
Design Patterns in C++
Object Oriented Design Principles

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

March 13, 2011

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 1 / 47

An object provides services

You should think of an object as a service provider
the goal of the programmer is to produce (or find in existing
libraries) a set of objects that provide the right services that you
need to solve the problem

To do this, you need to decompose the problem space into a set of
objects
it does not matter if you do not know yet how to implement them
what it is important is to a) identify what are the “important” objects
that are present in your problem and b) identify which services
these objects can provide
Then, for every object, you should think if it is possible to
decompose it into a set of simpler objects
You should stop when you find that the objects are small enough
that can be easily implements and are self-consistent and
self-contained

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 3 / 47

http://retis.sssup.it/~lipari

High cohesion

Thinking of an object as a service provider has an additional
benefit: it helps to improve the cohesiveness of the object.
High cohesion is a fundamental quality of software design

It means that the various aspects of a software component (such as
an object, although this could also apply to a method or a library of
objects) “fit together” well

One problem people have when designing objects is cramming
too much functionality into one object

Treating objects as service providers is a great simplifying tool, and
it’s very useful not only during the design process, but also when
someone else is trying to understand your code or reuse an object
if they can see the value of the object based on what service it
provides, it makes it much easier to fit it into the design.

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 4 / 47

Hiding the implementation

Even when you are writing a program all by yourself, it is useful to
break the playing field into class creators and client programmers

the class creators implements the internals of a class, so that it can
provide services
the client programmers use the class to realize some other
behavior (e.g. another class)
almost all programmers are at the same time class creators and
client programmers

The class creators must not expose the implementation details to
the client programmers

The goal is to export only the details that are strictly useful to
provide the services

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 6 / 47

Why hiding?

The concept of implementation hiding cannot be overemphasized
Why it is so important?

The first reason for access control is to keep client programmers’
hands off portions they shouldn’t touch
This is actually a service to users because they can easily see
what’s important to them and what they can ignore
The second reason for access control is to allow the library
designer to change the internal workings of the class without
worrying about how it will affect the client programmer
For example, you might implement a particular class in a simple
fashion to ease development, and then later discover that you need
to rewrite it in order to make it run faster
If the interface and implementation are clearly separated and
protected, you can accomplish this easily

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 7 / 47

Hiding implementation in C++

In C++, not all implementation details are “hidden”
Class declaration in the include file contains private members
Include files are distributed along with lib files
Those are visible, not hidden! Customers can view the private part

Hidden does not mean secret
It only means that they are not part of the interface
Thus, modifications to the private part do not imply modification to
the client code, because the interface does not change
Code modification/adaptation is expensive, and a potential source
of bugs

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 8 / 47

The pimpl idiom

Changing the private part implies re-compiling all client files
Not so expensive, but annoying

Also, sometimes we want to make all implementation secret
To do this, we can use the “pimpl idiom”

// include file
class MyClassImpl;

class MyClass {
MyClassImpl *pimpl;

public:
//interface

};

// cpp source file
// definition of private part
class MyClassImpl {...}

MyClass::MyClass() {
pimpl = new MyClassImpl();
...

}

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 9 / 47

pimpl performance

All private data is in class MyClassImpl, which is not declared to
the client

the drawback is one more level of indirection: all private data must
be accessed through a pointer, or redirected to an internal class

this causes a slight increment in overhead

another performance loss could be the call to new and delete
operators every time an object is constructed

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 10 / 47

SOLID

SOLID denotes the five principles of good object oriented
programming

Single responsibility
Open-closed
Liskov substitution
Interface segregation
Dependency inversion

it is a mnemonic acronym introduced by Robert C. Martin in the
early 2000s which stands for five basic patterns of object-oriented
programming and design.

The principles when applied together make it much more likely
that a programmer will create a system that is easy to maintain
and extend over time.

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 12 / 47

Single Responsibility Principle

A class should have only one reason to change.

