
Design Patterns in C++
Creational Patterns

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

March 13, 2011

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 1 / 49

http://retis.sssup.it/~lipari


Outline

1 Singleton

2 Abstract Factory

3 Builder

4 Factory Method

5 Static factory method

6 Factory with Registry

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 2 / 49



Intent

Ensure that a class only has one instance, and provide a
global point of access to it

For some classes it is important to have exactly one instance
The should be only one window manager in the system

Of course, the same can be achieved with a global variable
However, for complex system we could run in some problems

the initialization order
the object is created many times by mistake, etc.

A better solution is to make the class itself responsible for creating
and maintaining the instance

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 3 / 49



Code

//include file
class SysParams {

static SysParams *inst;
// other non-static members;
SysParams();
SysParams(const SysParams &);

public:
static SysParams &getInstance();
// other non static members

};

pointer to the only instance

constructor made private

copy constructor hidden and not
implemented

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 4 / 49



Code implementation

// src (cpp) file
SysParams *SysParams::inst = 0;

SysParams & SysParams::getInstance()
{

if (inst == 0)
inst = new SysParams();

return *inst;
}

SysParams::SysParams() { ... }

Lazy initialization

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 5 / 49



Subclassing and registry

Sometimes it may be useful to have different subclasses of the
class, but only one instance of one of them

For example, we could chose one of several windows managers
We can do that at compile/link time by using conditional
compilation;

In this case, every subclass has its implementation of the
getInstance() that returns the correct pointer, and the one to
compile/link is decided though compilation switches

We can also do it at run-time (during instantiation), using for
example an environment variable

In this case, it is necessary to implement the creation code in the
getInstance() method of the base class

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 6 / 49



Concurrency

If several threads can use the singleton, we must protect the
initialization through a mutex semaphore

SysParams & SysParams::getInstance()
{

lock_mutex();
if (inst == 0)

inst = new SysParams();
unlock_mutex();
return *inst;

}

Notice that every time
getInstance() gets
called, the mutex must be
locked and unlocked, even
after the object has been
created

To reduce overhead we
could use the double
checked locking pattern;

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 7 / 49



Double checked locking

In this case we perform a double check on the variable

SysParams & SysParams::getInstance()
{

if (inst == 0) {
lock_mutex();
if (inst == 0) inst = new SysParams();
unlock_mutex();

}
return *inst;

}

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 8 / 49



Double checked locking

In this case we perform a double check on the variable

SysParams & SysParams::getInstance()
{

if (inst == 0) {
lock_mutex();
if (inst == 0) inst = new SysParams();
unlock_mutex();

}
return *inst;

}

WARNING! This technique may not work on all architectures!

the problem is with the re-ordering of instructions by the compiler
(due to optimizations) or by the hardware (due to instruction
re-ordering in the processor)

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 8 / 49



Solution (correct)

A memory barrier is a processor instruction that guarantees
order of instructions

All instructions before the barrier must be completed before any
instruction after the barrier

We will also use another helper variable to check initialization

SysParams & SysParams::getInstance()
{

if (val == 0) {
lock_mutex();
if (inst == 0) inst = new SysParams();
unlock_mutex();
// memory barrier
val = 1;
return *inst;

}
else {

// memory barrier
return *inst;

}
}

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 9 / 49



When to use singletons

A Singleton is useful to implement global variables in a safe way
For example, it provides a global point of access and an interface to
a set of global objects (e.g. system parameters, a window manager,
a configuration manager, etc.)

It may be useful to control the order of initialisation

The object is not created if not used
Sometimes this pattern is overused

Singletons everywhere!
It is not worth to make it for a few primitive global variables that are
local to a module

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 10 / 49



Outline

1 Singleton

2 Abstract Factory

3 Builder

4 Factory Method

5 Static factory method

6 Factory with Registry

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 11 / 49



Abstract factory

A program must be able to choose one of several families of
classes
Example,

a program’s GUI should run on several platforms
Each platform comes with its own set of GUI classes:

WinButton, WinScrollBar, WinWindow MotifButton, MotifScrollBar,
MotifWindow, pmButton, pmScrollBar, pmWindow

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 12 / 49



Abstract factory

A program must be able to choose one of several families of
classes
Example,

a program’s GUI should run on several platforms
Each platform comes with its own set of GUI classes:

WinButton, WinScrollBar, WinWindow MotifButton, MotifScrollBar,
MotifWindow, pmButton, pmScrollBar, pmWindow

Inheritance:
Clearly, we can make all “button” classes derive from an abstract
button that implements a virtual “draw” function
Then, we hold a pointer to button, and assign a specific button object,
so that the correct draw() function is invoked each time

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 12 / 49



Abstract factory

A program must be able to choose one of several families of
classes
Example,

a program’s GUI should run on several platforms
Each platform comes with its own set of GUI classes:

