator[]

for example, in vector<>...

operator,
You can write very funny programs!

operator->
used to make smart pointers!!

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 80 / 125

How to overload operator []

the prototype is the following:

class A {
...

public:
A& operator[](int index);

};

Exercise:
add operator [] to you Stack class
the operator must never go out of range

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 81 / 125

How to overload new and delete

class A {
...

public:
void* operator new(size_t size);
void operator delete(void *);

};

Everytime we call new for creating an object of this class, the
overloaded operator will be called

You can also overload the global version of new and delete

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 82 / 125

How to overload * and ->

This is the prototype

class Iter {
...
public:

Obj operator*() const;
Obj *operator->() const;

};

Why should I overload operator*() ?
to implement iterators!

Why should I overload operator->() ?
to implement smart pointers

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 83 / 125

Outline

1 Function Overloading

2 Pointers
Pointer to member
References

3 Copy constructor

4 Static
5 Inheritance

Multiple inheritance
Downcasting

6 Operator Overloading
7 Type conversion

8 Templates

9 Exceptions
Cleanup

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 84 / 125

Type conversion via constructor

If you define a constructor that takes as its single argument an
object (or reference) of another type, that constructor allows the
compiler to perform an automatic type conversion.
For example,

class One {
public:

One() {}
};

class Two {
public:

Two(const One&) {}
};

void f(Two) {}

int main() {
One one;
f(one); // Wants a Two, has a One

}

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 85 / 125

Another example

class AA {
int ii;

public:
AA(int i) : ii(i) {}
void print() { cout << ii << endl;}

};
void fun(AA x) {
x.print();

}
int main()
{

fun(5);
}

The integer is “converted” into an object of class AA

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 86 / 125

Preventing implicit conversion

To prevent implicit conversion, we can declare the constructor to
be explicit

class AA {
int ii;

public:
explicit AA(int i) : ii(i) {}
void print() { cout << ii << endl;}

};
void fun(AA x) {
x.print();

}
int main()
{

fun(5); // error, no implicit conversion
fun(AA(5)); // ok, conversion is explicit

}

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 87 / 125

Type conversion through operator

This is a very special kind of operator:

class Three {
int i;

public:
Three(int ii = 0, int = 0) : i(ii) {}

};

class Four {
int x;

public:
Four(int xx) : x(xx) {}
operator Three() const { return Three(x); }

};

void g(Three) {}

int main() {
Four four(1);
g(four);
g(1); // Calls Three(1,0)

}

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 88 / 125

Outline

1 Function Overloading

2 Pointers
Pointer to member
References

3 Copy constructor

4 Static
5 Inheritance

Multiple inheritance
Downcasting

6 Operator Overloading
7 Type conversion

8 Templates

9 Exceptions
Cleanup

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 89 / 125

Templates

Templates are used for generic programming
The general idea is: what we want to reuse is not only the abstract
concept, but the code itself
with templates we reuse algorithms by making them general
As an example, consider the code needed to swap two objects of
the same type (i.e. two pointers)

void swap(int &a, int &b)
{

int tmp;
tmp = a;
a = b;
b = tmp;

}
...
int x=5, y=8;
swap(x, y);

Can we make it generic?

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 90 / 125

Solution

By using templates, we can write

template<class T>
void swap(T &a, T &b)
{

T tmp;
tmp = a;
a = b;
b = tmp;

}
...

int x=5, y=8;
swap<int>(x, y);

Apart from the first line, we have just substituted the type int with
a generic type T

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 91 / 125

How does it work?

The template mechanism resembles the macro mechanism in C
We can do the same in C by using pre-processing macros:

#define swap(type, a, b) { type tmp; tmp=a; a=b; b=tmp; }
...
int x = 5; int y = 8;

swap(int, x, y);

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 92 / 125

How does it work?

The template mechanism resembles the macro mechanism in C
We can do the same in C by using pre-processing macros:

#define swap(type, a, b) { type tmp; tmp=a; a=b; b=tmp; }
...
int x = 5; int y = 8;

swap(int, x, y);

in this case, the C preprocessor substitutes the code
it works only if the programmer knows what he is doing

The template mechanism does something similar
but the compiler performs all necessary type checking

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 92 / 125

Code duplicates

The compiler will instantiate a version of swap() with integer as a
internal type
if you call swap() with a different type, the compiler will generate
a new version

Only when a template is instantiated, the code is generated

If we do not use swap(), the code is never generated, even if we
include it!
if there is some error in swap(), the compiler will never find it until it
tries to generate the code