In this context a responsibility is considered to be one reason to
change.
This principle states that if we have 2 reasons to change for a
class, we have to split the functionality in two classes.

Each class will handle only one responsibility and on future if we
need to make one change we are going to make it in the class
which handle it.
When we need to make a change in a class having more
responsibilities, the change might affect the other functionality of
the classes.

Single Responsibility Principle was introduced Tom DeMarco in
his book Structured Analysis and Systems Specification, 1979.
Robert Martin reinterpreted the concept and defined the
responsibility as a reason to change.

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 13 / 47

Example

An object that represents an email message

class IEmail {
public:

virtual void setSender(string sender) = 0;
virtual void setReceiver(string receiver) = 0;
virtual void setContent(string content) = 0;

};

class Email : public IEmail {
public:

void setSender(string sender) {// set sender; }
void setReceiver(string receiver) {// set receiver; }
void setContent(string content) {// set content; }

};

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 14 / 47

Reasons top change

our IEmail interface and Email class have 2 responsibilities
(reasons to change).

One would be the use of the class in some email protocols such as
pop3 or imap. If other protocols must be supported the objects
should be serialized in another manner and code should be added
to support new protocols.
Another one would be for the Content field. Even if content is a
string maybe we want in the future to support HTML or other
formats.

We can create a new interface and class called IContent and
Content to split the responsibilities.
Having only one responsibility for each class give us a more
flexible design:

adding a new protocol causes changes only in the Email class.
adding a new type of content supported causes changes only in
Content class

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 15 / 47

Separate responsibilities

// single responsibility principle - good example
class IEmail {
public:

virtual void setSender(string sender) = 0;
virtual void setReceiver(string receiver) = 0;
virtual void setContent(IContent content) = 0;

};

class IContent {
public:

virtual string getAsString() = 0; // used for serialization
};

class Email : public IEmail {
public:

void setSender(string sender) {// set sender; }
void setReceiver(string receiver) {// set receiver; }
void setContent(IContent content) {// set content; }

};

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 16 / 47

Designing for change

Every software is subject to change
A good design makes changes less trouble

Problems related to change:
The immediate cause of the degradation of the design is when
requirements change in ways that the initial design did not
anticipate
Often these changes need to be made quickly, and may be made by
engineers who are not familiar with the original design philosophy
So, though the change to the design works, it somehow violates the
original design. Bit by bit, as the changes continue to pour in, these
violations accumulate until malignancy sets in

The requirements document is the most volatile document in the
project

If our designs are failing due to the constant rain of changing
requirements, it is our designs that are at fault

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 18 / 47

The open/close principle

A class should be open for extension, but closed for
modification

Bertrand Meyer [4]

In an ideal world, you should never need to change existing code
or classes

Except for bug-fixing and maintenance

all new functionality should be added by adding new subclasses
and overriding methods, or by reusing existing code through
delegation

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 19 / 47

A bad example (UML)

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 20 / 47

The code

class GraphicEditor {
public:

void drawShape(Shape &s) {
if (s.type==1) drawRectangle(s);
else if (s.type==2) drawCircle(s);

}
void drawCircle(Circle &r) {....}
void drawRectangle(Rectangle &r) {....}

};

class Shape {
public:

int type;
};

class Rectangle : public Shape {
Rectangle() { type=1; }

};

class Circle : public Shape {
Circle() { type=2; }

};

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 21 / 47

Solution (UML)

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 22 / 47

Design for change

The Open-Closed principle

Key issue: prepare for change
Causes for re-design

Dependence on hardware or software platform
Dependence on representation or implementation
Algorithmic dependence
Tight coupling
Overuse of inheritance
Inability to alter classes easily

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 23 / 47

Liskov Substitution Principle

Functions that use pointers of references to base classes
must be able to use objects of derived classes without
knowing it.

Barbara Liskov, “Data Abstraction and Hierarchy,” [3]

The importance of this principle becomes obvious when you
consider the consequences of violating it.