WinButton, WinScrollBar, WinWindow MotifButton, MotifScrollBar,
MotifWindow, pmButton, pmScrollBar, pmWindow

Inheritance:
Clearly, we can make all “button” classes derive from an abstract
button that implements a virtual “draw” function
Then, we hold a pointer to button, and assign a specific button object,
so that the correct draw() function is invoked each time

We probably need to dynamically create a lot of this objects

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 12 / 49



Abstract factory

A program must be able to choose one of several families of
classes
Example,

a program’s GUI should run on several platforms
Each platform comes with its own set of GUI classes:

WinButton, WinScrollBar, WinWindow MotifButton, MotifScrollBar,
MotifWindow, pmButton, pmScrollBar, pmWindow

Inheritance:
Clearly, we can make all “button” classes derive from an abstract
button that implements a virtual “draw” function
Then, we hold a pointer to button, and assign a specific button object,
so that the correct draw() function is invoked each time

We probably need to dynamically create a lot of this objects
Problem: how can we simplify the creation of these objects?

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 12 / 49



Naive approach

We keep a global variable (or object) that represents the current
window manager and “look-and-feel” for all the objects

Every time we create an object, we execute a switch/case on the
global variable to see which object we must create

enum {WIN, MOTIF, PM, ...} lf;
...
// need to create a button
switch(lf) {
case WIN: button = new WinButton(...);

break:
case MOTIF: button = new MotifButton(...);

break;
case PM: button = new PmButton(...);

...
}

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 13 / 49



Problems with the naive approach

What happens if we need to add a new look-and-feel?
We must change lot of code (for every creation, we must add a new
case)

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 14 / 49



Problems with the naive approach

What happens if we need to add a new look-and-feel?
We must change lot of code (for every creation, we must add a new
case)

How much code must we link?
Assuming that each look and feel is part of a different library, all
libraries must be linked together
Large amount of code

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 14 / 49



Problems with the naive approach

What happens if we need to add a new look-and-feel?
We must change lot of code (for every creation, we must add a new
case)

How much code must we link?
Assuming that each look and feel is part of a different library, all
libraries must be linked together
Large amount of code

This solution is not compliant with the open/closed principle
Every time we add a new look and feel, we must change the code
of existing functions/classes

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 14 / 49



Problems with the naive approach

What happens if we need to add a new look-and-feel?
We must change lot of code (for every creation, we must add a new
case)

How much code must we link?
Assuming that each look and feel is part of a different library, all
libraries must be linked together
Large amount of code

This solution is not compliant with the open/closed principle
Every time we add a new look and feel, we must change the code
of existing functions/classes

This solution does not scale

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 14 / 49



Requirements

Uniform treatment of every button, window, etc.
Once you define the interface, you can easily use inheritance

Uniform object creation

Easy to switch between families

Easy to add a family

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 15 / 49



Solution: Abstract factory

Define a factory (i.e. a class whose sole responsibility is to create
objects)

class WidgetFactory {
Button* makeButton(args) = 0;
Window* makeWindow(args) = 0;
// other widgets...

};

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 16 / 49



Solution: Abstract factory

Define a factory (i.e. a class whose sole responsibility is to create
objects)

class WidgetFactory {
Button* makeButton(args) = 0;
Window* makeWindow(args) = 0;
// other widgets...

};

Define a concrete factory for each of the families

class WinWidgetFactory : public WidgetFactory {
Button* makeButton(args) {

return new WinButton(args);
}
Window* makeWindow(args) {

return new WinWindow(args);
}

};

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 16 / 49



Solution - cont.

Select once which family to use:

WidgetFactory* wf;
switch (lf) {
case WIN: wf = new WinWidgetFactory();

break;
case MOTIF: wf = new MotifWidgetFactory();

break;
...
}

When creating objects in the code, don’t use “new” but call:

Button* b = wf->makeButton(args);

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 17 / 49



Solution - cont.

Select once which family to use:

WidgetFactory* wf;
switch (lf) {
case WIN: wf = new WinWidgetFactory();

break;
case MOTIF: wf = new MotifWidgetFactory();

break;
...
}

When creating objects in the code, don’t use “new” but call:

Button* b = wf->makeButton(args);

Switch families – once in the code

Add a family – one new factory, no effect on existing code

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 17 / 49



UML diagram

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 18 / 49



UML diagram, applied

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 19 / 49



Participants

AbstractFactory (WidgetFactory)
declares an interface for operations that create abstract product
objects.

ConcreteFactory (MotifWidgetFactory, PMWidgetFactory)
implements the operations to create concrete product objects.

AbstractProduct (Window, ScrollBar)
declares an interface for a type of product object.