Looking from a different point of view:
the template mechanism is like cut&paste done by the compiler at
compiling time

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 93 / 125

Swap for other types

What happens if we call swap for a different type:

class A { ... };
A x;
A y;
...

swap<A>(x, y);

A new version of swap is automatically generated
Of course, the class A must support the assignment operator,
otherwise the generation fails to compile
see ./examples/01.cpp_summary-examples/swap.cpp

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 94 / 125

./examples/01.cpp_summary-examples/swap.cpp

Type Deduction

Parameters can be automatically implied by the compiler

int a = 5, b = 8;

swap(a, b); // equivalent to swap<int>(a, b);

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 95 / 125

Type Deduction

Parameters can be automatically implied by the compiler

int a = 5, b = 8;

swap(a, b); // equivalent to swap<int>(a, b);

Sometimes, this is not so straightforward . . .

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 95 / 125

Parameters

A template can have any number of parameters
A parameter can be:

a class, or any predefined type
a function
a constant value (a number, a pointer, etc.)

template<T, int sz>
class Buffer {

T v[sz];
int size_;

public:
Buffer() : size_(0) {}

};
...
Buffer<char, 127> cbuf;
Buffer<Record, 8> rbuf;
int x = 16;
Buffer<char, x> ebuf; // error!

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 96 / 125

Default values

Some parameter can have default value

template<class T, class Allocator = allocator<T> >
class vector;

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 97 / 125

Templates of templates

The third type of parameter a template can accept is another class template

template<class T>
class Array {

...
};

template<class T, template<class> class Seq>
class Container {

Seq<T> seq;
public:

void append(const T& t) { seq.push_back(t); }
T* begin() { return seq.begin(); }
T* end() { return seq.end(); }

};

int main() {
Container<int, Array> container;
container.append(1);
container.append(2);
int* p = container.begin();
while(p != container.end())

cout << *p++ << endl;
}

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 98 / 125

Using standard containers

If the container class is well-written, it is possible to use any container inside

template<class T, template<class U, class = allocator<U> >
class Seq>

class Container {
Seq<T> seq; // Default of allocator<T> applied implicitly

public:
void push_back(const T& t) { seq.push_back(t); }
typename Seq<T>::iterator begin() { return seq.begin(); }
typename Seq<T>::iterator end() { return seq.end(); }

};

int main() {
// Use a vector
Container<int, vector> vContainer;
vContainer.push_back(1);
vContainer.push_back(2);
for(vector<int>::iterator p = vContainer.begin();

p != vContainer.end(); ++p) {
cout << *p << endl;

}
// Use a list
Container<int, list> lContainer;
lContainer.push_back(3);
lContainer.push_back(4);
for(list<int>::iterator p2 = lContainer.begin();

p2 != lContainer.end(); ++p2) {
cout << *p2 << endl;

}
}G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 99 / 125

The typename keyword

The typename keyword is needed when we want to specify that an
identifier is a type

template<class T> class X {
typename T::id i; // Without typename, it is an error:

public:
void f() { i.g(); }

};

class Y {
public:

class id {
public:
void g() {}

};
};

int main() {
X<Y> xy;
xy.f();

}

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 100 / 125

General rule

if a type referred to inside template code is qualified by a template
type parameter, you must use the typename keyword as a prefix,

unless it appears in a base class specification or initializer list in
the same scope (in which case you must not).

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 101 / 125

Usage

The typical example of usage is for iterators

template<class T, template<class U, class = allocator<U> >
class Seq>

void printSeq(Seq<T>& seq) {
for(typename Seq<T>::iterator b = seq.begin();

b != seq.end();)
cout << *b++ << endl;

}

int main() {
// Process a vector
vector<int> v;
v.push_back(1);
v.push_back(2);
printSeq(v);
// Process a list
list<int> lst;
lst.push_back(3);
lst.push_back(4);
printSeq(lst);

}

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 102 / 125

Making a member template

An example for the complex class

template<typename T> class complex {
public:
template<class X> complex(const complex<X>&);
...

};

complex<float> z(1, 2);
complex<double> w(z);

In the declaration of w, the complex template parameter T is
double and X is float. Member templates make this kind of flexible
conversion easy.

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 103 / 125

Another example

int data[5] = { 1, 2, 3, 4, 5 };
vector<int> v1(data, data+5);
vector<double> v2(v1.begin(), v1.end());

As long as the elements in v1 are assignment-compatible with the
elements in v2 (as double and int are here), all is well.