If there is a function which does not conform to the LSP, then that
function uses a pointer or reference to a base class, but must
know about all the derivatives of that base class.

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 25 / 47

Example of violations of LSP

One of the most glaring violations of this principle is the use of
C++ Run-Time Type Information (RTTI) to select a function based
upon the type of an object.

void DrawShape(const Shape& s)
{

Square *q;
Circle *c;

if (q = dynamic_cast<Square *>(s))
DrawSquare(q);

else if (c = dynamic_cast<Circle *>(s))
DrawCircle(c);

}

Clearly the DrawShape function is badly formed. It must know
about every possible derivative of the Shape class, and it must be
changed whenever new derivatives of Shape are created. Indeed,
many view the structure of this function as anathema to Object
Oriented Design.

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 26 / 47

Other examples of violation

There are other, far more subtle, ways of violating the LSP

class Rectangle
{

public:
void SetWidth(double w) {itsWidth=w;}
void SetHeight(double h) {itsHeight=w;}
double GetHeight() const {return itsHeight;}
double GetWidth() const {return itsWidth;}

private:
double itsWidth;
double itsHeight;

};

Now suppose we want to introduce a Square
A square is a particular case of a rectangle, so it seems natural to
derive class Square from class rectangle
Do you see problems with this reasoning?

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 27 / 47

Problems?

Square will inherit the SetWidth and SetHeight functions.
These functions are utterly inappropriate for a Square!

since the width and height of a square are identical.

This should be a significant clue that there is a problem with the
design.

Suppose we write the code so that when we set the height the
with changes as well, and viceversa.

We have to do the Rectangle members virtual, otherwise it does
not work!

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 28 / 47

Fixing it – the code

class Rectangle
{

public:
virtual void SetWidth(double w) {itsWidth=w;}
virtual void SetHeight(double h) {itsHeight=h;}
double GetHeight() const {return itsHeight;}
double GetWidth() const {return itsWidth;}

private:
double itsHeight;
double itsWidth;

};

class Square : public Rectangle
{

public:
virtual void SetWidth(double w);
virtual void SetHeight(double h);

};

void Square::SetWidth(double w)
{

Rectangle::SetWidth(w);
Rectangle::SetHeight(w);

}
void Square::SetHeight(double h)
{

Rectangle::SetHeight(h);
Rectangle::SetWidth(h);

}

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 29 / 47

The real problem

We changed the interface, not only the behavior!

void g(Rectangle& r)
{

r.SetWidth(5);
r.SetHeight(4);
assert(r.GetWidth() * r.GetHeight()) == 20);

}

The code above was written by a programmer that did not know
about squares

what happens if you pass it a pointer to a Square object?

the programmer made the (at that time correct) assumption that
modifying the height does not change the width of a rectangle.

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 30 / 47

Good design is not obvious

The previous design violates the LSP

A Square is not the same as a Rectangle for some pieces of code

from the behavioural point of view, they are not equivalent (one
cannot be used in place of the other)
The behaviour is what is important in software!
See the paper

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 31 / 47

Interface Segregation Principle

Clients should not be forced to depend upon interfaces that
they don’t use.

This means that when we write our interfaces we should take care
to add only methods that should be there.
If we add methods that should not be there the classes
implementing the interface will have to implement those methods
as well.

For example if we create an interface called Worker and add a
method lunch break, all the workers will have to implement it. What
if the worker is a robot?

avoid polluted or fat interfaces

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 33 / 47

Bad example

class IWorker {
public:

virtual void work() = 0;
virtual void eat() = 0;

};
class Worker : public IWorker {
public:

void work() { ... }
void eat() { ... }

};
class SuperWorker : public IWorker {
public:

void work() { ... }
void eat() { ... }

};
class Manager {

IWorker *worker;
public void setWorker(IWorker *w) { worker=w; }
public void manage() { worker->work(); }

};

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 34 / 47

Pollution

The IWorker interface is polluted, as Manager does not use
function eat()

Suppose a robot is bought that can work() but does not need to
eat at lunch break

it could implement interface IWorker, but returning an exception
of error code for function eat()

This is bad design, because the interface is doing too much

The solution is to separate the interfaces for work() and eat()

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 35 / 47

Dependency Inversion Principle

High-level modules should not depend on low-level modules.
Both should depend on abstractions.
Abstractions should not depend on details. Details should
depend on abstractions.