ConcreteProduct (MotifWindow, MotifScrollBar)
defines a product object to be created by the corresponding
concrete factory.
implements the AbstractProduct interface.

Client
uses only interfaces declared by AbstractFactory and
AbstractProduct classes.

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 20 / 49



Comments

Pros:
It makes exchanging product families easy. It is easy to change the
concrete factory that an application uses. It can use different
product configurations simply by changing the concrete factory.
It promotes consistency among products. When product objects in
a family are designed to work together, it’s important that an
application uses objects from only one family at a time time.
AbstractFactory makes this easy to enforce.

Cons:
Not easy to extend the abstract factory’s interface

Other patterns:
Usually one factory per application, a perfect example of a singleton

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 21 / 49



Known uses

Different operating systems (could be Button, could be File)

Different look-and-feel standards

Different communication protocols

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 22 / 49



Outline

1 Singleton

2 Abstract Factory

3 Builder

4 Factory Method

5 Static factory method

6 Factory with Registry

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 23 / 49



Builder

Separate the specification of how to construct a complex object
from the representation of the object

The same construction process can create different
representations

Example:

A converter reads files from one file format (i.e. RTF)
It should write them to one of several output formats (ascii, LaTeX,
HTML, etc.)

No limit on the number of possible output formats
It must be easy to add a new “conversion” without modifying the
code for the reader

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 24 / 49



Requirements

Single Responsibility Principle
Same reader for all output formats
Output format chosen once in code

Open-Closed Principle
Easy to add a new output format
Addition does not change old code

Dynamic choice of output format

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 25 / 49



Participants

The reader: reads the input file, and invokes the converter to
produce the output file

The output file is the final product of the construction

The converter is the builder that builds the final product in a
complex way

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 26 / 49



The solution

We should return a different object depending on the output
format:

HTMLDocument, RTFDocument, . . .

Separate the building of the output from reading the input

Write an interface for such a builder

Use inheritance to write different concrete builders

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 27 / 49



UML representation

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 28 / 49



The solution – code

Builder interface

class Builder {
virtual void writeChar(char c) { }
virtual void setFont(Font *f) { }
virtual void newPage() { }

};

Here’s a concrete builder:

class HTMLBuilder : public Builder
{
private:

HTMLDocument *doc;
public:

HTMLDocument *getDocument() {
return doc;

}
void writeChar(char c) {...}
void setFont(Font *f) {...}
void newPage() {...}

}

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 29 / 49



Converter

The converter uses a builder:

class Converter
{

void convert(Builder *b) {
while (t = read_next_token())

switch (o.kind) {
case CHAR: b->writeChar(o);

break;
case FONT: b->setFont(o);

break;
// other kinds

}
}

};

And this is how the converter is used

RTFBuilder *b = new RTFBuilder;
converter->convert(b);
RTFDocument *d = b->getDocument();

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 30 / 49



Comments

This pattern is useful whenever the creation of an object is
complex and requires many different steps

In the example, the creation of HTMLDocument is performed step
by step as the tokens are read from the file
Only at the end the object is ready to be used

Therefore, we separate the creation of the object from its use later
on
The final object is created with one single step at the end of the
creation procedure

In this case, it is easier to check consistency of the creation
parameters at once
example: create a Square, using the interface of a Rectangle:

The user sets Height and Width in the builder, then tries to build the
Square, and if they are different gets an exception telling what went
wrong

Another example later on

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 31 / 49



Outline

1 Singleton

2 Abstract Factory

3 Builder

4 Factory Method

5 Static factory method

6 Factory with Registry

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 32 / 49



Intent

Define an interface for creating an object, but let subclasses
decide which class to instantiate

Also known as Virtual Constructor

The idea is to provide a virtual function to create objects of a class
hierarchy

each function will then know which class to instantiate

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 33 / 49



Example

Consider a framework for an office suite
Typical classes will be Document and Application
there will be different types of documents, and different types of
applications
for example: Excel and PowerPoint are applications, excel sheet
and presentation are documents
all applications derive from the same abstract class Application
all documents derive from the same abstract class Document
we have parallel hierarchies of classes
every application must be able to create its own document object

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 34 / 49



Example in UML

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 35 / 49



Participants

Product (Document)
defines the interface of the objects the factory method creates

ConcreteProduct (MyDocument)
implements the Product’s interface

Creator (Application)
declares the factory method

ConcreteCreator (MyApplication)
overrides the factory method to return an instance of a
ConcreteProduct

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 36 / 49



UML representation

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 37 / 49



Implementation

It may be useful to add parameters to the factory method, to allow
the creation of multiple types of products

For example, suppose that you want to save a bunch of different
objects on the disk (Triangle, Rectangle, Circle, etc, they are all of
type shape)
one possibility would be to enumerate the types with an integer id,
and save the id as first element in the disk record
when loading the objects again you may read the id first, and then
pass it to a factory method which creates the correct type of object
and loads it from the disk
further, to avoid a switch-case in the factory method, we could
implement a registry (will see in a little while how to do this)

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 38 / 49



Using templates to avoid sub-classing

Sometimes the ConcreteCreator must only implement the factory
method

to avoid writing just a class for this, we could use templates:

class Creator {
public:

virtual Product *createProduct() = 0;
...

