
UML class diagrams

Giuseppe Lipari
http://retis.sssup.it

Scuola Superiore Sant’Anna – Pisa

March 13, 2011

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 1 / 31

Using UML

Goal: Be able to “reason about” a design
i.e., understand designer’s intent
Critique/improve the design

Claim: Source code not best medium for communication and
comprehension

Lots of redundancy and detail irrelevant for some
program-understanding tasks
Especially poor at depicting relationships among classes in OO
programs
To understand an OO design, one must be able to visualize these
relationships

Solution: Use abstract, visual representations - UML

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 2 / 31

http://retis.sssup.it

UML diagrams

Collection of notations representing software designs from three
points of view:

Class model describes the static structure of objects and
relationships in a system
State model describes the dynamics aspects of objects and the
nature of control in a system
Interaction model describes how objects in a system cooperate to
achieve broader results

Generally, we need all three models to describe a system

No single model says everything

Here we focus on class model

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 3 / 31

UML Class diagram notation

Boxes denote classes
Each box comprises:

Class name
List of data attributes
List of operations

More compact than code and
more amenable to depicting
relationship among classes

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 5 / 31

Notation

Visibility:

- is private

is protected

+ is public

Specification

member type follows definition

parameter type follow name

optionally, can specify parameter
direction (in/out)

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 6 / 31

Abstraction in class diagrams

Class diagrams often elide details
Method associated with an
operation
Attribute and operations may be
hidden in diagrams to improve
readability

even if they exist in C++ code

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 7 / 31

Relationships between classes

Two classes can be related by:
Inheritance
Association
Aggregation
Composition

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 8 / 31

Inheritance

DerivedClass is derived
from BaseClass

BaseClass class has an
abstract method (in italic)

operation() is a pure virtual
method

DerivedClass implements
the virtual method

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 9 / 31

Object notation

Notes:
The UML symbol for an object is a box with an object name
followed by a colon and the class name. The object name and class
name are both underlined.
Attribute values and the object name are optional.
Only list attributes that have intrinsic meaning. Attributes of
computer artifacts (such as pointers) should not be listed.

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 11 / 31

Example

We can also remove the
member values, and even the
object name

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 12 / 31

Associations - II

A Link is represented as a line connecting two or more object
boxes

It can be shown on an object diagram or class diagram.

A link is an instance of an association

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 13 / 31

A More formal distinction

Value: Primitive “piece of data”
E.g., the number 17, the string “Canada”
Unlike objects, values lack identity

Object: Meaningful concept or “thing” in an application domain
Often appears as a proper noun or specific reference in discussions
with users.
May be attributed with values
Has identity

Two objects containing the “same values” are not the same object!

They are distinct objects
They may be considered “equivalent” under a certain definition of
“equality”

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 14 / 31

What’s the big deal about identity?

Useful in reasoning about “goodness” of a design
Many poor designs result from an “encoding” of one object within
another, using attribute values
By reasoning about identity, one may identify such a design flaw
early
Best illustrated by example

Also allows us to model relationships among objects and classes
more explicitly

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 15 / 31

Exercise: Travel-planning system

A city has a name, a certain population, and a specific time zone

A city has one or more airports

An airport has a name and a unique code

How many classes should you design?

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 16 / 31

Is this design correct?

These attributes are “hiding” an object (the airport) that is
meaningful by itself in this domain

Why it might be bad to encode one object as a collection of
attribute values within another?

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 17 / 31

Design tip

Answer:
Potential for redundancy/inconsistency due to duplication

some airports serve multiple cities
some cities served by no airports
some cities served by multiple airports

Operations over Airport objects may not need to know details
associated with cities, such as population

When designing a class:
Apply the identity test to each attribute (including attributes in
combination)
Never use an attribute to model an “object identifier”

UML notation helps enforce this discipline

So then how do we model connections between objects, such as
Cities and Airports?

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 18 / 31

Relationships among objects

Link: Physical or conceptual connection between objects
Much more abstract than pointers/references
Most (not all) links relate exactly two objects

Association: Description of a group of links with common
structure and semantics
A link is an instance of an association:

Links connect objects of same classes
Have similar properties (link attributes)
Association describes set of potential links just like a class
describes a set of potential objects

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 20 / 31

Examples of links

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 21 / 31

From links to association

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 22 / 31

Association

Association represents the ability of one instance to send a
message to another instance
This is typically implemented with a pointer or reference instance
variable, although it might also be implemented as a method
argument, or the creation of a local variable.

class Researcher {
vector<Paper *> paper_list;
...

};
class Paper {

vector<Researcher *> author_list;
...

};

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 23 / 31

Directional association

Association can be directed if the link only goes in one direction

class Abc {
private:

Cde *c;
public:

...
};

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 24 / 31

Bidirectionality

During early design, it is often difficult to predict the navigation
directions that will be needed

Especially true for many-to-many associations
Better to model connections as bidirectional associations and later
refine these associations into more implementation-level structures
(e.g., pointers, vectors of pointers, maps, etc.)

Often several ways to implement an association and the details
are not salient to the “essence” of the design

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 25 / 31

Implementation of “serves” association

class City {
...

protected:
string cityName;
unsigned population;
vector<Airport*> serves;

};

class Airport {
...

protected:
string airportName;
CODE airportCode;
ZONE timeZone;
vector<City*> serves;

};

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 26 / 31

Alternative implementation of “serves” association

class City {
...

protected:
string cityName;
unsigned population;

};

class Airport {
...

protected:
string airportName;
CODE airportCode;
ZONE timeZone;

};

multimap<City*, Airport*> cityServes;
multimap<Airport*, City*> airportServes;

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 27 / 31

Aggregation

Association is a general relationship

When we have a “whole/part” relationship, we can use a special
kind of association, called “aggregation”

instances cannot have cyclic aggregation relationships (i.e. a part
cannot contain its whole)

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 28 / 31

Composition

Composition is the same as aggregation, but in addition the
“whole” controls the “part”

class Car {
public:
virtual ~Car() {delete itsCarb;}

private:
Carburetor* itsCarb

};

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 29 / 31

Template notation

Equivalent to:

template<class T>
class MyClass {

T var;
int number;

public:
...
T operator[](int index);

};

Giuseppe Lipari (Scuola Superiore Sant’Anna) UML class diagrams March 13, 2011 31 / 31

	UML Class diagram notation
	Objects
	Association, Aggregation, Composition
	Template notation