In an application we have low level classes which implement basic
and primary operations and high level classes which encapsulate
complex logic and rely on the low level classes.

A natural way of implementing such structures would be to write
low level classes and once we have them to write the complex
high level classes.

But this is not a flexible design. What happens if we need to
replace a low level class?

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 37 / 47

Dependency problem

Let’s take the classical example of a copy module which read
characters from keyboard and write them to the printer device.

The high level class containing the logic is the Copy class. The
low level classes are KeyboardReader and PrinterWriter.

In a bad design the high level class uses directly the low level
classes. In this case if we want to change the design to direct the
output to a new FileWriter class we have to change the Copy
class.

Since the high level modules contains the complex logic they
should not depend on the low level modules

a new abstraction layer should be created to decouple the two
levels

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 38 / 47

The solution

According to the Dependency Inversion Principle, the way of
designing a class structure is to start from high level modules to
the low level modules:

High Level Classes ⇒ Abstraction Layer ⇒ Low Level Classes
1 Write interfaces to low level modules (abstract layer)
2 Make sure the high level classes use only references to the abstract

interfaces
3 Use some creational pattern to make the connection (i.e. insert the

reference to the right low level class into the high level class)

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 39 / 47

Motivation

Good Object Oriented programming is not easy
Emphasis on design

Errors may be expensive
Especially design errors!

Need a lot of experience to improve the ability in OO design and
programming

Reuse experts’ design

Patterns = documented experience

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 41 / 47

The source

The design patterns idea was first proposed to the software
community by the “Gang of four” [2]

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides
Design patterns: elements of reusable object-oriented software

They were inspired by a book on architecture design by
Christopher Alexander [1]

Each pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same
way twice.

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 42 / 47

Expected Benefits

The idea of patterns has a general meaning and a general
application: from architecture to software design

One of the few examples in which software development has been
inspired by other areas of engineering

The expected benefits of applying well-know design structures
Finding the right code structure (which classes, their relationship)
Coded infrastructures
A Common design jargon (factory, delegation, composite, etc.)
Consistent format

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 43 / 47

Patterns and principles

Patterns can be seen as extensive applications of the OO
principles mentioned above

For every patter we will try to highlight the benefits in terms of
hiding, reuse, decoupling, substitution, etc.

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 44 / 47

Pattern Categories

Creational: Replace explicit creation problems, prevent platform
dependencies

Structural: Handle unchangeable classes, lower coupling and
offer alternatives to inheritance

Behavioral: Hide implementation, hides algorithms, allows easy
and dynamic configuration of objects

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 45 / 47

Bibliography

Cristopher Alexander, Sara Ishikawa, Murray Silverstein, Max
Jacobson, Ingrid Fiksdhal-King, and Shlomo Angel.
A pattern language.
Oxford University Press, 1997.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design patterns: elements of reusable object-oriented software.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1995.

Barbara Liskov.
Data abstraction and hierarchy.
SIGPLAN Notice, 23(5), 1988.

Bertrand Meyer.
Object-Oriented Software Construction.
Prentice Hall, 1988.

G. Lipari (Scuola Superiore Sant’Anna) OO Design Principles March 13, 2011 47 / 47

	Object as service provider
	Implementation Hiding
	Single Responsibility
	Open/Close principle
	Liskov's Substitution Principle
	Interfaces
	Dependency Inversion
	Design Patterns
	Bibliography