The vector class template has the following member template
constructor:

template<class InputIterator>
vector(InputIterator first, InputIterator last,

const Allocator& = Allocator());

InputIterator is interpreted as vector<int>::iterator

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 104 / 125

Another example

template<class T> class Outer {
public:
template<class R> class Inner {
public:
void f();

};
};

template<class T> template<class R>
void Outer<T>::Inner<R>::f() {
cout << "Outer == " << typeid(T).name() << endl;
cout << "Inner == " << typeid(R).name() << endl;
cout << "Full Inner == " << typeid(*this).name() << endl;

}

int main() {
Outer<int>::Inner<bool> inner;
inner.f();

}

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 105 / 125

Restrictions

Member template functions cannot be declared virtual.
Current compiler technology expects to be able to determine the
size of a class’s virtual function table when the class is parsed.
Allowing virtual member template functions would require knowing
all calls to such member functions everywhere in the program
ahead of time.
This is not feasible, especially for multi-file projects.

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 106 / 125

Function templates

The standard template library defines many function templates in
algorithm

sort, find, accumulate, fill, binary_search, copy, etc.

An example:

#include <algorithm>
...
int i, j;
...
int z = min<int>(i, j);

Type can be deducted by the compiler

But the compiler is smart up to a certain limit . . .

int z = min(x, j); // x is a double, error, not the same types

int z = min<double>(x, j); // this one works fine

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 107 / 125

Return type

template<typename T, typename U>
const T& min(const T& a, const U& b) {
return (a < b) ? a : b;

}

The problem is: which return value is the most correct? T or U?

If the return type of a function template is an independent template
parameter, you must always specify its type explicitly when you
call it, since there is no argument from which to deduce it.

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 108 / 125

Example

template<typename T> T fromString(const std::string& s) {
std::istringstream is(s);
T t;
is >> t;
return t;

}
template<typename T> std::string toString(const T& t) {

std::ostringstream s;
s << t;
return s.str();

}
int main() {

int i = 1234;
cout << "i == \"" << toString(i) << "\"" << endl;
float x = 567.89;
cout << "x == \"" << toString(x) << "\"" << endl;
complex<float> c(1.0, 2.0);
cout << "c == \"" << toString(c) << "\"" << endl;
cout << endl;

i = fromString<int>(string("1234"));
cout << "i == " << i << endl;
x = fromString<float>(string("567.89"));
cout << "x == " << x << endl;
c = fromString<complex<float> >(string("(1.0,2.0)"));
cout << "c == " << c << endl;

}

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 109 / 125

Outline

1 Function Overloading

2 Pointers
Pointer to member
References

3 Copy constructor

4 Static
5 Inheritance

Multiple inheritance
Downcasting

6 Operator Overloading
7 Type conversion

8 Templates

9 Exceptions
Cleanup

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 110 / 125

Try/catch

An exception object is thrown by the programmer in case of an
error condition

An exception object can be caught inside a try/catch block

try {
//
// this code can generate exceptions
//

} catch (ExcType1& e1) {
// all exceptions of ExcType1 are handled here

}

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 111 / 125

Try/catch

If the exception is not caught at the level where the function call
has been performed, it is automatically forwarded to the upper
layer

Until it finds a proper try/catch block that cathes it
or until there is no upper layer (in which case, the program is
aborted)

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 112 / 125

More catches

It is possible to put more catch blocks in sequence

they will be processed in order, the first one that catches the
exception is the last one to execute

try {
//
// this code can generate exceptions
//

} catch (ExcType1&e1) {
// all exceptions of ExcType1

} catch (ExcType2 &e2) {
// all exceptions of ExcType2

} catch (...) {
// every exception

}

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 113 / 125

Re-throwing

It is possible to re-throw the same exception that has been caught
to the upper layers

catch(...) {
cout << "an exception was thrown" << endl;
// Deallocate your resource here, and then rethrow
throw;

}

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 114 / 125

Terminate

In case of abort, the C++ run-time will call the terminate(), which calls abort()
It is possible to change this behaviour

#include <exception>
#include <iostream>
using namespace std;

void terminator() {
cout << "I’ll be back!" << endl; exit(0);

}
void (*old_terminate)() = set_terminate(terminator);

class Botch {
public:

class Fruit {};
void f() {

cout << "Botch::f()" << endl;
throw Fruit();

}
~Botch() { throw ’c’; }

};

int main() {
try {

Botch b; b.f();
} catch(...) {

cout << "inside catch(...)" << endl;
}

}

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 115 / 125

Inheritance

double mylog(int a)
{

if (a < = 0) throw LogErr();
else return log(double(a));

}

void f(int i)
{

mylog(i);
}

...

try {
f(-5);

} catch(MathErr &e) {
cout << e.what() << endl;

}

This code will print “Log of a
negative number - log module”

you can also pass any
parameter to LogErr, like the
number that cause the error,
or the name of the function
which caused the error, etc.