};

template <class TheProduct>
class StandardCreator : public Creator {
public:

virtual Product* createProduct() {
return new TheProduct();

}
};

StandardCreator<MyProduct> myCreator;

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 39 / 49



Outline

1 Singleton

2 Abstract Factory

3 Builder

4 Factory Method

5 Static factory method

6 Factory with Registry

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 40 / 49



How to create objects

Usually, objects are created by invoking the constructor

however, sometimes the constructor is not as flexible as we wish

an alternative technique is to use a static method in the class,
whose purpose is to create objects of the class in a more flexible
way
this technique is called static factory method

has almost nothing to do with the GoF’s factory method

class MyClass {
public:

MyClass(int param); // std constructor
static MyClass *create(int param); // static fact. method

};

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 41 / 49



Advantages

The first advantage is that factory methods can have descriptive
names
This is especially useful when there are many different ways to
create an object

the standard way is to implement many constructors with different
argument lists
however, the code readability of this technique is poor: it is difficult
to understand what a certain constructor does by just looking at the
list of parameters
sometimes, constructors differ just in the order of the parameters!

with static factory methods, instead:
It is possible to create different methods with different, more
descriptive names

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 42 / 49



Advantages

The second important advantage is that, unlike constructors, static
factory methods must not necessarily create an object

This can be useful for example when you want to control how many
objects are around, and eventually reuse them
For example, this technique is very useful when implementing an
enumeration of constant objects

The third advantage is the fact that they can create an object of a
subtype of the original type, without the client knowing this fact

Suppose for example that you implemented a BTree class
The client code uses the interface of BTree to perform operations
like insert/extract
Then, you realize that you need different implementation of BTree in
different contexts, because of performance / efficiency reasons
If the BTree is created with a factory method, you can simply switch
between the implementations by configuring the method differently

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 43 / 49



Implementation

Notice that the two implementation classes need not to be
exposed to the client: they can be completely hidden, and
changed at any time without even informing the customer
the extra function setType() can be optionally used to let the
client select the preferred implementation
therefore, we have maximum separation of concerns

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 44 / 49



Hiding the constructor?

The static factory method looks similar to the singleton pattern
(except that there is no limit to the number of instances)

You might be tempted to make the constructor private, so the only
way to construct an instance is to use the static factory method
however, keep in mind that, if the constructor is private, the class
cannot be sub-classed

The derived class cannot call the base class constructor!

therefore, if you want to sub-class, the constructor must be at least
protected

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 45 / 49



Other advantages

Another advantage is the fact that you can easily specify default
parameters between successive calls
this reduces the list of parameters of complex constructors

This is sometimes called telescoping constructor

class NutritionFacts {
public:

NutritionFacts(int servingSize, int servings) {...}
NutritionFacts(int servingSize, int servings, int calories) {...}
NutritionFacts(int servingSize, int servings, int calories,

int fat) {...}
NutritionFacts(int servingSize, int servings, int calories,

int fat, int sodium) {...}
};
...
NutritionFacts label1(240, 8, 100, 0, 35, 27);
NutritionFacts label2(240, 8, 100, 0, 42, 25);
NutritionFacts label3(300, 10, 100, 0, 42, 25);

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 46 / 49



With static factory method

see simple_builder

notice how much more readable it is
Notes:

The auto_ptr<> is used to guarantee that the builder object is
destroyed after the last use
once all parameters have been set, they can be checked in the
NutritionFacts constructor
this method can be extended to consistently build more complex
objects step by step (see Builder Pattern)

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 47 / 49



Outline

1 Singleton

2 Abstract Factory

3 Builder

4 Factory Method

5 Static factory method

6 Factory with Registry

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 48 / 49



Creating objects by ID

Sometimes it is necessary to create objects by using an ID

consider a hierarchy of classes, with Base as the base class and
many different derived classes

clients use the interface of Base to access the object methods
however, they would like to flexibly create one instance of one of
the subclasses depending of an ID

Could be an integer or a string, or anything else

Therefore, we need an AbstractFactory, with one single
create method, which takes a parameter ID to decide which type
of object to instantiate
the following structure will combine:

AbstractFactory
Singleton
Static Factory Method

G. Lipari (Scuola Superiore Sant’Anna) Creational Patterns March 13, 2011 49 / 49


	Singleton
	Abstract Factory
	Builder
	Factory Method
	Static factory method
	Factory with Registry