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 116 / 125

Exception specification

It is possible to specify which exceptions a function might throw,
by listing them after the function prototype

Exceptions are part of the interface!

void f(int a) throw(Exc1, Exc2, Exc3);
void g();
void h() throw();

f() can only throw exception Exc1, Exc2 or Exc3

g() can throw any exception

h() does not throw any exception

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 117 / 125

Listing exceptions

Pay attention: a function must list in the exception list all exception
that it may throw, and all exception that all called functions may
throw

int f() throw(E1) {...}

int g() throw(E2)
{

...
if (cond) throw E2;
...
f();

}

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 118 / 125

Listing exceptions

Pay attention: a function must list in the exception list all exception
that it may throw, and all exception that all called functions may
throw

int f() throw(E1) {...}

int g() throw(E2)
{

...
if (cond) throw E2;
...
f();

}

It should contain E1 in the list,because g()
calls f()

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 118 / 125

Exception list and inheritance

if a member function in a base class says it will only throw an
exception of type A,
an override of that function in a derived class must not add any
other exception types to the specification list

because that would break any programs that adhere to the base
class interface.

You can, however, specify fewer exceptions or none at all, since
that doesn’t require the user to do anything differently.

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 119 / 125

Exception list and inheritance

It is possible to change the specification of an exception with a derived
exception

class Base {
public:

class BaseException {};
class DerivedException : public BaseException {};
virtual void f() throw(DerivedException) {

throw DerivedException();
}
virtual void g() throw(BaseException) {

throw BaseException();
}

};

class Derived : public Base {
public:

void f() throw(BaseException) {
throw BaseException();

}
virtual void g() throw(DerivedException) {

throw DerivedException();
}

}; ///:~

Which one is correct?

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 120 / 125

Outline

1 Function Overloading

2 Pointers
Pointer to member
References

3 Copy constructor

4 Static
5 Inheritance

Multiple inheritance
Downcasting

6 Operator Overloading
7 Type conversion

8 Templates

9 Exceptions
Cleanup

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 121 / 125

Stack unrolling

void f() {
A a;

if (cond) throw Exc();

}

void g() {
A *p = new A;

if (cond) throw Exc();

}

At this point, a is destructed

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 122 / 125

Stack unrolling

void f() {
A a;

if (cond) throw Exc();

}

void g() {
A *p = new A;

if (cond) throw Exc();

}

At this point, a is destructed

memory pointed by p is not automati-
cally deallocated

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 122 / 125

Resource management

When writing code with exceptions, it’s particularly important that
you always ask, “If an exception occurs, will my resources be
properly cleaned up?”

Most of the time you’re fairly safe,
but in constructors there’s a particular problem:

if an exception is thrown before a constructor is completed, the
associated destructor will not be called for that object.
Thus, you must be especially diligent while writing your constructor.

The difficulty is in allocating resources in constructors.
If an exception occurs in the constructor, the destructor doesn’t get
a chance to deallocate the resource.
see exceptions/rawp.cpp

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 123 / 125

How to avoid the problem

To prevent such resource leaks, you must guard against these
“raw” resource allocations in one of two ways:

You can catch exceptions inside the constructor and then release
the resources
You can place the allocations inside an object’s constructor, and
you can place the deallocations inside an object’s destructor.

The last technique is called Resource Acquisition Is Initialization
(RAII for short) because it equates resource control with object
lifetime.

Example: exception_wrap.cpp

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 124 / 125

Auto ptr

Dynamic memory is the most frequent resource used in a typical
C++ program,

the standard provides an RAII wrapper for pointers to heap
memory that automatically frees the memory.

The auto_ptr class template, defined in the <memory> header,
has a constructor that takes a pointer to its generic type

The auto_ptr class template also overloads the pointer operators
* and -> to forward these operations to the original pointer

So you can use the auto_ptr object as if it were a raw pointer.

G. Lipari (Scuola Superiore Sant’Anna) Summary of C++ March 13, 2011 125 / 125

	Function Overloading
	Pointers
	Pointer to member
	References

	Copy constructor
	Static
	Inheritance
	Multiple inheritance
	Downcasting

	Operator Overloading
	Type conversion
	Templates
	Exceptions
	Cleanup

